Kubernetes: Container
Orchestration and Micro-Services

University of Washington 590s
2016-11-16

Alexander Mohr <mohr@google.com>
Technical Lead / Manager on Google Container Engine and Kubernetes

Github: @alex-mohr Email: mohr@google.com

1. Systems Projects at Google Seattle and Kirkland (2-3 mins)
2. Brief Docker Container Primer (5-10 mins)
3. Kubernetes: Container Orchestration (many mins)

Prelude: Systems Projects at Google Seattle and Kirkland

Seattle: Kirkland:
e Chrome Cloud (incl. Flywheel) e Cloud Machine Learning
o (Matt Welch) o (Mona Attariyan)
e Flume / Dataflow / Apache Beam e Spanner
o (Craig Chambers) o (?)
e Compute Engine VM Hypervisor e Compute Engine’s Control Plane
o (Mike Dahlin) o (Mike Dahlin)
e Kubernetes + Container Engine e Compute Engine’s Persistent Disk
o (Alex Mohr) o (?)
e App Engine Flex e Thialfi notifications
o (Tomas Isdal) o (Atul Adya)
e C(Cloud Storage
o (?) These are some of the (public) projects explicitly focused
e SFOO on systems. Other areas require systems knowledge too!

o (Michael Piatek)

1. Prelude: Systems Projects at Google Seattle and Kirkland
2. Brief Docker Container Primer

a. Runtime

b. Building Images

c. Shipping Images
3. Kubernetes: Container Orchestration

What are Containers? (Part 1: the Runtime)

Virtualize the kernel’s syscall interface
* no guest OS or hypervisor as with VMs

Isolation (from each other and from the host)
* chroots
* namespaces
* cgroups

Packaging
- hermetically sealed bundles -
- no external dependencies
* no DLL hel
- portable from dev laptop to on-prem & clouds

kernel

What are Containers? (Part 2: Building an Image)

% cat - > Dockerfile
FROM node:4.4
EXPOSE 8080
COPY server.js.
CMD node server.js

ooooooooooooooooooo

What are Containers? (Part 2: Building an Image)

% cat Dockerfile

FROM node:4.4

EXPOSE 8080

COPY server.js.

CMD node server.js
% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]

ooooooooooooooooooo

What are Containers? (Part 2: Building an Image)

% cat Dockerfile
FROM node:4.4
EXPOSE 8080
COPY server.js.
CMD node server.js
% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
% docker run -d -p 8080:8080 --name hello_tutorial gcr.io/mohr-dev/hello-node:v1

ooooooooooooooooooo

What are Containers? (Part 2: Building an Image)

% cat Dockerfile
FROM node:4.4
EXPOSE 8080
COPY server.js.
CMD node server.js
% docker build -t gcr.io/mohr-dev/hello-node:v1 .
[log spam]
% docker run -d -p 8080:8080 --name hello_tutorial gcr.io/mohr-dev/hello-node:v1
% curl http://localhost:8080/
Hello World!

ooooooooooooooooooo

http://localhost:8080/

What are Containers? (Part 3: Shipping an Image)

The magic:

% gcloud docker --authorize-only

% docker push gcr.io/mohr-dev/hellonode:v1

The push refers to a repository [ger.io/mohr-dev/hellonode] (len: 1)

[...]
v1: digest: sha256:d2f8b1387¢535de6d6752a7¢c02¢c107576e86f9435d275be861fa8c6df5a29c4d size: 12985

Google Cloud Platform

What are Containers? (Part 3: Shipping an Image)

The magic:

% gcloud docker --authorize-only

% docker push gcr.io/mohr-dev/hellonode:v1

The push refers to a repository [ger.io/mohr-dev/hellonode] (len: 1)

[...]
v1: digest: sha256:d2f8b1387¢535de6d6752a7¢c02¢c107576e86f9435d275be861fa8c6df5a29c4d size: 12985

Then, from any other machine:

% docker pull gcr.io/mohr-dev/hellonode:v1

v1: Pulling from mohr-dev/hellonode

Digest: sha256:d2f8b1387¢c535de6d6752a7c02¢c107576e86f9435d275be861fa8c6df5a29c4d
Status: Image is up to date for gcr.io/mohr-dev/hellonode:v

% docker run SARGS gcr.io/mohr-dev/hellonode:v1

I E— Google Cloud Platform

1. Prelude: Systems Projects at Google Seattle and Kirkland
2. Brief Docker Container Primer
3. Kubernetes: Container Orchestration

bt

3 ..,s.-f"
Lo T

), T
wiim;_f oo e v o

<

Image by Connie Zhou

WL

Greek for “Helmsman”; also the root of the
words “governor” and “cybernetic”

« Manages container clusters

- Inspired and informed by Google’s experiences
and internal systems

« Supports multiple cloud and bare-metal
environments

« Supports multiple container runtimes

* 100% Open source, written in Go

Manage applications, not machines

Google Cloud Platform

All you really care about

Container
Cluster

The 10000 foot view

Container clusters: A story in two parts

ooooooooooooooooooo

Container clusters: A story in two parts

1. Setting up the cluster
« Choose a cloud: GCE, AWS, Azure, Rackspace, on-premises, ...

* Choose a node OS: CoreQS, Atomic, RHEL, Debian, CentOS, Ubunty, ...

 Provision machines: Boot VMs, install and run kube components, ...
- Configure networking: IP ranges for Pods, Services, SDN, ...

- Start cluster services: DNS, logging, monitoring, ...

- Manage nodes: kernel upgrades, OS updates, hardware failures...

Not the easy or fun part, but unavoidable

This is where things like Google Container Engine (GKE) really help

Container clusters: A story in two parts

2. Using the cluster

 Run Pods & Containers
* ReplicaSets & Deployments & DaemonSets & StatefulSets
« Services & Volumes & Secrets & Autoscalers

This is the fun part!

A distinct set of problems from cluster setup and management
Don't make developers deal with cluster administration!

Accelerate development by focusing on the applications, not the cluster

Kubernetes: a Cloud 0S?

An ocean of
user containers

Perhaps grandiose, but attempts at “Cloud OS” primitives: r)
e Scheduling: Decide where my containers should run

o Lifecycle and health: Keep my containers running despite =) &
failures
e Scaling: Make sets of containers bigger or smaller
o o . . Kubernetes
e Naming and discovery: Find where my containers are now Master
e Load balancing: Distribute traffic across a set of containers ‘m” : T-
o Storafge volumes:.Pro.\/lde data to containers | | EE = i
e Logging and monitoring: Track what's happening with my - - H .
.)
containers Scheduled and packed
e Debugging and introspection: Enter or attach to containers SRR ST Fpis

e Identity and authorization: Control who can do things to
my containers

Google Cloud Platform

Workload Portability

Workload portability

Goal: Avoid vendor lock-in

Runs in many environments, including
“bare metal” and “your laptop”

The APl and the implementation are
100% open

The whole system is modular and
replaceable

Workload portability

Goal: Write once, run anywhere’

Don't force apps to know about
concepts that are
cloud-provider-specific

Examples of this:
e Network model

e Ingress
e Service load-balancers
e PersistentVolumes

i
I

* approximately

Google Cloud Platform

Workload portability

Result: Portability

Build your apps on-prem, lift-and-shift
into cloud when you are ready

Don't get stuck with a platform that
doesn't work for you

Put your app on wheels and move it
whenever and wherever you need

Docker networking

172.16.1.1
172.16.1.1

172.16.1.2

ooooooooooooooooooo

Docker networking

Port mapping

A:172.16.1.1

B: 172.16.1.2

Port mapping

Kubernetes networking

IPs are cluster-scoped
vs docker default private IP

Pods can reach each other directly
even across nodes

No brokering of port numbers
+ too complex, why bother?

This is a fundamental requirement
can be L3 routed
can be underlayed (cloud)
can be overlayed (SDN)

Google Cloud Platform

Kubernetes networking

10.1.2.1

‘ 10.1.2.0/24 | I

& O

10.1.1.1

oo

10.1.1.2

10.1.1.0/24 10.1.3.0/24

L Google Cloud Platform

Pods

. Content
Small group of containers & volumes Manager

Consumers

Tightly coupled
The atom of scheduling & placement

Shared namespace
« share IP address & localhost

share IPC, etc.

Managed lifecycle =S e

bound to a node, restart in place
can die, cannot be reborn with same ID
Example: data puller & web server

Google Cloud Platform

Volumes

Pod-scoped storage

Support many types of volume plugins

Empty dir (and tmpfs)
Host path

Git repository

GCE Persistent Disk

AWS Elastic Block Store -

Azure File Storage
iSCSI

Flocker

NFS

vSphere

GlusterFS

Ceph File and RBD
Cinder
FibreChannel
Secret, ConfigMap,
DownwardAPI

Flex (exec a binary)

Google Cloud Platform

Labels & Selectors

Labels

Arbitrary metadata
Attached to any API object
Generally represent identity

Queryable by selectors
- think SQL ‘select ... where ...’

The only grouping mechanism
pods under a ReplicaSet
pods in a Service
capabilities of a node (constraints)

Google Cloud Platform

Selectors

App: MyApp
Phase: prod
Role: FE

App: MyApp
Phase: test

Role: FE

OO 0000

Google Cloud Platform

OO0 0006

App: MyApp
Phase: prod
Role: BE

App: MyApp
Phase: test

Role: BE

Selectors

App: MyApp
Phase: prod
Role: FE

App: MyApp
Phase: test

Role: FE

OO 0000

OO0 0006

App: MyApp
Phase: prod
Role: BE

App: MyApp
Phase: test

Role: BE

Selectors

App: MyApp
Phase: prod
Role: FE

App: MyApp
Phase: test

Role: FE

OO 00O

ooooooooooooooooooo

OO0 0006

App: MyApp
Phase: prod
Role: BE

App: MyApp
Phase: test

Role: BE

Selectors

App: MyApp
Phase: prod
Role: FE

App: MyApp
Phase: test

Role: FE

OO0 0000

Q

ooooooooooooooooooo

OO0 0006

App: MyApp
Phase: prod
Role: BE

App: MyApp
Phase: test

Role: BE

Selectors

App: MyApp
Phase: prod
Role: FE

App: MyApp
Phase: test

Role: FE

0 O

OO0 0000
OO0 0006

App = MyApp, Phase = prod

ooooooooooooooooooo

App: MyApp
Phase: prod
Role: BE

App: MyApp
Phase: test

Role: BE

Selectors

App: MyApp
Phase: prod
Role: FE

App: MyApp
Phase: test

Role: FE

0 O

OO0 0000
OO0 0006

App = MyApp, Phase = test

ooooooooooooooooooo

App: MyApp
Phase: prod
Role: BE

App: MyApp
Phase: test

Role: BE

Replication

ReplicaSets

ReplicaSet
_ name — llmy_rc',
- selector = {“App”: “MyApp”}

A simple control loop

Runs out-of-process wrt API server - template={...}
- replicas = 4
more many?

A VEIl (&2
Layered on top of the public Pod API
Replicated pods are fungible API Server
- No implied order or identity

One job: ensure N copies of a pod
grouped by a selector
- too few? start some
« too many? kill some

Google Cloud Platform

Control loops: the Reconciler Pattern

Drive current state -> desired state
observe

Act independently

APIs - no shortcuts or back doors

Observed state is truth*

Recurring pattern in the system

Example: ReplicaSet

* Observations are really stale caches of what once was your view of truth.

Google Cloud Platform

Services

Services

A group of pods that work together Client
grouped by a selector

Defines access policy

- “load balanced” or “headless”
Can have a stable virtual IP and port

+ also a DNS name
VIP is managed by kube-proxy

watches all services ° ° °
fols {0 035
& 2

updates iptables when backends change

default implementation - can be replaced!

Hides complexity

iptables kube-proxy
apiserver

ooooooooooooooooooo

iptables kube-proxy

services &
endpoints

(]I {)"A— watch

> apiserver

iptables kube-proxy
[kubectl run ... };‘

kube-proxy apiserver

ooooooooooooooooooo

iptables kube-proxy
apiserver

iptables kube-proxy

{ kubectl expose ...

kube-proxy apiserver

iptables kube-proxy

new
service!
(S {) Ml update apiserver

iptables kube-proxy

kube-proxy

apiserver

configure

l

iptables kube-proxy
apiserver

iptables kube-proxy

new
endpoints!
(S {) Ml update apiserver

iptables kube-proxy

kube-proxy

apiserver

configure

l

iptables kube-proxy
apiserver

/208

VA

iptables kube-proxy

Client /AN

-

L 4
L4

iptables kube-proxy

Client

iptables kube-proxy

Client

iptables kube-proxy
DN

Client

External services

Services VIPs are only available inside the cluster
Need to receive traffic from “the outside world”

Service “type”

NodePort: expose on a port on every node
LoadBalancer: provision a cloud load-balancer

DiY load-balancer solutions

socat (for nodePort remapping)
haproxy
nginx

Ingress (L7 LB)

Google Cloud Platform

Ingress (L7 LB)

Many apps are HTTP/HTTPS Client

v

Services are L4 (IP + port)

Ingress maps incoming traffic to backend

services
« by HTTP host headers
- by HTTP URL paths

HAProxy, NGINX, AWS and GCE
implementations in progress

Now with SSL!
Status: BETA in Kubernetes v1.2

Google Cloud Platform

Rolling Update

Rolling Update

Service
- app: MyApp

ReplicaSet
- nhame: my-app-v1
- replicas: 3
- selector:
- app: MyApp
- version: v1

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 3 - replicas: 0
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 3 - replicas: 1
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 2 - replicas: 1
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 2 - replicas: 2
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 1 - replicas: 2
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 1 - replicas: 3
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

:

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet ReplicaSet
- nhame: my-app-v1 - hame: my-app-v2
- replicas: 0 - replicas: 3
- selector: - selector:
- app: MyApp - app: MyApp
- version: v1 - version: v2

Google Cloud Platform

Rolling Update

Service
- app: MyApp

ReplicaSet
- hame: my-app-v2
- replicas: 3
- selector:
- app: MyApp
- version: v2

:

Deployments

Deployments

Updates-as-a-service
Rolling update is imperative, client-side

Deployment manages replica changes for you

- stable object name
updates are configurable, done server-side
kubectl edit or kubectl apply

Aggregates stats

Can have multiple updates in flight

Status: BETA in Kubernetes v1.2

Google Cloud Platform

Problem: how to run a Pod on every node?
* orasubset of nodes

Similar to ReplicaSet
- principle: do one thing, don’t overload

“Which nodes?” is a selector

Use familiar tools and patterns

Status: BETA in Kubernetes v1.2

Google Cloud Platform

L Google Cloud Platform

Run-to-completion, as opposed to run-forever

Express parallelism vs. required completions
Workflow: restart on failure
Build/test: don't restart on failure

Aggregates success/failure counts

Built for batch and big-data work

Status: GA in Kubernetes v1.2

Google Cloud Platform

PersistentVolumes

PersistentVolumes

A higher-level storage abstraction
insulation from any one cloud environment

Admin provisions them, users claim them
« NEW: auto-provisioning (alpha in v1.2)

Independent lifetime from consumers
lives until user is done with it
 can be handed-off between pods

Dynamically “scheduled” and managed, like
nodes and pods

Google Cloud Platform

PersistentVolumes

Cluster
Admin

ooooooooooooooooooo

PersistentVolumes

‘ Provision PersistentVolumes
» E E

Cluster
Admin

PersistentVolumes
>

PersistentVolumes

Cluster
Admin

User

ooooooooooooooooooo

PersistentVolumes
>

PersistentVolumes

Cluster
Admin

PVClaim

ooooooooooooooooooo

PersistentVolumes
>

PersistentVolumes

Cluster
Admin

User

ooooooooooooooooooo

PersistentVolumes

PersistentVolumes

> > >
Admin

yV

PVClaim
Create

Q Pod
User

PersistentVolumes

Cluster
Admin

PersistentVolumes
> > >

i {E3F
PVCIaim

User

PersistentVolumes

Cluster
Admin

PersistentVolumes
>

)
PVClaim

Delete
User Pod

yV

ooooooooooooooooooo

PersistentVolumes
>

PersistentVolumes

PVClaim

Cluster
Admin

User

ooooooooooooooooooo

PersistentVolumes
>

PersistentVolumes

Cluster
Admin

PersistentVolumes

Cluster
Admin

PersistentVolumes
> > >

i {E3F
PVCIaim

User

PersistentVolumes

PersistentVolumes
<> <>

Cluster
Admin

PVClaim

D ot 4 (.

‘ Delete

User

PersistentVolumes
>

PersistentVqumes

Cluster
Admin

User

ooooooooooooooooooo

PersistentVolumes
>

PersistentVolumes

Cluster
Admin

Recycler

User

ooooooooooooooooooo

StatefulSets

StatefulSets

Goal: enable clustered software on Kubernetes
mysq|, redis, zookeeper, ...

Clustered apps need “identity” and sequencing

guarantees
stable hostname, available in DNS
an ordinal index
stable storage: linked to the ordinal & hostname
discovery of peers for quorum
startup/teardown ordering

Status: ALPHA in Kubernetes v1.3

Google Cloud Platform

ConfigMaps

ConfigMaps

Goal: manage app configuration
...without making overly-brittle container images

12-factor says config comes from the

environment
Kubernetes is the environment

Manage config via the Kubernetes API

Inject config as a virtual volume into your Pods
late-binding, live-updated (atomic)
also available as env vars

Status: GA in Kubernetes v1.2

Google Cloud Platform

http://12factor.net/

Goal: grant a pod access to a secured something
don't put secrets in the container image!

12-factor says config comes from the

environment
Kubernetes is the environment

Manage secrets via the Kubernetes API

Inject secrets as virtual volumes into your Pods
late-binding, tmpfs - never touches disk
also available as env vars

Google Cloud Platform

http://12factor.net/

HorizontalPodAutoscalers

HorizontalPodAutoScalers

Goal: Automatically scale pods as needed
» based on CPU utilization (for now)
« custom metrics in Alpha

Efficiency now, capacity when you need it

Operates within user-defined min/max bounds

Set it and forget it

Status: GA in Kubernetes v1.2

Multi-Zone Clusters

Multi-Zone Clusters

Goal: zone-fault tolerance for applications

Zero API changes relative to kubernetes

e Create services, ReplicaSets, etc. exactly as Federation
usual Master

Nodes and PersistentVolumes are labelled

with their availability zone

e Fully automatic for GKE, GCE, AWS

e Manual for on-premise and other cloud
providers (for now)

Zone A Zone B

\/
FEES

Status: GA in Kubernetes v1.2

Zone C

Google Cloud Platform

Namespaces

Namespaces

Problem: | have too much stuff!
- name collisions in the API
-+ poor isolation between users
- don't want to expose things like Secrets

Solution: Slice up the cluster
-+ create new Namespaces as needed
per-user, per-app, per-department, etc.
part of the API - NOT private machines
- most API objects are namespaced
part of the REST URL path
- Namespaces are just another API object
One-step cleanup - delete the Namespace
» Obvious hook for policy enforcement (e.g. quota)

Google Cloud Platform

Resource Isolation

Resource Isolation

Principles:

- Apps must not be able to affect each other’s

performance
if so it is an isolation failure

- Repeated runs of the same app should see
~equal behavior

+ QoS levels drives resource decisions in (soft)
real-time

« Correct in all cases, optimal in some
reduce unreliable components
« SLOs are the lingua franca

Google Cloud Platform

Strong isolation

Pros:
Sharing - users don't worry about interference (aka the noisy neighbor problem)
Predictable - allows us to offer strong SLAs to apps

Cons:
Stranding - arbitrary slices mean some resources get lost
Confusing - how do | know how much | need?
analog: what size VM should | use?
smart auto-scaling is needed!
Expensive - you pay for certainty

In reality this is a multi-dimensional bin-packing problem: CPU, memory, disk
space, |0 bandwidth, network bandwidth, ...

Google Cloud Platform

Requests and Limits

Request:

how much of a resource you are asking to use, with a
strong guarantee of availability

CPU (seconds/second)

RAM (bytes)
scheduler will not over-commit requests

Limit:
max amount of a resource you Can aCCesSs
Repercussions:

Usage > Request: resources might be available
Usage > Limit: throttled or killed

Google Cloud Platform

Quality of Service

Defined in terms of Request and Limit

Guaranteed: highest protection
e request > 0 && limit == request

Burstable: medium protection
e request > 0 & limit > request

Best Effort: lowest protection
e request ==

What does “protection” mean?

OOM score
CPU scheduling

I E— Google Cloud Platform

Quota and Limits

ResourceQuota

Admission control: apply limits in aggregate

Per-namespace: ensure no
user/app/department abuses the cluster

Reminiscent of disk quota by design

Applies to each type of resource
- CPU and memory for now

Disallows pods without resources

Google Cloud Platform

LimitRange

Admission control: limit the limits
min and max
ratio of limit/request

Default values for unspecified limits
Per-namespace

Together with ResourceQuota gives cluster
admins powerful tools

Google Cloud Platform

Cluster Auto-Scaling

Cluster Autoscaler

Add nodes when needed
* there are pending pods
- some pending pods would fit if we add a node

Remove nodes when not needed
- after removal, all pods must fit remaining nodes

Status: Works on GCE, GKE and AWS ﬁ ﬁ ﬁ

Google Cloud Platform

Scalability

Scalability & Performance

SLO met at <2000 nodes, <60000 pods

99% of API calls return in < 1 second
99% of pods start in < 5 seconds

Pod startup latency
Hl Soth

percentile

Bl coth

percentile

Coming soon __ECUN
- protobufs in API storage (already enabled on 2 Berenig
the wire)
« 5000 nodes I I I

A 1$@ O mﬂ@

seconds

\11'1.:5

Google Cloud Platform

Design principles

Declarative > imperative: State your desired results, let the system actuate
Control loops: Observe, rectify, repeat

Simple > Complex: Try to do as little as possible

Modularity: Components, interfaces, & plugins

Legacy compatible: Requiring apps to change is a non-starter

Network-centric: IP addresses are cheap

No grouping: Labels are the only groups

Sets > Pets: Manage your workload in bulk

Open > Closed: Open Source, standards, REST, JSON, etc.

Google Cloud Platform

Kubernetes (K8s) Community

~5k Commits > 800 Unique Top 0.01% of 2500+ External

in 1.4 over 3 : all Github Projects Based
Contributors :
months Projects on K8s

CiTR!X® w weaveworks Y4 Huawe ° Core OS (intel‘)‘ ’M%; UNIVA

Companies

Contributin N —
| FUﬁTSU ‘ redhat vmware HITACHI Engine Yard (JREDAPT :==:

YAHOO! tx)x [Fconcur ebay g!z‘ll]';'a“ &P sAMSUNG DS

Companies JAPAN

Using @ pearson Ehe New HJork Eimes 00"0“""“‘ 7Y DigitalOcean @“’FL'SLELE?JA OpenAl

SOUNDCLOUD

Cloud Datastore Transactions Per Second

1X

Target Traffic

oX

Waorst Case
Estimate

NIANTIC 50X

Actual Traffic

== (riginal Launch Target Estimated Worst Casze == Actual Traffic

“Niantic chose GKE for its ability to orchestrate their container
cluster at planetary-scale, freeing its team to focus on deploying
live changes for their players.” - Niantic

I — Google Cloud Platform

Further Reading

If this talk was interesting, deeper academic reading on cluster management:

“Borg, Omega, and Kubernetes”

ACM Queue, March 2, 2016, Volume 14, issue 1
http://queue.acm.org/detail.cfm?id=2898444

Or a hands-on “Hello World” quickstart to build a Docker image and runiton a

Kubernetes cluster:
http://kubernetes.io/docs/hellonode/

Another hard problem: how do you run N Kubernetes clusters as a service?
» create/delete, update, monitor, repair, escalate, upgrade, backup/restore, zonal
isolation, incremental rollouts, support ticket escalation, provisioning, and more!

Google Cloud Platform

http://queue.acm.org/issuedetail.cfm?issue=2898442
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
http://kubernetes.io/docs/hellonode/
http://kubernetes.io/docs/hellonode/

Questions?

Potential discussion:

« What about Docker Swarm?

¢ ... Mesos?

« What's next for Kubernetes and

Container Engine?
* Why Google not FB/Uber/MS/Ama/etc?
* How do | get an internship / job?
« Let's discuss!

» Alex on Philosophy:
* |Imperative vs. declarative
* Orchestration vs. choreography
* Product vs. tech
» User guide vs. design doc
» Engineering code vs. organizations
* Your team is a design parameter
» Launch and iterate; MVP

More questions?
Happy to chat!

* Lunch

1:1's after that
mohr@google.com
590s@alexmohr.com

gle Cloud Platform

mailto:mohr@google.com
mailto:mohr@google.com
mailto:590s@alexmohr.com
mailto:590s@alexmohr.com

