Inter-domain Routing

Setting

• Start with simpler goal of intra-domain routing

- Routing is the process that all routers go through to calculate the routing tables
 - each router knows how to get to every destination in the network

Network as a Graph

Routing is essentially a problem in graph theory

Two Approaches

- Link state routing:
 - every node collects a representation of the entire graph and computes shortest paths
 - forwards packets along shortest paths to destination
- Distance vector routing:
 - each node knows only about its next hop links
 - each node maintains a vector of costs to all dests
 - periodically exchange with neighbors its routing table

 What are the issues that we have to take into account as we generalize this to a routing protocol for the Internet?

• What should be the goals of an ideal routing protocol for the Internet?

Setting

- BGP is the "inter-domain" routing protocol
 - Each "domain" is a separately administered entity
 - Also referred to as "autonomous systems" (ASes)
 - Each AS might have multiple prefixes (a contiguous set of addresses, e.g., MIT has 18.*.*.* and UW is 128.208.*.*)

- Routers route packets based on "longest prefix match"
 - Routing table contains the next hop based on a prefix basis
 - Find the best prefix match and route using it
 - What are the implications of using "longest prefix matching"?

Business Relationships

- Neighboring ASes have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay
- Common business relationships
 - Customer-provider
 - Peer-peer
 - Sibling

Customer-Provider Relationship

- Customer needs to be reachable from everyone
 - Provider ensures all neighbors can reach the customer
- Customer needs to reach everyone
- Payments in both directions
- Typically "95th percentile billing"

Peer-Peer relationship

- Peers exchange traffic between customers
 - AS lets its peer reach (only) its customers
 - Often the relationship is settlement-free (i.e., no \$\$\$)

AS Structure

- Top of the Internet hierarchy
 - Has no upstream provider of its own
 - Typically has a large (inter)national backbone
 - Around 10-12 ASes: AT&T, Sprint, Level 3, ...
- Lower-layer providers (tier-2, ...)
 - Provide transit service to downstream customers
 - But need at least one provider of their own
- Stub ASes
 - Do not provide transit service
 - Connect to upstream provider(s)

What is BGP?

- Policy-based path vector routing
 - Path vector: a path of ASes
 - Respect the policies (customer-provider, peer-topeer, etc.)
 - mechanism for filtering and selecting paths
 - at import and export time

 How powerful is the framework? How would you use import/export policies to influence routing?

• What are the implications of BGP policy-based routing?

BGP Route Preferences

Priority	Rule	Remarks
1	LOCAL PREF	Highest LOCAL PREF (§4.2.3).
		E.g., Prefer transit customer routes over peer and provider routes.
2	ASPATH	Shortest ASPATH length (§4.3.5)
		Not shortest number of Internet hops or delay.
3	MED	Lowest MED preferred (§4.3.5).
		May be ignored, esp. if no financial incentive involved.
4	eBGP > iBGP	Did AS learn route via eBGP (preferred) or iBGP?
5	IGP path	Lowest IGP path cost to next hop (egress router).
	_	If all else equal so far, pick shortest internal path.
6	Router ID	Smallest router ID (IP address).
		A random (but unchanging) choice; some implementations
		use a different tie-break such as the oldest route.

Hot-Potato (Early-Exit) Routing

- Hot-potato routing
 - Each router selects the closest egress point
 - ... based on the path cost in intradomain protocol
- BGP decision process
 - Highest local preference
 - Shortest AS path
 - Closest egress point
 - Arbitrary tie break

Export Policy

- Modify attributes of the active route
 - To influence the way other ASes behave
 - Example: AS prepending
- Artificially inflate AS path length seen by others
 - Convince some ASes to send traffic another way

Primary-Backup Paths

Prepending will (usually) force inbound traffic from AS 1 to take primary link

BGP Communities

Customer Installs Backup

Failure Happens!

customer is happy that backup was installed ...

Primary is Repaired...

Provider A (Tier 1)

Provider B (Tier 1)

Provider C (Tien 2)

This is a stable BGP routing!

customer

One "solution" --- reset BGP session on backup link!

- Is BGP secure?
- Is BGP high performant?

Observations

- There is no guarantee that a BGP configuration has a unique routing solution.
 - When multiple solutions exist, the (unpredictable) order of updates will determine which one wins.
- There is no guarantee that a BGP configuration has any solution
- Complex policies (weights, communities setting preferences, and so on) increase chances of routing anomalies.