
Congestion Control (TCP)

Arvind Krishnamurthy
University of Washington

Overview

• TCP reliable delivery

• TCP congestion control

• Discussion of congestion control

TCP: Reliable Delivery

• Detect missing data: sequence number

• Used to detect a gap in the stream of bytes

• Detect bit errors: checksum

• Used to detect corrupted data at the receiver

• Recover from lost data: retransmission

• Sender retransmits lost or corrupted data

• Two main ways to detect lost packets

• Retransmission timeout and fast retransmission

How long should sender wait?

• Sender sets a timeout to wait for an ACK

• Too short: wasted retransmissions

• Too long: excessive delays when packet lost

• TCP sets timeout as a function of the RTT

• Questions:

• what are the hurdles in calculating a good timeout?

• how would you improve the scheme from the
paper?

Flaw in this Approach

• An ACK doesn’t really acknowledge a
transmission

• Rather, it acknowledges receipt of the data

• Consider a retransmission of a lost packet

• If you assume the ACK goes with the 1st transmission, the
SampleRTT comes out way too large

• Consider a duplicate packet

• If you assume the ACK goes with the 2nd transmission, the
Sample RTT comes out way too small

• Simple solution in the Karn/Partridge algorithm

• Only collect samples for segments sent one single time

Fast Retransmission
• Better solution possible under sliding window

• Packet n might have been lost, but packets n+1, n+2,
and so on might get through

• Idea: have the receiver send ACK packets

• ACK says that receiver is still awaiting nth packet

• Repeated ACKs suggest later packets have arrived

• Sender can view the “duplicate ACKs” as an early hint

• Fast retransmission

• Sender retransmits data after the “triple duplicate
ACK”

Congestion Control

Congestion
• What is congestion?

• Load is higher than capacity

• What do IP routers do?

• Drop the excess packets

• Why is this bad?

• Wasted bandwidth for retransmissions

Load

Goodput “congestion
collapse” Increase in load that

results in a decrease in
useful work done.

• Question: can we design a network that
doesn’t have any congestion at all?

Inferring at End-hosts

• What does the end host see?
• Round-trip loss

• Round-trip delay

?

Hosts adapt sending rate
• Congestion window

• Maximum number of bytes to have in transit, i.e., #
of bytes still awaiting acknowledgments

• Upon detecting congestion

• Decrease the window size (e.g., divide in half)

• End host does its part to alleviate the congestion

• Upon not detecting congestion

• Increase the window size, a little at a time

• End host learns whether conditions have changed

Leads to TCP Sawtooth

Window size

halved

Loss

Time

• TCP sawtooth is referred to as AIMD

• “Additive increase, multiplicative decrease”

• Question:

• what are other alternatives to AIMD?

• is AIMD good? and if so, why?

Receive window vs. Congestion window

• Flow control

• Keep a fast sender from overwhelming a slow receiver

• Congestion control

• Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms

• TCP flow control: receiver window

• TCP congestion control: congestion window

• TCP window: min{congestion window, receiver window}

How should a new flow start?

t

Window

But, could take a long
time to get started!

“Slow Start” phase
• Start with a small congestion window

• Initially, CWND is 1 Max Segment Size (MSS)

• That could be pretty wasteful

• Might be much less than the actual bandwidth

• Linear increase takes a long time to accelerate

• Slow-start phase

• Sender starts at a slow rate (hence the name)

• But increases the rate exponentially, until the first
loss event

Slow Start

Loss

Exponential “slow
start”

t

Window

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just  

start by sending a whole receiver window’s worth of data.

• Recall that we have fast retransmit

• Question:

• when are timeouts triggered in TCP?

• what should we do to cwnd upon timeouts?

Two kinds of loss
• Timeout

• Packet n is lost and detected via a timeout

• E.g., because all packets in flight were lost

• After timeout, blasting away for the entire CWND
would trigger a very large burst in traffic

• So, better to start over with a low CWND

• Triple duplicate ACK

• Packet n is lost, but packets n+1, n+2, etc. arrive

• And the sender retransmits packet n quickly

• Do a multiplicative decrease and keep going

Slow Start after Timeout

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start in operation
until it reaches half of

previous cwnd.

timeout

• Question:

• what factors determine TCP performance?

• alternately, what would be an analytical model for
TCP performance?

Factors impacting TCP Performance

• Round-trip time

• Throughput proportional to 1/RTT

• Receiver window

• Throughput is limited by window/RTT

• Slow start and additive increase

• Certain number of RTTs needed to send the data,
even in the absence of any congestion

• Packet loss and congestion window decreases

• Throughput proportional to 1/sqrt(loss)

• Duplicate ACKs don’t happen for short transfers and
bursty loss, and timeout losses are expensive

• Question: suggestions for a “clean-slate”
TCP?

• either take advantage of more information on end-
hosts

• or try to rely on network/router support

