
CSE 550: Introduction to
Computer Systems Research

Arvind Krishnamurthy

Course Information

• Instructor: Arvind Krishnamurthy

• Interests: distributed systems, networks, operating systems,
security

• Email, office hours on the website

• Also fine to just drop in!

• TA: Niel Lebeck

Course Basics

• Quals course that covers foundational systems topics
from:

• Operating Systems, Networks, Distributed Systems,
Databases

• No prerequisite

• Gateway course to CSE 551, 552, and 561 or a
terminal course for students desiring breadth

What is a computer system?

• Our focus is on software systems

• Software system achieves a specific external behavior
(e.g., deliver videos, online social network, email)

• Might operate only under certain assumptions

• Comprises of many components

• Components interact and cooperate to provide overall
behavior

• They typically have specified interfaces

Thought Exercise

• Let us say that you want to build a Youtube-like
service

• What are the key components in its design?

• What are the key issues/tradeoffs?

Course Topics

• Concurrency

• Web Services

• Local Transactions

• Distributed Transactions

• Distributed clocks

• Consensus/RSM

• Virtualization

• Software Virtual Memory

• File systems

• Large storage systems

• Consistent storage

• DHTs

• Big data

• Networking (cong. control)

• Networking (routing)

• Experiences

Course Format

• Three components:

• Reading papers and blog posts on papers

• Respond to questions or email us a summary

• Programming assignments in teams of two

• First assignment out, due in two weeks

• Course project

Key Goals in Systems

• Correctness

• Availability/reliability

• Security

• Performance

What makes achieving
these goals hard?

• System complexity:

• Large # of components

• Large # of connections

• Irregular interactions, irregular resource needs

• Imprecise description, many required to design/maintain

• Technology rarely the limit!

• Limit is usually the complexity, ability to abstract, reason, etc.

Sources of Problems

• Emergent behavior or surprises

• Propagation of effects

• Unexpected scaling

Example

• Amazon EC2 outage from few years back

• Background on EC2:

• Multiple regions; multiple “availability zones” within each region

• Each availability zone provides the Elastic Block Store (EBS)

• EBS volumes are mountable on EC2 nodes

• Replicated to deal with faults

• EBS nodes use a “peer-to-peer” protocol to detect faults and
replicate; blocks while trying to replicate

• EBS nodes connected by a backup lower capacity network for
providing reliable control

• Control plane keeps track of volume locations; replicated/shared
across the entire region

Outage

• Configuration change to upgrade a router

• Normally shift traffic off to a full-capacity redundant router

• Instead, mistakenly assigned to the backup router which overloaded

• EBS nodes weren’t able to contact each other, so declared failure
and tried to provision extra copies

• Exhausted space. Created a “re-mirroring” storm.

• Created a huge load on the control plane

• Overload caused control plane to not handle operations from other
availability zones

• Operators recognized the problem and disabled “re-mirroring” operations

• Caused further problems! No aggressive back-off, a race condition in EBS nodes
in closing connections -- which caused them to fail resulting in further re-
mirroring. Operators finally disconnected the availability zone.

• What are the take-aways from this incident?

Unix Time Sharing System

• Classic system and paper: described almost entirely in
10 pages

• Key idea: elegant combination of a few concepts that
fit together well

• Third system for time sharing:

• First system was CTSS an unqualified success

• Followed by Multics, which suffered from the second system
effect

Unix

• Designed by Ritchie and Thompson

• Platform: PDP-11 computer; operational in 1971

• Written in C (instead of assembly -- 33% overhead)

• 2 man-years to write

• size < 50 KB

• Defined an ecosystem of related tools

• Written collaboratively

• Developers used/built the system for their own work

Unix Components

• File systems (ordinary files and device I/O)

• Process management

• Shell

• Question: is there anything missing from the above
list?

File System

• “Important job of Unix is to provide a file system”

• Three types of files:

• Ordinary files: sequence of bytes (unstructured)

• Directories (protected ordinary files)

• Special files (I/O)

• Question: should they have supported other types of
files? If so, what?

Directories

• Map: names of files to file location on disk

• Hierarchical

• Manipulated by programs that have appropriate
permissions

• Linking: file does not exist within a particular
directory

• Directory entry merely contains a pointer to the file
descriptor that describes the file

Special Files

• Uniform I/O model

• open, close, read, write, seek

• Uniform naming and protection model

• user-world, RWX bits

• set-user-id bit

• super user is just special user id

Removable File System

• Tree structured

• “mount”-ed on an ordinary file

• Associate a special device file with an ordinary file inside the
tree structure

File System Implementation

• Table of i-nodes

• Path name scanning

• Mount table

• Buffered data

• Write-behind

Processes

• Text, data, and stack segments

• Text is shared, the rest are process-specific

• Process swapping

• fork, exec: create new processes from same or
different images

• Pipes for communicating between processes

• wait, exit: synchronization primitives

Shell

• Invoke programs: “cmd arg1 ... argn”

• Performs stdio and I/O redirection

• Filters & pipes

• Multi-tasking from a single shell

• Shell is just a program!

Questions

• What are the key design principles employed in Unix?

• What has changed and what hasn’t?

• What would you do differently for different settings
(e.g., handheld devices)?

• How would you evaluate this paper now?

