
Consistent Distributed
Storage

What might the customer want?

• 100% available ==> replication, seamless fail-
over

• Never lose data ==> don’t ack until truly
durable

• Replicated at multiple data centers, for low
latency and availability

• Consistent for transactional operations

• High performance

Conventional Wisdom
• Hard to have both consistency and performance in the

wide area (as consistency requires communication)

• Hard to have both consistency and availability (can’t
use a partitioned replica)

• Modified version of the CAP theorem (can’t have all
of consistency, availability and partition-tolerance)

• Popular solution: relaxed consistency

• read/write local replica, send writes in background

• reads may yield stale data, multiple write operations
may not be atomic, RMW races may yield lost
updates, etc.

Basic Design

• Each data center: BigTable cluster, application
server + Megastore library, replication server,
coordinator

• Data in BigTable is identical at all replicas

Setting

• Browser web requests may arrive at any
replica

• That is, at the application server at any replica

• There is no special primary replica

• So could be concurrent transactions on same data
from multiple replicas

Setting

• Transactions can only use data within a single “entity
group”

• An entity group is one row or a set of related rows

• Defined by application

• E.g., all my email messages may be in a single entity
group; yours will be in a different one

• Example transaction:

• Move msg 321 from Inbox to Personal

• Not a transaction: deliver message to both arvind
and niel

BigTable Layout

Transactions
• Each entity group has a log of transactions

• Stored in BigTable, a copy at each replica

• Data in BigTable should be a result of playing log

• Transaction code in application server:

• Find highest log entry # (n)

• Read data from local BigTable

• Accumulate writes in temporary storage

• Create log entry: the set of writes

• Use Paxos to agree that log entry n+1 is new entry

• Apply writes in log entry to BigTable data

Notes

• Commit requires waiting for inter-datacenter
messages

• Only a majority of replicas need to respond

• Non-responders may miss some log entries

• Later transactions will need to repair this

• There might be conflicting transactions

Concurrent Transactions

• Data race: e.g., two clients doing “x = x+1”

• Megastore allows one to commit, aborts the others

• Conservatively prohibits concurrency within an
entity group

• So does not use traditional DB locking; which would
allow concurrency if non-overlapping data

• Conflicts are caught during Paxos agreement

• Application server will find that some other
transaction got log entry n+1

• Application must retry the whole transaction

Paxos Optimizations

• Desired:

• would like to perform reads on local DC without
inter-DC communication

• would like the closest DC be the “leader” for Paxos

• How would you achieve the above goals?

Reads

• Must get latest data

• Would like to avoid inter-replica
communication

• Ideally would read from local BigTable w/o
talking to any other replicas

• Problems?

• Solutions?

Rotating Leader

• Each accepted log entry indicates a "leader"
for next entry

• Leader gets to choose who submits proposal #0 for
next log entry

• First replica to ask wins that right

• All replicas act as if they had already received the
prepare for #0

• Why and when does this help?

“Write” Details

• Ask leader for permission to use proposal #0

• If “no”, send Paxos prepare messages

• Send accepts, repeat prepares if no majority

• Send invalidate to coordinator of ANY replica
that did not accept

• Apply transaction’s writes to as many replicas
as possible

• If you don’t win, return an error; caller will
rerun transaction

Failure: Overloaded
replica

• R1 won’t respond

• Transactions can still commit as long as
majority respond

• Need to talk to R1 coordinator to clear the
flag it maintains for being up-to-date

• Reads at R1 will use a different replica

Failure: replica
disconnection

• Designers view this as rare

• Replica won’t respond to Paxos (OK), but coordinator
not responding is a problem

• Write will block

• Paper implies that coordinators have leases

• Each must renew lease at every replica periodically

• If it doesn’t/can’t

• Commits can ignore the replica

• Replica marks all entity groups as “not up to date”

Performance

• Reads take 10s of milliseconds

• Writes take 100s of milliseconds

• Is that fast or slow?

• What other metrics would you like from the
paper?

• Is Megastore suitable for Internet workloads?

MegaStore Summary

• High availability through replication, seamless
fail-over

• Replicated at multiple data centers, for low
latency and availability

• Ack only when truly durable

• Consistency for transactional operations

• Performance improvements

Spanner

• Picks up from where MegaStore left off

• Some commonality in terms of mechanisms but
a different implementation

• Key additions:

• general-purpose transactions across entity groups

• higher performance

• “TrueTime” API and “external consistency”

• multi-version data store

Example: Social Network

• Consider a simple schema:

• User posts

• Friend lists

• Looks like a database, but:

• shard data across multiple continents

• shard data across 1000s of machines

• replicated data within a continent/country

• Lock-free read only transactions

Read Transactions

• Example: Generate a page of friends’ recent
posts

• Consistent view of friend list and their posts

• Want to support:

• remove friend X

• post something about friend X

• MegaStore: transactions within entity groups

• Spanner: transactions across entity groups

• How can you support transactions across entity
groups, where each entity group is replicated across
datacenters?

Spanner Transaction

• Two-phase commit layered on top of Paxos

• Paxos provides reliability and replication

• 2PC allows coordination of different groups
responsible for different datasets

• Layering provides non-blocking 2PC

• Uses 2-phase locking to deal with concurrency

Spanner’s TimeStamps

• TrueTime: “Global wall-clock time” with
bounded uncertainty

• Returns a lower-bound and upper-bound on
wall-clock time

!me

earliest latest

TT.now()

2*ε

Spanner Transaction

• Each participant selects a proposed timestamp for
the transaction greater than what it has committed
earlier

• Coordinator assigns the transaction a timestamp
that is greater than these timestamps

• Coordinator waits until the chosen timestamp is
definitely in the past

• Then notifies the client and the participants of the
transaction’s timestamp

• Participants release the locks

Read Transactions

• Currently handled at the group leaders

• Two forms: read transactions across multiple
groups, read transaction across a single group

• In both cases:

• check whether there is an ongoing transaction

• attribute the earliest possible timestamp that is
safe

• wait for a certain period before responding

Summary

• GFS: blob store abstraction

• BigTable: semistructured table abstraction
within a datacenter

• MegaStore: limited transactions across
multiple datacenters

• Spanner: more general transactions across
multiple datacenters

