
The Recovery Manager of the System R Database Manager

JIM GRAY
Tandem Computers, 19333 Vallco Parkway, Cupertino, Californta 95014

PAUL McJONES
Xerox Corporatwn, 3333 Coyote Htll Road, Palo Alto, Cahfornia 94304

MIKE BLASGEN, BRUCE LINDSAY, RAYMOND LORIE, TOM PRICE,
FRANCO PUTZOLU, AND IRVING TRAIGER

IBM San Jose Research Laboratory, 5600 Cottle Road, San Jose, Cahfornm 95193

The recovery subsystem of an experimental data management system is described and
evaluated. The transactmn concept allows application programs to commit, abort, or
partially undo their effects. The DO-UNDO-REDO protocol allows new recoverable types
and operations to be added to the recovery system Apphcation programs can record data
m the transaction log to facilitate application-specific recovery. Transaction undo and
redo are based on records kept in a transaction log. The checkpoint mechanism is based
on differential fries (shadows). The recovery log is recorded on disk rather than tape.

Keywords and Phrases transactions, database, recovery, reliability

CR Categortes: 4.33

INTRODUCTION

Application Interface to System R

M a k i n g c o m p u t e r s e a s i e r to use is t h e goa l
of m o s t so f tware . D a t a b a s e m a n a g e m e n t
sy s t ems , in p a r t i c u l a r , p r o v i d e a p r o g r a m -
m i n g i n t e r f ace to ease t h e t a s k o f wr i t i ng
e l ec t ron i c b o o k k e e p i n g p r o g r a m s . T h e re-
c o v e r y m a n a g e r of such a s y s t e m in t u r n
eases t h e t a s k of wr i t i ng f a u l t - t o l e r a n t ap-
p l i c a t i o n p r o g r a m s .

S y s t e m R [ASTR76] is a d a t a b a s e s y s t e m
w h i c h s u p p o r t s t h e r e l a t i o n a l m o d e l o f
da t a . T h e S Q L l a n g u a g e [CHAM76] p ro -
v ides o p e r a t o r s t h a t m a n i p u l a t e t h e d a t a -
base . T y p i c a l l y , a u se r w r i t e s a P L / I or
C O B O L p r o g r a m w h i c h h a s i m b e d d e d S Q L
s t a t e m e n t s . A co l l ec t ion o f s u c h s t a t e m e n t s
is r e q u i r e d to m a k e a c o n s i s t e n t t r ans fo r -

m a t i o n o f t h e d a t a b a s e . T o t r a n s f e r f u n d s
f rom one a c c o u n t to a n o t h e r , for e x a m p l e ,
r e q u i r e s two S Q L s t a t e m e n t s : one to d e b i t
t h e f i r s t a c c o u n t a n d one to c r e d i t t h e sec-
o n d accoun t . I n add i t i on , t h e t r a n s a c t i o n
p r o b a b l y r e c o r d s t h e t r a n s f e r in a h i s t o r y
file for l a t e r r e p o r t i n g a n d for a u d i t i n g pu r -
poses . F i g u r e 1 g ives a n e x a m p l e o f such a
p r o g r a m w r i t t e n in p s e u d o - P L / I .

T h e p r o g r a m ef fec ts a c o n s i s t e n t t r ans -
f o r m a t i o n o f t h e b o o k s o f a h y p o t h e t i c a l
b a n k . I t s a c t i o n s a r e e i t h e r to

• d i s c o v e r a n e r ro r ,
• a c c e p t t h e i n p u t m e s s a g e , a n d
• p r o d u c e a fa i lu re m e s s a g e ,

o r to

• d i s c o v e r no e r ro rs ,
• a c c e p t t h e i n p u t m e s s a g e ,

Permismon to copy without fee all or part of this material is granted provided that the copies are not made or
¢hstnbuted for direct commercial advantage, the ACM copyright notme and the title of the publication and its
date appear, and notme is given that copying is by pernusmon of the Association for Computing Machinery. To
copy otherwise, or to republish, reqmres a fee and/or specific permission.
© 1981 ACM 0010-4892/81/0600-0223 $00.75

Computing Surveys, Vol. 13, No. 2, June 1981

224 • Jim Gray et al.

CONTENTS

INTRODUCTION
Apphcatlon Interface to System R
Structure of System R
Model of Failures
1. DESCRIPTION OF SYSTEM R RECOVERY

MANAGER
1 1 What Is a Transaction?
1.2 Transactmn Save Points
1 3 Summary

2 IMPLEMENTATION OF SYSTEM R
RECOVERY
2.1 Files, Versmns, and Shadows
2 2 Logs and the DO, UNDO, REDO Protocol
2.3 Commit Processing
2.4 Transactmn UNDO
2 5 Transaction Save Points
2.6 System Configuratmn, Startup and Shutdown
2.7 System Checkpoint
2.8 System Restart
2 9 Medm Failure
2 10 Managing the Log
2 11 Recovery and Locking

3 EVALUATION
3 1 Implementation Cost
3 2 Execution Cost
3.3 I/O Cost
3.4 Success Rate
3.5 Complexity
3.6 Dmk-Based Log
3 7 Save Points
3 8 Shadows
3.9 Message Recovery, an Oversight
3 10 New Features

ACKNOWLEDGMENTS
REFERENCES

A

v

• debit the source account by AMOUNT,
• credit the destination account by

AMOUNT,
• record the transaction in a history file,

and
• produce a success message.

The programmer who writes such a pro-
gram ensures its correctness by ensuring
that it performs the desired transformation
on both the database state and the outside
world (via messages). The programmer and
the user both want the execution to be
• atomic: either all actions are performed

(the transaction has an effect) or the re-
sults of all actions are undone (the trans-
action has no effect);

• durable: once the transaction completes,

its effects cannot be lost due to computer
failure;

• consistent: the transaction occurs as
though it had executed on a system which
sequentially executes only one transaction
at a time.

In order to state this intention, the SQL
programmer brackets the transformations
with the SQL statements, BEGIN__
TRANSACTION to signal the beginning
of the transaction and COMMIT__
TRANSACTION to signal its completion.
If the programmer wants to return to the
beginning of the transaction, the command
RESTORE__TRANSACTION will undo
all actions since the issuance of the BE-
GIN__TRANSACTION command (see
Figure 1).

The System R recovery manager sup-
ports these commands and guarantees an
atomic, durable execution.

System R generally runs several trans-
actions concurrently. The concurrency con-
trol mechanism of System R hides such
concurrency from the programmer by a
locking technique [EswA76, GRAY78,
NAUM78] and gives the appearance of a
consistent system.

Structure of System R

System R consists of an external layer
called the Research Data System (RDS),
and a completely internal layer called the
Research Storage System (RSS) (see
Figure 2).

The external layer provides a relational
data model, and operators thereon. It also
provides catalog management, a data
dictionary, authorization, and alternate
views of data. The RDS is manipulated
using the language SQL [CHAM76]. The
SQL compiler maps SQL statements into
sequences of RSS calls.

The RSS is a nonsymbolic record-at-a-
time access method. It supports the notions
of file, record type, record instance, field
within record, index (B-tree associative
and sequential access path), parent-chi ld
set (an access path supporting the
operations PARENT, FIRST__CHILD,
NEXT__SIBLING, PREVIOUS__SIB-
LING with direct pointers), and cursor
(which navigates over access paths to locate

Computing Surveys, Vol. 13, No 2, June 1981

The Recovery Manager of the System R Database Manager ° 225

FUNDS__TRANSFER. PROCEDURE,
$BEGIN__TRANSACTION;
ON ERROR DO; /* in case of error */

$RESTORE_TRANSACTION, /* undo all work */
GET INPUT MESSAGE; /* reacquire input */
PUT MESSAGE ('TRANSFER FAILED'); /* report failure */
GO TO COMMIT;
END;

GET INPUT MESSAGE;
EXTRACT A C C O U N T ~ E B I T , ACCOUNT_CREDIT,

AMOUNT FROM MESSAGE,
$UPDATE ACCOUNTS /* do debit */

SET BALANCE ffi BALANCE - AMOUNT
WHERE ACCOUNTS. NUMBER = ACCOUNT__DEBIT;

$UPDATE ACCOUNTS /* do credit */
SET BALANCE = BALANCE + AMOUNT

WHERE ACCOUNTS. NUMBER = ACCOUNT_CREDIT;
$INSERT INTO HISTORY /* keep audit trail */

<DATE, MESSAGE>;
PUT MESSAGE ('TRANSFER DONE'); /* report success */

COMMIT: /* commit updates */
$COMMIT TRANSACTION
END; /* end of program */

/* get and parse input */

Figure 1. A snnple PL/I-SQL program whmh transfers funds from one account to another.

Application Programs in PL/ I or COBOL, plus SQL

Research Data System (RDS)
* Supports the relational data model
• Supports the relational language SQL
• Does naming and authorization
• Compiles SQL statements into RSS call sequences

Research Storage System (RSS)
• Provides nonsymbolic record-at-a-time database ac-

cess
• Maps records onto operating system files
• Provides transaction concept (recovery and locking)

Operating System
• Provides file system to manage disks
• Provides I /O system to manage terminals
• Provides process structure (multlprogramming)

Hardware

Figure 2. System R consists of two layers above the
operating system. The RSS provides the transaction
concept, recovery notions, and a record-at-a-time data
access method. The RDS accepts application PL/ I or
COBOL programs containing SQL statements. I t
translates them into COBOL or PL/ I programs plus
subroutines which represent the compilation of the
SQL statements into RSS calls.

records). Unfortunately, these objects have
the nonstandard names "segment," "rela-
tion," "tuple," "field," "image," "link," and
"scan" in the System R documentation.
The former, more standard, names are used

here. RSS provides actions to create in-
stances of these objects and to retrieve,
modify, and delete them.

The RSS support of data is substantially
more sophisticated than that normally
found in an access method; it supports vari-
able-length fields, indices on multiple fields,
multiple record types per file, interffle and
intraffle sets, physical clustering of records
by attribute, and a catalog describing the
data, which is kept as a file which may be
manipulated like any other data.

Another major contribution of the RSS
is its support of the notion of transaction,
a unit of recovery consisting of an applica-
tion-specified sequence of RSS actions. An
application declares the start of a transac-
tion by issuing a BEGIN action. Thereafter
all RSS actions by that application are
within the scope of that transaction until
the application issues a COMMIT or an
ABORT action. The RSS assumes all re-
sponsibility for running concurrent trans-
actions and for assuring that each transac-
tion sees a consistent view of the database.
The RSS is also responsible for recovering
the data to their most recent consistent
state in the event of transaction, action,
system, or media failure or a user request
to cancel the transaction.

Computing Surveys, Vol. 13, No. 2, June 1981

226 • Jim Gray et al.

A final component of System R is the
operating system. System R runs under the
VM/370 [GRAY75] and the MVS operating
system on IBM S/370 processors. The Sys-
tem R recovery manager is also part of the
SQL/DS product running on DOS/CICS.
The operating system provides processes, a
simple file system, and terminal manage-
ment.

System R allocates an operating system
process for each user to run both the user's
application program and the System R da-
tabase manager. Application programs are
written in a conventional programming lan-
guage (e.g., COBOL or PL/I) augmented
with the SQL language. A SQL preproces-
sor maps the SQL statements to sequences
of RSS calls. Typically, a single application
program or group of programs (main plus
subroutines) constitute a transaction. In
this paper we ignore the RDS and assume
that application programs, like those pro-
duced by the SQL compiler, consist of con-
ventional programs which invoke se-
quences of RSS operations.

Model of Failures

The recovery manager eases the task of
writing fault-tolerant programs. It does so
by the careful use of redundancy. Choosing
appropriate redundancy requires a quanti-
tative model of system failures.

In our experience about 97 percent of all
transactions execute successfully. Of the
remainder, almost all fail because of incor-
rect user input or because of user cancella-
tion. Occasionally {much less than 1 per-
cent) transactions are aborted by the sys-
tem as a result of some overload such as
deadlock. In a typical system running one
transaction per second, transaction undo
occurs about twice a minute. Because of its
frequency, transaction undo must run
about as fast as forward processing of trans-
actions.

Every few days the system restarts (fol-
lowing a crash). Almost all crashes are due
to hardware or operating system failures,
although System R also initiates crash and
restart whenever it detects damage to its
data structures. The state of primary mem-
ory is lost after a crash. We assume that the
state of the disks (secondary and tertiary
storage) is preserved across crashes, so at

Table 1. Frequency and Recovery Time of Failures

Recovery manager trade-offs

Recovery
Fault Frequency tune

Transaction Several per unnute Milliseconds
abort

System Several per month Seconds
restart

Media failure Several per year Minutes

restart the most recently committed state
is reconstructed from the surviving disk
state by referencing a log of recent activity
to restore the work of committed and
aborted transactions. This process com-
pletes within a matter of seconds or min-
utes.

Occasionally, the integrity of the disk
state will be lost at restart. This may be
caused by hardware failure (disk head crash
or disk dropped on the floor) or by software
failure (bad data written on a disk page by
System R or other program). Such events
are called media failures and initiate a
reconstruction of the current state from an
archive version (old and undamaged ver-
sion of the system state) plus a log of activ-
ity since that time. This procedure is in-
voked once or twice a year and is expected
to complete within an hour.

If all these recovery procedures fail, the
user will have lost data owing to an unre-
coverable failure. We have very limited
statistics on unrecoverable failures. The
current release of System R has experi-
enced about 25 years of service in a variety
of installations, and to our knowledge al-
most all unrecoverable failures have re-
sulted from operations errors {e.g., failure
to make archive dumps) or from bugs in
the operating system utility for dumping
and restoring disks. The fact that the ar-
chive mechanism is only a minor source of
unrecoverable failure probably indicates
that it is appropriately designed. Table 1
summarizes this discussion.

If the archive mechanism fails once every
hundred years of operation, and if there are
10,000 installations of System R, then it will
fail someone once a month. From this per-
spective, it might be underdesigned.

We assume that System R, the operating
system, the microcode, and the hardware
all have bugs in them. However, each of

Computing Surveys, Vol. 13, No. 2, June 1981

The Recovery Manager of the System R Database Manager • 227

these systems does quite a bit of checking
of its data structures (defensive program-
ming}. We postulate that these errors are
detected and that the system crashes before
the data are seriously corrupted. If this
assumption is incorrect, then the situation
is treated as a media failure. This attitude
assumes that the archive and log mecha-
nism are very reliable and have failure
modes independent of the other parts of
the system.

Some commercial systems are much
more demanding. They run hundreds of
transactions per second, and because they
have hundreds of disks, they see disk fail-
ures hundreds of times as frequently as
typical users of System R {once a week
rather than once a year). They also cannot
tolerate downtimes exceeding a few min-
utes. Although the concepts presented in
this paper are applicable to such systems,
much more redundancy is needed to meet
such demands (e.g., duplexed processors
and disks, and utilities which can recover
small parts of the database without having
to recover it all every time). The recovery
manager presented here is a textbook one,
whose basic facilities are only a subset of
those provided by more sophisticated sys-
tems.

The transaction model is an unrealizable
ideal. At best, careful use of redundancy
minimizes the probability of unrecoverable
failures and consequent loss of committed
updates. Redundant copies are designed to
have independent failure modes, making it
unlikely that all records will be lost at once.
However, Murphy's law ensures that all
recovery techniques will sometimes fail. As
seen below, however, System R can tolerate
any single failure and can often tolerate
multiple failures.

1. DESCRIPTION OF SYSTEM R RECOVERY
MANAGER

1.1 What is a Transaction?

The RSS provides actions on the objects it
implements. These actions include opera-
tions to create, destroy, manipulate, re-
trieve, and modify RSS objects (files, rec-
ord types, record instances, indices, sets,
and cursors). Each RSS action is atomic--

it either happens or has no effect--and
consistent--if any two actions relate to the
same object, they appear to execute in some
serial order. These two qualities are en-
sured by (1) undoing the partial effects of
any actions which fail and (2) locking nec-
essary RSS resources for the duration of
the action.

RSS actions are rather primitive. In gen-
eral, functions like "hire an employee" or
"make a deposit in an account" require
several actions. The user, in mapping ab-
stractions like "employee" or "account"
into such a system, must combine several
actions into an atomic transaction. The
classic example of an atomic transaction is
a funds transfer which debits one account,
credits another, writes an activity record,
and does some terminal input or output.
The user of such a transaction wants it to
be an all-or-nothing affair, in that he does
not want only some of the actions to have
occurred. If the transaction is correctly im-
plemented, it looks and acts atomic.

In a multiuser environment, transactions
take on the additional attribute that any
two transactions concurrently operating on
common objects appear to run serially (i.e.,
as though there were no concurrency). This
property is called consistency and is han-
dled by the RSS lock subsystem [ESWA76,
GRAY76, GRAY78, NAUM78].

The application declares a sequence of
actions to be a transaction by beginning the
sequence with a BEGIN action and ending
it with a COMMIT action. All intervening
actions by that application (be it one or
several processes) are considered to be
parts of a single recovery unit. If the appli-
cation gets into trouble, it may issue the
ABORT action which undoes all actions in
the transaction. Further, the system may
unilaterally abort in-progress transactions
in case of an authorization violation, re-
source limit, deadlock, system shutdown, or
crash. Figure 3 shows the three possible
outcomes--commit, abort, or system abor-
t i o n - o f a transaction, and Figure 4 shows
the outcomes of five sample transactions in
the event of a system crash.

If a transaction either aborts or is
aborted, the system must undo all actions
of that transaction. Once a transaction com-
mits, however, its updates and messages to

Computmg Surveys, Vol. 13, No. 2, June 1981

228 • J i m G r a y e t al.

BEGIN BEGIN BEGIN
READ READ READ
WRITE WRITE WRITE
READ READ READ

WRITE ABORT <==SYSTEM ABORTS
COMMIT TRANSACTION

Figure 3. The three possible destinms of a transac-
tion. commits, aborts, or is aborted.

T1 I I <
T2 I I <
T3 I I <
T4 I <
T5 I <

Time) SYSTEM
CRASH

Figure 4. Five transactions. The effects of actions by
transactions T1, T2, and T3 will survive a system
crash because they have committed. This is called
durability. But the effects of transactions T4 and T5
will be undone because they were in progress at the
time of the crash (had not yet committed).

the external world must persist--its effects
must be durable. The system will "remem-
ber" the results of the transaction despite
any subsequent malfunction. Once the sys-
tem commits to "open the cash drawer" or
"retract the reactor rods," it will honor that
commitment. The only way to undo the
effect of a committed transaction is to run
a new transaction which compensates for
these effects.

1.2 Transaction Save Points

The RSS defines the additional notion of
t ransact ion save point . A save point is a
firewall which allows transaction undo to
stop short of undoing the entire transaction.
Should a transaction get into trouble (e.g.,
deadlock or authority violation), it may be
sufficient to back up only as far as an inter-
mediate save point. Each save point is num-
bered, with the beginning of a transaction
being save point 1. The application program
declares a save point by issuing a SAVE
action specifying a save point record to be
entered in the log. This record may be
retrieved if and when the transaction re-
turns to the corresponding save point.

Figure 5 illustrates the use of save points.
It describes a conversational transaction

TICKET AGENT APPLICATION PROGRAM
input message ~ BEGIN

SAVE {state)
(actions to reserve first hop)
SAVE (state)
new screen

next hop •* SAVE (hop)
(actions to reserve next hop)

last hop =*

prmted ticket

SAVE (hop)
(actions to reserve last hop)
COMMIT (reservation)

Figure 5. A multihop airlines reservation transaction
using save points. If the application program or ticket
agent detects an error, the transaction can undo to a
previous save point and continue forward from there

making a multihop airline reservation in-
volving several ticket agent interactions--
one per hop. The application program es-
tabhshes a save point before and after each
interaction, with the save point data includ-
ing the current state of the program vari-
ables and the ticket agent screen. If the
ticket agent makes an error or if a flight is
unavailable, the agent or program can back
up to the most recent mutually acceptable
save point, thereby minimizing the agent's
retyping. Once the entire ticket is com-
posed, the transaction commits the data-
base changes and prints the ticket. The
program can request a return to save point
N by issuing the UNDO N action. Of course
all the save points may be washed away by
a system restart or serious deadlock, but
most error situations can be resolved with
a minimal loss of the ticket agent's work.

The System R save point facility is in
contrast to most systems in which each
message causes the updates of the transac-
tion to be committed. In such systems
either the agent must manually delete pre-
vious steps of the transaction when some-
thing goes wrong, or the application pro-
gram must implement recovery by keeping
an undo log or deferring all updates until
the last step. Such application program re-
covery schemes complicate the program
and may work incorrectly because locks are
not held between steps (e.g., the lost update
problem described in GRAY76).

Save points are used by the RDS to
implement certain complex operations.
Some RDS operations require many RSS

Computing Surveys, Vol. 13, No 2, June 1981

The Recovery Manager of the System R Database Manager • 229

S]
$2

$3

A9

BEGIN COMMIT

Figure 6. An example of nested transactions usmg save points. The transaction T consists of RSS actions A1,
.. . . A9. Actions A2, A4, and A7 defined save points $1, $2, and $3 which become nested subtransact]ons of T.
These are probably RDS actmns which consist of several RSS actmns. Each RSS action is a minitransaction on
the RSS state. If the RSS actmn gets into trouble, it backs up to the beginning of the action and retries. If that
fails, undo propagates to the nearest save point that can resolve the issue. This is the spheres of control notatmn
of DAVI73.

operations, and the RDS guarantees that
each SQL statement is atomic. The RDS
supports atomic SQL statements by begin-
ning each such complex operation with a
save point and backing up to this save point
if the RSS or RDS fails at some point
during the operation. Figure 6 illustrates
the use of save points.

1.3 Summary

To summarize, the RSS recovery manager
provides the following actions:

• BEGIN designates the beginning of a
transaction.

• SAVE designates a firewall within the
transaction. If an incomplete transaction
is backed up, undo may stop at such a
point rather than undoing the entire
transaction.

• READ__SAVE returns the data saved in
the log by the application at a designated
save point.

• UNDO undoes the effects of a transaction
to an earlier save point.

• ABORT undoes all effects of a transaction
{equivalent to UNDO 0).

• COMMIT signals successful completion
of transaction and causes updates to be
committed.

Using these primitives, the RDS and appli-
cation programs using the RDS can con-

struct groups of actions which are atomic
and durable.

This model of recovery is a subset of the
recovery model formulated by Davies and
Bjork [BJOR73, DAVI73]. Unlike their
model, System R transactions have no par-
allelism within a transaction (i.e., if multi-
ple nodes of a network are needed to exe-
cute a single transaction, only one node
executes at a time). Further, System R
allows only a limited form of transaction
nesting via the use of save points (each save
point may be viewed as the start of an
internal transaction). These limitations
stem from our inability to find an accepta-
ble implementation for the more general
model.

2. IMPLEMENTATION OF SYSTEM R
RECOVERY

2.1 Files, Versions, and Shadows

All persistent System R data are stored in
files. A user may define any number of files.
A file, for our purposes, is a paged linear
space of up to 68 billion (236) bytes, which
has been dynamically allocated on disk in
units of 4096-byte pages. A buffer manager
maps all the files into a virtual memory
buffer pool shared by all System R users.
The buffer manager uses a "Least Recently
Used" (LRU) algorithm to regulate occu-
pancy of pages in the pool. The buffer pool

Computing Surveys, Vol. 13, No. 2, June 1981

230 • J im Gra~ et al.

D I R E C T O R Y

A

Figure 7. T h e directory s tuc tu re for
nonshadowed and shadowed files. File A
is not shadowed. File B is shadowed and
has two directory entrms, a cu r ren t ver-
s ion and a shadow version.

B

B

C U R R E N T

S H A D O W

C H A N G E D P A G E S

S H A D O W
A N D

U N C H A N G E D P A G E S

is volatile and presumed not to survive sys-
tem restart .

Each file carries a part icular recovery
protocol and corresponding overhead of re-
covery. Files are dichotomized as shadowed
and nonshadowed. Nonshadowed files
have no automat ic recovery. T h e user is
responsible for making and storing redun-
dant copies of these files. Sys tem R simply
updates nonshadowed file pages in the
buffer pool. Changes to nonshadowed files
are recorded on disk when the pages are
removed from the buffer pool (by the LRU
algorithm) and when the file is saved or
closed.

By contrast, the RSS maintains two on-
line versions of shadowed files, a shadow
version and a current version. RSS actions
affect only the current version of a file and
never al ter the shadow version {except for
file save and restore commands). The cur-
rent version of a file can be SAVEd as the
shadow version, thereby making the recent
updates to the file permanent ; the current
version can also be R E S T O R E d to the
shadow version, thereby "undoing" all re-
cent updates to the file (see Figure 7). I f
data are spread across several files, it is
desirable to save or restore all the files "a t

once." Therefore file save or restore can
apply to sets of shadowed files.

Although the current version of a file
does not survive restart , because recent up-
dates to the file m ay still reside in the buffer
pool, the shadow version of a file does.
Hence at RSS restar t {i.e., after a crash or
shutdown) all nonshadowed files have their
values as of the system crash {modulo up-
dates to central memory which were not
wri t ten to disk) and all shadowed files are
reset to their shadow versions. As discussed
below, starting from this shadow state, the
log is used to remove the effects of abor ted
transact ions and to restore the effects of
commit ted transactions.

T h e current and shadow versions of a file
are implemented in a part icularly efficient
manner. When a shadow page is upda ted in
the buffer pool for the first time, a new disk
page frame is assigned to it. Thereaf ter ,
when tha t page is wri t ten from the buffer
pool or read into the buffer pool, the new
frame is used (the shadow is never up-
dated). Saving a file consists of writing to
disk all al tered pages of the file current ly in
the buffer pool and then writing to disk the
new page table, and freeing superseded
shadow pages. Restoring a file is achieved

Computing Surveys, Vol. 13, No. 2, June 1981

The Recovery Manager of the System R Database Manager

TRANSACTION LOG

TRANSACTION r ' ,'i~ ~
DESCRIPTOR ~ } RECORD.ID,OLDVAL,NEWVAL

L !

Figure 8. A transaction log is the sequence of changes made by this transactlon

• 2 3 1

by discarding pages of that file in the buffer
pool, freeing all the new disk pages of that
file, and returning to the {old) shadow page No log
table. The paper by Lorie [LoRI77] de-
scribes the implementation in greater de-
taft. Log

2.2 Logs and the DO, UNDO, REDO Protocol

The shadow-version/current-version di-
chotomy has strong ties to the old-master/
new-master dichotomy common to most
batch EDP systems in which, if a run fails,
the old master is used for a successive at-
tempt; if the run succeeds, the new master
becomes the old master. Unhappily, this
technique does not seem to generalize to
concurrent transactions on a shared file. If
several transactions concurrently alter a
file, file save or restore is inappropriate
because it commits or aborts the updates of
all transactions to the file. It is desirable to
be able to commit or undo updates on a
per-transaction basis. Such a facility is re-
quired to support the COMMIT, ABORT,
and UNDO actions, as well as to handle
such problems as deadlock, system over-
load, and unexpected user-disconnect. Fur-
ther, as shown in Figure 4, selective trans-
action back up and commit are required for
system restart.

We were unable to architect a transaction
mechanism based solely on shadows which
supported multiple users and save points.
Instead, the shadow mechanism is com-
bined with an incremental log of all the
actions a transaction performs. This log is
used for transaction UNDO and REDO on
shared files and is used in combination with
shadows for system checkpoint and restart.
Each RSS update action writes a log record
giving the old and new value of the updated
object. As Figure 8 shows, these records are
aggregated by transaction and collected in
a common system log file (which is option-
ally duplexed).

Table 2. Recovery Attributes of Flies

No shadow Shadow

Contents un- Contents equal shadow
predmtable after crash
after crash

Not supported All updates logged
Transaction consistent

after a crash

When a shadowed file is defined by a
user, it is designated as logged or not
logged. The RSS controls the saving and
restoration of logged files and maintains a
log of all updates to logged files. Users
control the saving and restoration of non-
logged shadowed files. Nonshadowed files
have none of the virtues or corresponding
overhead of recovery (see Table 2).

In retrospect, we regret not supporting
the LOG and NO SHADOW option. As
explained in Section 3.8, the log makes
shadows redundant, and the shadow mech-
anism is quite expensive for large files.

Each time a transaction modifies a logged
file, a new record is appended to the log.
Read actions need generate no log records,
but update actions on logged files must
enter enough information in the log so that,
given the log record at a later time, the
action can be completely undone or redone.
As seen below, most log writes do not re-
quire I/O and can be buffered in central
memory.

Every RSS operation on a logged file
must be implemented as a set of operations
(see Figure 9):

• a DO operation, which does the action
and also writes a log record sufficient to
undo and redo the action;

• an UNDO operation, which undoes the
action given the log record written by the
DO action;

• a REDO operation, which redoes the ac-
tion given the log record written by the
DO action;

Computing Surveys, Vol. 13, No. 2, June 1981

° .

232 • Jim Gray et al.

ILOORECOROI T

STATE I

l I LOG RECORD I

Figure 9. Three aspects of an acnon Action DO
generates a new state and a log record. Action UNDO
generates an old state from a new state and a log
record Action REDO generates a new state from an
old state and a log record.

• optionally, a DISPLAY operat ion which
translates the log record into a human-
readable format.

To give an example of an action and the
log record it must write, consider the record
update action. This action must record the
following in the log:

* file name,
* record identifier,
• old record value,
• new record value.

The log subsystem augments this with
the additional fields:

• t ransact ion identifier,
• action identifier,
• t imestamp,
• length of log record,
• pointer to previous log record of this

transaction.

The UNDO operat ion restores the record
to its old value and appropriately updates
associated s t ructures such as indices and

storage management information. T h e
R E D O operat ion restores the record (and
its associated structures) to its new value.
The display operat ion re turns a text string
giving a symbolic display of the log record.

Once a log record is recorded, it cannot
be updated. However the log manager pro-
vides a facility to open read cursors on the
log which will t raverse the system log or
t raverse the log of a part icular t ransact ion
in e i ther direction.

2.3 Commit Processing

The essential p roper ty of a t ransact ion is
tha t it u l t imately commits, aborts, or is
abor ted and tha t once it commits, its up-
dates persist, and once it aborts or is
aborted, its updates are suppressed.
Achieving this p roper ty is nontrivial. In
order to ensure tha t a t ransact ion 's effects
will survive restar ts and media failures, the
system must be able to redo commit ted
transactions. Sys tem R ensures tha t un-
commit ted transact ions can be undone and
tha t commit ted transact ions can be redone
as follows:

(I) T h e t ransact ion log is wri t ten to disk
before the shadow database is replaced
by the current database state.

(2) The t ransact ion commit action writes
a commit log record in the log buffer
and then forces all the t ransact ion 's log
records to disk (with the commit record
being the last such record).

A t ransact ion commits at the instant its
commit record appears on disk. If the sys-
t em crashes prior to tha t instant, the trans-
action will be aborted. Because the log is
wri t ten before the database (item 1), Sys-
t em R can always undo any uncommit ted
updates which have migrated to disk. On
the other hand, if the system crashes sub-
sequent to the writing of the commit record
to disk, then the t ransact ion will be redone,
f rom the shadow state, using the log records
which were forced to disk by the commit.
In the terminology of Gray [GRAY78], i tem
1 is the "write ahead log protocol."

2.4 Transaction UNDO

The logic of action UNDO is very simple.
I t reads a log record, looks at the name of

Computing Surveys, Vol 13, No 2, June 1981

The Recovery Manager of the System R Database Manager

the action identifier in the log record, and
invokes the undo operation of that action,
passing it the log record. Recovery is
thereby table driven. This table-driven de-
sign has allowed the addition of new re-
coverable objects and actions to the RSS
without any impact on recovery manage-
ment.

The effect of any uncommitted transac-
tion can be undone by reading the log of
that transaction backward, undoing each
action in turn. Clearly, this process can be
stopped halfway, returning the transaction
to an intermediate transaction save point.
Transaction save points allow the transac-
tion to backtrack. "

From this discussion it follows that a
transaction's log is a push-down stack; writ-
ing a new log record pushes it onto the
stack, and undoing a record pops it off the
stack (see Figure 8). To minimize log buffer
space and log I/O, all transaction logs are
merged into one system log, which is then
mapped into a log file. But the log records
of a particular transaction are chained to-
gether as a linked list anchored off of the
transaction descriptor. Notice that UNDO
requires that the log be directly addressable
while the transaction is uncommitted. For
this reason at least one version of the log
must be on disk (or some other direct-ac-
cess device). A tape-based log would be
inconvenient for in-progress transaction
undo.

2.5 Transaction Save Points

A transaction save point records enough
information to restore the transaction's
view of the RSS as of the save point. The
user may record up to 64 kilobytes of ap-
plication data in the log at each save point.

One can easily restore a transaction to its
beginning by undoing all its updates and
then releasing all its locks and dropping all
its cursors (since no cursors or locks are
held at the beginning of the transaction and
since a list of cursors and locks is main-
tained on a per-transaction basis). To re-
store to a save point, the recovery manager
must know the name and state of each
active cursor and the name of each lock
held at the save point. For performance
reasons, changes to cursors and locks are
not recorded in the log. Otherwise, every

• 233

read action would have to write a log rec-
ord. Instead, the state of locks and cursors
is only recorded at save points. Assuming
that all locks are held to end of the trans-
action, transaction backup can reset cursors
without having to reacquire any locks. Fur-
ther, because these locks are kept in a list
and are not released, one can remember
them all by remembering the lock at the
top of the list. At backup to a save point,
all subsequent locks are released.

2.6 System Configuration, Startup, and
Shutdown

A System R database is created by install-
ing a "starter system" and then using Sys-
tem R commands to define and load new
files and to define transactions which ma-
nipulate these files. Certain operations (e.g.,
turning dual logging on and off) require a
system shutdown and restart, but most op-
erations can be performed while the system
is operational. In particular we worked
quite hard to avoid functions like SYSGEN
and cold-start.

A monitor process (a task or virtual ma-
chine) is responsible for system startup,
shutdown, and checkpoints and for servic-
ing system operator commands. If several
instances of System R (several different
databases) are running on the same ma-
chine, each instance will have a monitor.
System R users join a particular instance
of System R, run transactions in the users'
process, and then leave the system. In the-
ory, 254 users may be joined to a system at
one time.

2.7 System Checkpoint

System checkpoints limit the amount of
work (undo and redo) necessary at restart.
A checkpoint records information on disk
which helps locate the end of the log at
restart and correlates the database state
with the log state. A checkpoint saves all
logged shadow files so that no work prior
to the checkpoint will have to be redone at
restart. If checkpoints are taken frequently,
then restart is fast but the checkpoint over-
head is high. Balancing the cost of check-
points against the cost of restart gives an
optimum checkpoint interval. Because this
optimum depends critically on the cost of

Computing Surveys, Vol 13, No. 2, June 1981

234 • Jim Gray et al.

Figure 10. The directory root points
at the most recent checkpoint record
in the log.

LOG

SHADOW
DIRECTORY

~ dress of checkpoint record in log

1
I CHECKPOINT I

RECORD

a checkpoint, one wants a cheap checkpoint
facility.

The simplest form of checkpoint is to re-
cord a transaction-consistent state by
quiescing the system, deferring all new
transactions until all in-progress transac-
tions complete, and then recording a logi-
cally consistent snapshot. However, quiesc-
ing the system causes long interruptions in
system availability and hence argues for
infrequent checkpoints. This, in turn, in-
creases the amount of work that is lost at
restart and must be redone. System quiesce,
consequently, is not a cheap way to obtain
a transaction-consistent state.

The RSS uses a lower level of consist-
ency, augmented by a transaction log, to
produce a transaction-consistent state. The
RSS implements checkpoints which are
snapshots of the system at a time when no
RSS actions are in progress (an action-con-
sistent state). Since RSS actions are short
(less than 10,000 instructions) system avail-
ability is not adversely affected by frequent
checkpoints. (Long RSS actions, e.g., sort
or search, occasionally "come up for air" in
an action-consistent state to allow check-
points to occur.)

Checkpoints are taken after a specified
amount of log activity or at system operator
request. At checkpoint, a checkpoint record
is written in the log. The checkpoint record
contains a list of all transactions in progress
and pointers to their most recent log rec-
ords. After the log records are on disk, all
logged files are saved (current state replaces
shadows), which involves flushing the da-
tabase buffer pool and the shadow-file di-
rectories to secondary storage. As a last

step, the log address of the checkpoint
record is written as part of the directory
record in the shadow version of the state
[LoRI77]. The directory root is duplexed on
disk, enabling the checkpoint process to
tolerate failures while writing the directory
root. At restart the system will be able to
locate the corresponding checkpoint record
by examining the most recent directory root
(see Figure 10).

2.8 System Restart

Given a checkpoint of the state at time T
along with a log of all changes to the state
made by transactions prior to time T + E,
a transaction-consistent version of the state
can be constructed by undoing all updates,
logged prior to time T, of transactions
which were uncommitted or aborted by
time T + E, and then redoing the updates,
logged between time T and time T + E, of
committed transactions.

At system restart the system R code is
loaded and the file manager restores any
shadowed files to their shadow versions. If
a shadowed file was not saved at shutdown,
the then-current version will be replaced by
its shadow. In particular, all logged files will
be reset to their state as of the most recent
system checkpoint.

Recovery manager is then given control
and it examines the most recent checkpoint
record (which, as Figure 10 shows, is
pointed at by the current directory). If
there was no work in progress at the time
of the checkpoint and if the checkpoint is
the last record in the log, then the system
is restarting from a shutdown in a quiesced

Computing Surveys, Vol. 13, No 2, June 1981

The Recovery Manager of the

state. No transactions need be undone or
redone, and restart initializes System R and
opens up the system for general use.

On the other hand, if work was in prog-
ress at the checkpoint, or if there are log
records after the checkpoint record, then
this is a restart from a crash. Figure 11
illustrates the five possible states of trans-
actions at this point:

• T1 began and ended before the check-
point.

• T2 began before the checkpoint and ended
before the crash.

• T3 began after the checkpoint and ended
before the crash.

• T4 began before the checkpoint but no
commit record appears in the log.

• T5 began after the checkpoint and appar-
ently never ended.

To honor the commit of T1, T2, and T3
transactions requires their updates to ap-
pear in the system state (done). But T4 and
T5 have not committed and so their up-
dates must not appear in the state (un-
done).

At restart the shadowed files are as they
were at the most recent checkpoint. Notice
that none of the updates of T5 are reflected
in this state, so T5 is already undone. No-
tice also that all of the updates of T1 are in
the shadow state, so it need not be redone.
T2 and T3 must be redone from the check-
point forward. (The updates of the first half
of T2 are already reflected in the shadow
state.) On the other hand, T4 must be un-
done from the checkpoint backward. (Here
we are skipping over the following anomaly:
If, after a checkpoint, T2 backs up to a save
point prior to the checkpoint, then some
undo work is required for T2.)

Restart uses the log as follows. It reads
the most recent checkpoint record and as-
sumes that all the transactions active at the
time of the checkpoint are of type T4 (ac-
tive at checkpoint, not committed). It then
reads the log in the forward direction start-
ing from the checkpoint record. If it en-
counters a BEGIN record, it notes that this
is a transaction of type T5. If it encounters
the COMMIT record of a T4 transaction, it
reclassifies the transaction as type T2. Sim-
ilarly, T5 transactions are reclassified as T3
transactions if a COMMIT record is found

System R Database Manager • 235

T1 I - - I + <
T2 I + I <
T3 + I J <
T4 I + <
T5 + [<

C H E C K P O I N T C R A S H

Figure 11. Five t ransac t ion types wi th respec t to the
mos t recen t checkpoin t and the c rash point.

for that transaction. When it reaches the
end of the log, the restart manager knows
all the T2, T3, T4, and T5 transactions. T4-
and T5-type transactions are called "losers"
and T2- and T3-type transactions are called
"winners." Restart reads the log backward
from the checkpoint, undoing all actions of
losers, and then reads the log forward from
the checkpoint, redoing all actions of win-
ners. Once this is done, a new checkpoint is
written so that the restart work will not be
lost.

Restart must be prepared to tolerate fail-
ures during the restart process. This prob-
lem is subtle in most systems, but the Sys-
tem R shadow mechanism makes it fairly
straightforward. System R restart does not
update the log or the shadow version of the
database until restart is complete. Taking
a system checkpoint signals the end of a
successful restart. System checkpoint is
atomic, so there are only two cases to con-
sider. Any failure prior to completing the
checkpoint will return the restart process
to the original shadow state. Any failure
after the checkpoint is complete will return
the database to the new (restarted) state.

2.9 Media Failure

In the event of a system failure which
causes a loss of disk storage integrity, it
must be possible to continue with a mini-
mum of lost work. Such situations are han-
dled by periodically making a copy of the
database state and keeping it in an archive.
This copy, plus a log of subsequent activity,
can be used to reconstruct the current state.
The archive mechanism used by System R
periodically dumps a transaction-consistent
copy of the database to magnetic tape.

It is important that the archive mecha-
nism have failure modes independent of the
failure modes of the on-line storage system.
Using duplexed disks protects against a disk
head crash, but does not protect against

Computing Surveys, VoL 13, No. 2, June 1981

236 ° Jim Gray et al.

Figure 12. Bytes between F I R E _
WALL and LOG_END are needed for
system restart and hence are kept m the
log ring buffer.

LOG__END
C H E C K _ P O I N T
LOG_BEGIN[TIll] - -
LOG_BEGIN[T250]

LOG_BEGIN[T345]
LOG__BEGIN[T346]
LOG__ARCHIVE

LOG:
11

FIRE__WALL T
errors in disk programs or fire in the ma-
chine room.

In the event of a single media failure, the
following occurs:

• If one of the duplexed on-line logs fails,
then a new log is allocated and the good
version of the duplexed log is copied to
the new one.

• If any other file fails, the most recent
surviving dump tape is loaded back into
the database, and then all committed up-
date actions subsequent to the check-
point record of the archive state are re-
done using the log.

Recovery from an archive state appears to
the recovery manager as a restart from a
very old checkpoint. No special code has
been written for archive recovery.

The most vulnerable part of this system
is the possible failure of both instances of
the on-line log. Assuming the log software
has no bugs, we estimate the mean time
between such coincident failures at about
1000 years. As mentioned in the summary
to the Introduction, operational errors are
much more frequent, and so make log fail-
ure a minor source of unrecoverable errors.

Although performing a checkpoint causes
relatively few disk writes and takes only a
short time, dumping the entire database is
a lengthy operation (10 minutes per 100
megabytes). Maintaining transaction
quiesce for the duration of the dump oper-
ation is undesirable, or even impossible,
depending on the real-time constraints im-
posed by system users. Lorie [LORI77] de-
scribes a scheme based on shadows for mak-
ing an archive dump while the system is

operating. Gray [GRAY78] describes a
"fuzzy" dump mechanism which allows the
database to be dumped while it is in oper-
ation (the log is later used to focus the
dump on some specified time). IMS and
other commercial systems provide facilities
for dumping and restoring fragments of files
rather than whole databases. We did not
implement one of these fancier designs be-
cause the simple approach was adequate
for our needs.

2.10 Managing the Log

The log is a very long sequence of pages,
each with a unique sequence number.
Transactions undo and redo need quick
access to the log but most of it can be kept
off-line or discarded. Figure 12 illustrates
the bookkeeping of the on-line log. The on-
line log file is used to hold the "useful"
parts of the log. It is managed as a ring
buffer, with LOG__END pointing just be-
yond the last useful byte of the log and
CHECK__POINT pointing at the most re-
cent checkpoint. Clearly, all records since
the checkpoint must be kept on-line in sup-
port of transaction redo. Further, transac-
tion undo needs all records of incomplete
transactions on-line (LOG__BEGIN(I) for
active transaction I). Last, one cannot free
the space occupied by a log record in the
ring until the database is archived (this
point is addressed by LOG_ARCHIVE).
So at restart the system may need records
back to the FIRE WALL where
FIRE__WALL is the minimum of
LOG__ARCHIVE, CHECK__POINT, and
LOG__BEGIN(I) for each active transac-
tion I. Bytes prior to FIRE__WALL need
not reside in the on-line ring buffer.

Computing Surveys, Vol 13, No. 2, June 1981

The Recovery Manager of the

If the on-line ring buffer fills, it is because
(1) archiving of the log is required, (2) a
checkpoint is required, or (3) a transaction
has been running for a very long time (and
hence has a very low LOG__BEGIN). The
first two problems are solved by periodic
archiving and checkpoints. The third prob-
lem is solved by aborting very old transac-
tions. For many applications, dual on-line
logs of 1 megabyte are adequate, although
10 to 100 megabytes are more typical.

Duplexing of the log is a system option
which may be changed at each restart. Du-
plexing is transparent above the log inter-
face; reads (usually) go to one instance of
the log, and writes go to both instances. If
one instance fails, the other is used at re-
start (on a page-by-page basis).

2.11 Recovery and Locking

Recovery has implications for and places
requirements on the lock subsystem.

In order to blindly undo the actions of
one transaction without erasing subsequent
updates by other transactions, it is essential
that all transactions lock all updates in
exclusive mode and hold all such locks until
the transaction is committed or undone. In
fact System R automatically acquires both
share and exclusive locks and holds them
all until the end of the transaction. See
GRAY76 for a detailed discussion of the
various locking options supported by Sys-
tem R.

A second issue is that transaction undo
cannot tolerate deadlock (we do not want
to have to undo undo's). Undo may take
advantage of the fact that it only accesses
records the transaction locked in the do
step; hence it need not re-request these
locks. (This is a consequence of holding all
exclusive locks until the end of the trans-
action.) But transaction undo may have to
set some locks because other RSS actions
are in progress and because RSS actions
release some locks at the end of each RSS
action (e.g., physical page locks when logi-
cal record locking is the actual granularity).
To solve this problem, transactions which
are performing transaction undo are
marked as "golden." Golden transactions
are never chosen as deadlock victims;
whenever they get into a deadlock with
some other transactions, the other trans-

System R Database Manager * 237

actions are preempted. To assure that this
rule does not produce unbreakable dead-
lock cycles (ones containing only golden
transactions), the additional rule is adopted
that only one golden transaction can exe-
cute at a time (and hence that no deadlock
cycle involves more than one golden trans-
action). A special lock (RSSBACKUP) is
requested in exclusive mode by each golden
transaction before it begins each undo step.
This lock is released at the end of each such
undo step.

During restart, locking is turned off. Es-
sentially, the entire database is locked dur-
ing the restart process which sequentially
executes actions in the order they appear
in the log (making an undo pass followed
by a redo pass).

3. EVALUATION

We were apprehensive on several counts
when we first designed the System R recov-
ery system. First, we were skeptical of our
ability to write RSS actions which could
always undo and redo themselves. Second,
we were apprehensive about the perform-
ance and complexity of such programs. And
third, we were concerned that the added
complexity might create more crashes than
it cured. In retrospect, the recovery system
was comparatively easy to write and cer-
tainly has contributed to the system's reli-
ability.

3.1 Implementation Cost

The RSS was designed in 1974 and 1975
and became operational in 1976. Since then
we have had a lot of experience with it.

Writing recoverable actions (ones which
can undo and redo themselves) is quite
hard. Subjectively, writing a recoverable
action is 30 percent harder and, objectively,
it requires about 20 percent more code than
a nonrecoverable action. In addition, the
recovery system itself (log management,
system restart, checkpoint, commit, abort,
etc.) contributes about 15 percent of the
code of the RSS. However, the RSS is less
than half of System R, so these numbers
may be divided in half when assessing the
overall system implementation cost, leaving
the marginal cost of implementing recovery
at about 10 percent.

Computing Surveys, Vol. 13, No. 2, June 1981

238 • Jim Gray et al.

3.2 Execution Cost

Another component of cost is the instruc-
tions added to execution of a transaction to
support recovery (frequently called "path
length"). Fortunately, most transactions
commit and hence make no use of the undo
or redo code. In the normal case the only
cost imposed by recovery is the writing of
log records. Further, only update opera-
tions need write log records. Typically, the
cost of keeping a log is less than 5 percent
increased path length. In addition, the ex-
ecution cost, associated with recovery, of
periodic checkpoints is minimal. Restart is
quite fast, typically running ten times faster
than the original processing (primarily be-
cause updates are infrequent). Hence if the
checkpoint interval is 5 minutes, the system
averages 15 seconds to restart. As described
in the next section, checkpoint is I/O
bound.

3.3 I / 0 Cost

A third component of recovery cost is I/O
added by the recovery system. Each trans-
action commit adds two I/Os to the cost of
the transaction when the duplexed log is
forced to disk (as part of the commit ac-
tion). This cost is reduced to one extra I/O
if dual logging is not selected. Log force is
suppressed for read-only transactions. De-
pending on the application, log force may
be a significant overhead. In an application
in which each transaction is a few (50) RSS
actions, it constitutes a 20 percent I/O over-
head. The transaction of Figure 1 would
have about a 25 percent log I/O overhead.
In another application in which the data-
base is all resident in central memory, the
log accounts for all of the disk I/O. IMS
Fast Path solves this problem by logging
several transactions in one I/O so that one
gets less than one log I/O per transaction.
The shadow mechanism when used with
large databases often implies extra I/O,
both during normal operation and at check-
point. Lorie's estimates in LoRI77 are cor-
rect: a checkpoint requires several seconds
of I/O after 5 minutes of work on a 100-
megabyte database. This work increases
with larger databases and with high trans-
action rates. It becomes significant at 10
transactions per second or for billion-byte
files.

3.4 Success Rate

Perhaps the most significant aspect of the
System R recovery manager is the confi-
dence it inspires in users. During develop-
ment of the system, we routinely crashed
the system knowing that the recovery sys-
tem will be able to pick up the pieces.
Recovery from the archive is not unheard
of, but it is very uncommon. This has cre-
ated the problem that some users do not
take precautions to protect themselves
from media failures.

3.5 Complexity

It seems to be the case that the recovery
system cures many more failures than it
introduces. Among other things this means
that everybody who coded the RSS under-
stood the do-undo-redo protocol reasona-
bly well and that they were able to write
recoverable actions. As the system has
evolved, new people have added new re-
coverable objects and actions to the system.
Their ability to understand the interface
and to fit into its table-driven structure is
a major success of the basic design.

The decision to put all responsibility for
recovery into the RSS made the RDS much
simpler. There is essentially no code in the
RDS to handle transaction management
beyond the code to externalize the begin,
commit, and abort actions and the code to
report transaction abort to the application
program.

3.6 Disk-Based Log

A major departure of the RSS from other
data managers is the use of a disk-based log
and its merging of the undo and redo logs.
The rationale for the use of disk is that
disks cost about as much as tapes {typically
$30,000 per unit if controllers are included),
but disks are more capacious than tapes
(500 megabytes rather than 50 megabytes
per unit) and can be allocated in smaller
units (a disk-based log can use half of the
disk cylinders; it is not easy to use half of a
tape drive). Further, a disk-based log is
consistent with the evolution of tape ar-
chives such as the IBM 3850 and the AM-
PEX Terabit Store. Last, but most impor-
tant, a disk-based log eliminates operator
intervention at system restart. This is es-
sential if restart is to occur automatically

Computing Surveys, Vol. 13, No. 2, June 1981

The Recovery Manager of the System R Database Manager

and within seconds. Since restart is infre-
quent, operators are likely to make errors
during the restart process (even if they have
regular "fire drills"). A disk-based log re-
duces opportunities for operator error.

Several systems observe that the undo
log is not needed once a transaction com-
mits. Hence they separate the undo and
redo log and discard the undo log at trans-
action commit. Merging the two logs causes
the log to grow roughly twice as fast but
leads to a simpler design. Since transactions
typically write only 200 to 500 bytes of log
data, we do not consider splitting the undo
and redo logs to be worth the effort.

3.7 Save Points
Transaction save points are an elegant idea
which the RSS can implement cheaply.
Transaction save points are used by the
RDS to undo complex RDS operations {i.e.,
make them atomic). However, transaction
save points are not available to application
programs using the SQL language. Unfor-
tunately, the RDS implementors let PL/I
do most of the storage control, so the RDS
processor does not know how to save its
state and PL/I does not offer it a facility to
reset its state even if the RDS could re-
member the state. The RDS, therefore,
does not show the RSS save point facility
to users.

Supporting save points is an unsolved
language-design issue for SQL. If SQL were
imbedded in a language which supported
backtrack programming, save points might
be implemented rather naturally. INTER-
LISP is a natural candidate for this
[TEIT72], since it already supports the no-
tion of undo as an integral part of the
language.

We had originally intended to have sys-
tem restart reset in-progress transactions
to their most recent save point and then to
invoke the application at an exception entry
point (rather than abort all uncommitted
transactions at restart). (CICS does some-
thing like this.) However, the absence of
save point support in the RDS and certain
operating system problems precluded this
feature.

3.8 Shadows

The file shadow mechanism of System R is
a key part of the recovery design. It is used

• 239

to create and discard user scratch files, to
store user work files, and to support logged
files. A major virtue of shadows is that they
ensure that system restart always begins
with an RSS action-consistent state. This
is quite a simplification and probably con-
tributes to the success of system restart.

To understand the problem that shadows
solve at restart, imagine that System R did
not use shadows but rather updated pages
in place on the disk. Imagine two pages P1
and P2 of some file F, and suppose that P1
and P2 are related to one another in some
way. To be specific, suppose that P1 con-
tains a reference R1 to a record R2 on P2.
Suppose that a transaction deletes R2 and
invalidates R1 thereby altering P1 and P2.
If the system crashes there are four possi-
bilities:

(1) Neither P1 nor P2 is updated on disk.
(2) P1 but not P2 is updated on disk.
(3) P2 but not P1 is updated on disk.
(4) Both P1 and P2 are updated on disk.

In states 2 and 3, P1 and P2 are not RSS-
action consistent: either the reference, R1,
or referenced object, R2, is missing. System
restart must be prepared to redo and undo
in any of these four cases. The shadow
mechanism eliminates cases 2 and 3 by
checkpointing the state only when it is
RSS-action consistent {hence restart sees
the shadow version recorded at checkpoint
rather than the version current at the time
of the crash). Without the shadow mecha-
nism, the other two cases must be dealt
with in some way.

One alternative is the "write ahead log"
(WAL) protocol used by IMS [IBMa]. IMS
log records apply to page updates {rather
than to actions). WAL requires that log
records be written to secondary storage
ahead of (i.e., before) the corresponding
updates. Further, it requires that undo and
redo be restartable: attempting to redo a
done page will have no effect and attempt-
ing to undo an undone page will have no
effect, allowing restart to fail and retry as
though it were a first attempt. WAL is
extensively discussed by Gray [GRAY78].

There is general consensus that heavy
reliance on shadows for large shared files
was a mistake. We recognized this fact
rather late (shadows have several seductive
properties), so late in fact that a major

Computing Surveys, Vol. 13, No. 2, June 1981

240 • J i m Gray et al.

rewrite of the RSS is required to reverse
the decision. Fortunately, the performance
of shadows is not unacceptable. In fact for
small databases (fewer than 10 megabytes)
shadows have excellent performance.

Our adoption of shadows is largely his-
torical. Lorie implemented a single-user re-
lational system called XRAM which used
the shadow mechanism to give recovery for
private files. When fries are shared, one
needs a transaction log of all changes made
to the files by individual users so that the
changes corresponding to one user may be
undone independently of the other users'
changes. This transaction log makes the
shadow mechanism redundant. Of course
the shadow mechanism is still a good recov-
ery technique for private files. A good sys-
tem should support both shadows for pri-
vate files and log-based recovery for shared
files. Several other systems, notable QBE
[IBMb], the DataComputer [MAre75], and
the Lampson and Sturgis file system
[LAlviP81] have a similar use of shadows. It
therefore seems appropriate to present our
assessment of the shadow mechanism.

The conventional way of describing a
large file (e.g., over a billion bytes) is as a
sequence of al locatmn units. An allocation
unit is typically a group of disk cylinders,
called an extent. If the file grows, new ex-
tents are added to the list. A file might be
represented by 10 extents and the corre-
sponding descriptor might be 200 bytes.
Accessing a page consists of accessing the
extent table to find the location of the ex-
tent containing the page and then accessing
the page.

By contrast, a shadow mechanism is
much more complex and expensive. Each
page of the file has an individual descriptor
in the page table. Such descriptors need to
be at least 4 bytes long and there need to
be two of them (current and shadow). Fur-
ther, there are various free-space bit maps
(a bit per page) and other housekeeping
items. Hence the directories needed for a
file are about 0.2 percent of the file size
(actually 0.2 percent of the maximum file
size). For a billion-byte file this is 2 mega-
bytes of directories rather than the 200
bytes cited for the extent oriented descrip-
tors.

For large fries this means that the direc-
tories cannot reside in primary storage;
they must be paged from secondary storage.
The RSS maintains two buffer pools: a pool
of 4-kilobyte data pages and another pool
of 512-byte directory pages. Management
and use of this second pool added complex-
ity inside the RSS. More significantly, di-
rect processing (hashing or indexing single
records by key) may suffer a directory I/O
for each data I/O.

Another consequence of shadows is that
"next" in a file is not "next" on the disk
(logical sequential does not mean physical
sequential). When a page is updated for the
first time, it moves. Unless one is careful,
and the RSS is not careful about this, get-
ting the next page frequently involves a
disk seek. (Lorie in LORI77 suggests a
shadow scheme which maintains physical
clustering within a cylinder.) So it appears
that shadows are bad for direct (random)
processing and for sequential processing.

Shadows consume an inconsequential
amount of disk space for directories (less
than 1 percent). On the other hand, in order
to use the shadow mechanism, one must
reserve a large amount (20 percent) of disk
space to hold the shadow pages. In fact
some batch operations and the system re-
start facility may completely rewrite the
database. This requires either a 100 percent
shadow overhead or the operation must be
able to tolerate several checkpoints (i.e.,
reclaim shadow) while it is in progress. This
problem complicates system restart (its so-
lution was too complex to describe in the
system restart section).

The RSS recovery system does not use
shadowed files for the log; rather, it uses
disk extents (one per log file). However the
recovery system does use the shadow mech-
anism at checkpoint and restart. At check-
point all the current versions of all recover-
able files are made the shadow versions.
This stops the system and triggers a flurry
of I/O activity. The altered pages in the
database buffer pool are written to disk,
and much directory I/O is done to free
obsolete pages and to mark the current
pages as allocated. The major work in this
operation is that three I/Os must be done
for every directory page that has changed
since the last checkpoint. If updates to the

Computing Surveys, Vol 13, No 2, June 1981

The Recovery Manager of the

database are randomly scattered, this could
mean three I/Os at checkpoint for each
update in the interval between checkpoints.
In practice updates are not scattered ran-
domly and so things are not that bad, but
checkpoint can involve many I/Os.

We have devised several schemes to
make the shadow I/O asynchronous to the
checkpoint operation and to reduce the
quantity of the I/O. It appears, however,
that much of the I /O is inherent in the
shadow mechanism and cannot be elimi-
nated entirely. This means that the RSS
(System R) must stop transaction process-
ing for seconds. That in turn means that
user response times will occasionally be
quite long.

These observations cause us to believe
that we should have adopted the IMS-like
approach of using the WAL protocol for
large shared files. That is, we should have
supported the log and no-shadow option in
Figure 9. If we had done this, the current
and shadow directories would be replaced
by a much smaller set of file descriptors
(perhaps a few thousand bytes). This would
eliminate the directory buffer pool and its
attendant page I/O. Further, checkpoint
would consist of a log quiesce followed by
writing a checkpoint record and a pointer
to the checkpoint record to disk (two or
three I /Os rather than hundreds). WAL
would not be simpler to program (for ex-
ample, WAL requires more detailed log-
ging). But the performance of WAL is bet-
ter for large shared databases (bigger than
100 megabytes).

3.9 Message Recovery, an Oversight

As pointed out by the examples in Figures
1 and 4, a transaction's database actions
and output messages must either all be
committed or all be undone. We did not
appreciate this in the initial design of Sys-
tem R and hence did not integrate a mes-
sage system with the database system.
Rather, application programs use the
standard terminal I /O interfaces provided
by the operating system, and messages have
no recovery associated with them. This was
a major design error. The output messages
of a transaction must be logged and their
delivery must be coordinated by the corn-

System R Database Manager • 241

mit processor. Commercial data manage-
ment systems do this correctly.

3.10 New Features

We recently added two new facilities to the
recovery component and to the SQL inter-
face. First the COMMIT command was
extended to allow an application to com-
bine a COMMIT with a BEGIN and pre-
serve the transaction's locks and cursors
while exposing (committing) its updates.
COMMIT now accepts a list of cursors and
locks which are to be kept for the next
transaction. These locks are downgraded
from exclusive to shared locks, and all other
cursors and locks are released. A typical
use of this is an application which scans a
large file. After processing the A's it com-
mits and processes the B's, then commits
and then processes the C's, and so on. In
order to maintain cursor positioning across
each step, the application uses the special
form of commit which commits one trans-
action and begins the next.

A second extension involved support for
the two-phase commit protocol required
for distributed systems [GRAY78]. A
PHASE__ONE action was added to the
RSS and to SQL to allow transactions to
prepare to commit. This causes the RSS to
log the transaction's locks and to force the
log. Further, at restart there are now three
kinds of transactions: winners, losers, and
in-doubt. In-doubt transactions are redone
and their locks are reacquired at restart.
Each such transaction continues to be in-
doubt until the transaction coordinator
commits or aborts it (or the system opera-
tor forces it). During the debugging of this
code, several transactions were in-doubt for
two weeks and for tens of system restarts.

At present our major interest is in a
distributed version of System R. We are
extending the System R prototype to sup-
port transparent distribution of data among
multiple database sites.

ACKNOWLEDGMENTS

We have had many stimulating discussions with Dar
Busa, Earl Jenner, Homer Leonard, Dieter Gawlick,
John Nauman, and Ron Obermarck. They helped us
better understand alternate approaches to recovery.
John Howard and Mike Mitoma did several expert-

Computing Surveys, Vol. 13, No 2, June 1981

2 4 2 * Jim Gray et al.

ments whmh stress tested the recovery system. Jim GRAY75
Mehl and Bob Yost adapted the recovery manager to
the MVS environment. Tom Szczygielski implemented
the two-phase commit protocol. We also owe a great
deal to the recovery model formulated by Charlie GRAY76
Davies and Larry Bjork.

REFERENCES
(Note [BLAs79] Is not c]ted in text.)

ASTR76 ASTRAHAN, M M., BLASGEN, M. W.,
-CHAMBERLIN, D. D., ESWARAN, K . P . , GRAY78
GRAY, J. N , GRIFFITHS, P. P., KING, W F ,
LORIE, R. A, MCJONES, P R., MEHL, J.
W., PUTZOLU, G. R., TRAIGER, I. L , WADE,
B W., AND WATSON, V "System R A
relational approach to database manage-
ment," A C M Trans Database Syst 1, 2 IBMa
(June 1976), 97-137.

BJOR73 BJORK, L. "Recovery scenario for a DB/
DC system," m Proc A C M Nat Conf.,
1973, pp. 142-146. IBMb

BLAS79 BLASGEN, M. W, GRAY, J. N , MITOMA,
M., AND PRICE, T. "The convoy phenom-
enon," A C M Oper. Syst Rev. 14, 2 (April LAMP81
1979), 20-25.

CHAM76 CHAMBERLIN, D D., ASTRAHAN, M. M.,
ESWARAN, K. P., GRIFFITHS, P P., LORIE,
R. A., MEHL, J. W, REISNER, R., AND LORI77
WADE, B.W. "SEQUEL 2: A unified ap-
proach to data defimtlon, mampulatlon
and control," I B M J Res Dev. 20, 6 (Nov. MARI75
1976), 560-576

DAVI73 DAVIES, C.T. "Recovery semantics for a
DB/DC system," m Proc. A C M Nat. Conf.,
1973, pp. 136-141. NAUM78

ESWA76 ESWARAN, K. E , GRAY, J N., LORIE, R.
A., AND TRAIGER, I .L . "On the notions
of consistency and predicate locks in a re- TEIT72
lational database system," Commun. A C M
19, 11 (Nov. 1976), 624-634.

GRAY, J. N., AND WATSON V. "A shared
segment and mterprocess communication
facility for VM/370," IBM San Jose Re-
search Lab. Rep. RJ 1679, May 1975.
GRAY, J. N , LORIE, R A., PUTZOLU, G. F ,
AND TRAIGER, 1. L. "Granularity of locks
and degrees of consistency in a shared data
base," Modehng in data base management
systems, G. M. Nijssen, Ed., North-Hol-
land, Amsterdam, 1976, pp. 365-394; also
IBM Research Rep. RJ 1706.
GRAY, J . N . "Notes on data base operat-
ing systems," in Operating sys tems--an
advanced course, R. Bayer, R M. Graham,
and G. Seegmuller, Eds., Springer Verlag,
New York, 1978, pp. 393-481; also IBM
Research Rep. RJ 2188, Feb 1978.
IBM "Information management system/
vn'tual systems (IMS/VS), programming
reference manual," IBM Form No. SH20-
9027-2, sect. 5.
IBM "Query by example program de-
scription/operators manual," IBM Form
No SH20-2077.
LAMPSON, B. W., AND STURGIS, H
E. "Crash recovery in a distributed data
storage system," Commun ACM, to ap-
pear.
LORIE, R.A. Physmal integrity in a large
segmented database," A C M Trans Data-
base Syst 2, 1 (March 1977), 91-104.
MARILL, T., AND STERN, D. H "The Da-
tacomputer' A network utility," in Proc
A F I P S Nat. Computer Conf , vol. 44, AF-
IPS Press, Arhngton, Va., 1975
NAUMAN, J .S . "Observations on sharing
m data base systems," IBM Santa Teresa
Lab. Tech. Rep. TR 03.047, May 1978.
TEITLEMAN, W. "Automated program-
mlng--The programmer's assmtant," in
Proc. Fal l Jt. Computer Conf , Dec. 1972

Received February 1980, final revision accepted November 1980

Computing Surveys, Vol 13, No 2, June 1981

