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INTRODUCTION 

Application Interface to System R 

M a k i n g  c o m p u t e r s  e a s i e r  to  use  is  t h e  goa l  
of  m o s t  so f tware .  D a t a b a s e  m a n a g e m e n t  
sy s t ems ,  in  p a r t i c u l a r ,  p r o v i d e  a p r o g r a m -  
m i n g  i n t e r f ace  to  ease  t h e  t a s k  o f  wr i t i ng  
e l ec t ron i c  b o o k k e e p i n g  p r o g r a m s .  T h e  re-  
c o v e r y  m a n a g e r  of  such  a s y s t e m  in t u r n  
eases  t h e  t a s k  of  wr i t i ng  f a u l t - t o l e r a n t  ap-  
p l i c a t i o n  p r o g r a m s .  

S y s t e m  R [ASTR76] is a d a t a b a s e  s y s t e m  
w h i c h  s u p p o r t s  t h e  r e l a t i o n a l  m o d e l  o f  
da t a .  T h e  S Q L  l a n g u a g e  [CHAM76] p ro -  
v ides  o p e r a t o r s  t h a t  m a n i p u l a t e  t h e  d a t a -  
base .  T y p i c a l l y ,  a u se r  w r i t e s  a P L / I  or  
C O B O L  p r o g r a m  w h i c h  h a s  i m b e d d e d  S Q L  
s t a t e m e n t s .  A co l l ec t ion  o f  s u c h  s t a t e m e n t s  
is r e q u i r e d  to  m a k e  a c o n s i s t e n t  t r ans fo r -  

m a t i o n  o f  t h e  d a t a b a s e .  T o  t r a n s f e r  f u n d s  
f rom one  a c c o u n t  to  a n o t h e r ,  for  e x a m p l e ,  
r e q u i r e s  two  S Q L  s t a t e m e n t s :  one  to  d e b i t  
t h e  f i r s t  a c c o u n t  a n d  one  to  c r e d i t  t h e  sec- 
o n d  accoun t .  I n  add i t i on ,  t h e  t r a n s a c t i o n  
p r o b a b l y  r e c o r d s  t h e  t r a n s f e r  in  a h i s t o r y  
file for  l a t e r  r e p o r t i n g  a n d  for  a u d i t i n g  pu r -  
poses .  F i g u r e  1 g ives  a n  e x a m p l e  o f  such  a 
p r o g r a m  w r i t t e n  in  p s e u d o - P L / I .  

T h e  p r o g r a m  ef fec ts  a c o n s i s t e n t  t r ans -  
f o r m a t i o n  o f  t h e  b o o k s  o f  a h y p o t h e t i c a l  
b a n k .  I t s  a c t i o n s  a r e  e i t h e r  to  

• d i s c o v e r  a n  e r ro r ,  
• a c c e p t  t h e  i n p u t  m e s s a g e ,  a n d  
• p r o d u c e  a fa i lu re  m e s s a g e ,  

o r  to  

• d i s c o v e r  no  e r ro rs ,  
• a c c e p t  t h e  i n p u t  m e s s a g e ,  
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• debit the source account by AMOUNT, 
• credit the destination account by 

AMOUNT, 
• record the transaction in a history file, 

and 
• produce a success message. 

The programmer who writes such a pro- 
gram ensures its correctness by ensuring 
that it performs the desired transformation 
on both the database state and the outside 
world (via messages). The programmer and 
the user both want the execution to be 
• atomic: either all actions are performed 

(the transaction has an effect) or the re- 
sults of all actions are undone (the trans- 
action has no effect); 

• durable: once the transaction completes, 

its effects cannot be lost due to computer 
failure; 

• consistent: the transaction occurs as 
though it had executed on a system which 
sequentially executes only one transaction 
at a time. 

In order to state this intention, the SQL 
programmer brackets the transformations 
with the SQL statements, BEGIN__ 
TRANSACTION to signal the beginning 
of the transaction and COMMIT__ 
TRANSACTION to signal its completion. 
If the programmer wants to return to the 
beginning of the transaction, the command 
RESTORE__TRANSACTION will undo 
all actions since the issuance of the BE- 
GIN__TRANSACTION command (see 
Figure 1). 

The System R recovery manager sup- 
ports these commands and guarantees an 
atomic, durable execution. 

System R generally runs several trans- 
actions concurrently. The concurrency con- 
trol mechanism of System R hides such 
concurrency from the programmer by a 
locking technique [EswA76, GRAY78, 
NAUM78] and gives the appearance of a 
consistent system. 

Structure of System R 

System R consists of an external layer 
called the Research Data System (RDS), 
and a completely internal layer called the 
Research Storage System (RSS) (see 
Figure 2). 

The external layer provides a relational 
data model, and operators thereon. It also 
provides catalog management, a data 
dictionary, authorization, and alternate 
views of data. The RDS is manipulated 
using the language SQL [CHAM76]. The 
SQL compiler maps SQL statements into 
sequences of RSS calls. 

The RSS is a nonsymbolic record-at-a- 
time access method. It supports the notions 
of file, record type, record instance, field 
within record, index (B-tree associative 
and sequential access path), parent-chi ld  
set (an access path supporting the 
operations PARENT,  FIRST__CHILD, 
NEXT__SIBLING, PREVIOUS__SIB- 
LING with direct pointers), and cursor 
(which navigates over access paths to locate 
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FUNDS__TRANSFER. PROCEDURE, 
$BEGIN__TRANSACTION; 
ON ERROR DO; /* in case of error */ 

$RESTORE_TRANSACTION,  /* undo all work */ 
GET INPUT MESSAGE; /* reacquire input */ 
PUT MESSAGE ( 'TRANSFER FAILED'); /* report failure */ 
GO TO COMMIT; 
END; 

GET INPUT MESSAGE; 
EXTRACT A C C O U N T ~ E B I T ,  ACCOUNT_CREDIT,  

AMOUNT FROM MESSAGE, 
$UPDATE ACCOUNTS /* do debit */ 

SET BALANCE ffi BALANCE - AMOUNT 
WHERE ACCOUNTS. NUMBER = ACCOUNT__DEBIT; 

$UPDATE ACCOUNTS /* do credit */ 
SET BALANCE = BALANCE + AMOUNT 

WHERE ACCOUNTS. NUMBER = ACCOUNT_CREDIT;  
$INSERT INTO HISTORY /* keep audit trail */ 

<DATE, MESSAGE>; 
PUT MESSAGE ( 'TRANSFER DONE'); /* report success */ 

COMMIT: /* commit updates */ 
$COMMIT TRANSACTION 
END; /* end of program */ 

/* get and parse input */ 

Figure 1. A snnple PL/I-SQL program whmh transfers funds from one account to another. 

Application Programs in PL/ I  or COBOL, plus SQL 

Research Data System (RDS) 
* Supports the relational data model 
• Supports the relational language SQL 
• Does naming and authorization 
• Compiles SQL statements into RSS call sequences 

Research Storage System (RSS) 
• Provides nonsymbolic record-at-a-time database ac- 

cess 
• Maps records onto operating system files 
• Provides transaction concept (recovery and locking) 

Operating System 
• Provides file system to manage disks 
• Provides I /O system to manage terminals 
• Provides process structure (multlprogramming) 

Hardware 

Figure 2. System R consists of two layers above the 
operating system. The RSS provides the transaction 
concept, recovery notions, and a record-at-a-time data 
access method. The RDS accepts application PL/ I  or 
COBOL programs containing SQL statements. I t  
translates them into COBOL or PL/ I  programs plus 
subroutines which represent the compilation of the 
SQL statements into RSS calls. 

records). Unfortunately, these objects have 
the nonstandard names "segment," "rela- 
tion," "tuple," "field," "image," "link," and 
"scan" in the System R documentation. 
The former, more standard, names are used 

here. RSS provides actions to create in- 
stances of these objects and to retrieve, 
modify, and delete them. 

The RSS support of data is substantially 
more sophisticated than that  normally 
found in an access method; it supports vari- 
able-length fields, indices on multiple fields, 
multiple record types per file, interffle and 
intraffle sets, physical clustering of records 
by attribute, and a catalog describing the 
data, which is kept as a file which may be 
manipulated like any other data. 

Another major contribution of the RSS 
is its support of the notion of transaction, 
a unit of recovery consisting of an applica- 
tion-specified sequence of RSS actions. An 
application declares the start of a transac- 
tion by issuing a BEGIN action. Thereafter 
all RSS actions by that  application are 
within the scope of that  transaction until 
the application issues a COMMIT or an 
ABORT action. The RSS assumes all re- 
sponsibility for running concurrent trans- 
actions and for assuring that  each transac- 
tion sees a consistent view of the database. 
The RSS is also responsible for recovering 
the data to their most recent consistent 
state in the event of transaction, action, 
system, or media failure or a user request 
to cancel the transaction. 
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A final component of System R is the 
operating system. System R runs under the 
VM/370 [GRAY75] and the MVS operating 
system on IBM S/370 processors. The Sys- 
tem R recovery manager is also part of the 
SQL/DS product running on DOS/CICS. 
The operating system provides processes, a 
simple file system, and terminal manage- 
ment. 

System R allocates an operating system 
process for each user to run both the user's 
application program and the System R da- 
tabase manager. Application programs are 
written in a conventional programming lan- 
guage (e.g., COBOL or PL/I) augmented 
with the SQL language. A SQL preproces- 
sor maps the SQL statements to sequences 
of RSS calls. Typically, a single application 
program or group of programs (main plus 
subroutines) constitute a transaction. In 
this paper we ignore the RDS and assume 
that  application programs, like those pro- 
duced by the SQL compiler, consist of con- 
ventional programs which invoke se- 
quences of RSS operations. 

Model of Failures 

The recovery manager eases the task of 
writing fault-tolerant programs. It does so 
by the careful use of redundancy. Choosing 
appropriate redundancy requires a quanti- 
tative model of system failures. 

In our experience about 97 percent of all 
transactions execute successfully. Of the 
remainder, almost all fail because of incor- 
rect user input or because of user cancella- 
tion. Occasionally {much less than 1 per- 
cent) transactions are aborted by the sys- 
tem as a result of some overload such as 
deadlock. In a typical system running one 
transaction per second, transaction undo 
occurs about twice a minute. Because of its 
frequency, transaction undo must run 
about as fast as forward processing of trans- 
actions. 

Every few days the system restarts (fol- 
lowing a crash). Almost all crashes are due 
to hardware or operating system failures, 
although System R also initiates crash and 
restart whenever it detects damage to its 
data structures. The state of primary mem- 
ory is lost after a crash. We assume that  the 
state of the disks (secondary and tertiary 
storage) is preserved across crashes, so at 

Table 1. Frequency and Recovery Time of Failures 

Recovery manager trade-offs 

Recovery 
Fault Frequency tune 

Transaction Several per unnute  Milliseconds 
abort 

System Several per month Seconds 
restart  

Media failure Several per year Minutes 

restart the most recently committed state 
is reconstructed from the surviving disk 
state by referencing a log of recent activity 
to restore the work of committed and 
aborted transactions. This process com- 
pletes within a matter of seconds or min- 
utes. 

Occasionally, the integrity of the disk 
state will be lost at restart. This may be 
caused by hardware failure (disk head crash 
or disk dropped on the floor) or by software 
failure (bad data written on a disk page by 
System R or other program). Such events 
are called media failures and initiate a 
reconstruction of the current state from an 
archive version (old and undamaged ver- 
sion of the system state) plus a log of activ- 
ity since that  time. This procedure is in- 
voked once or twice a year and is expected 
to complete within an hour. 

If all these recovery procedures fail, the 
user will have lost data owing to an unre- 
coverable failure. We have very limited 
statistics on unrecoverable failures. The 
current release of System R has experi- 
enced about 25 years of service in a variety 
of installations, and to our knowledge al- 
most all unrecoverable failures have re- 
sulted from operations errors {e.g., failure 
to make archive dumps) or from bugs in 
the operating system utility for dumping 
and restoring disks. The fact that  the ar- 
chive mechanism is only a minor source of 
unrecoverable failure probably indicates 
that  it is appropriately designed. Table 1 
summarizes this discussion. 

If the archive mechanism fails once every 
hundred years of operation, and if there are 
10,000 installations of System R, then it will 
fail someone once a month. From this per- 
spective, it might be underdesigned. 

We assume that  System R, the operating 
system, the microcode, and the hardware 
all have bugs in them. However, each of 
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these systems does quite a bit of checking 
of its data structures (defensive program- 
ming}. We postulate that these errors are 
detected and that the system crashes before 
the data are seriously corrupted. If this 
assumption is incorrect, then the situation 
is treated as a media failure. This attitude 
assumes that  the archive and log mecha- 
nism are very reliable and have failure 
modes independent of the other parts of 
the system. 

Some commercial systems are much 
more demanding. They run hundreds of 
transactions per second, and because they 
have hundreds of disks, they see disk fail- 
ures hundreds of times as frequently as 
typical users of System R {once a week 
rather than once a year). They also cannot 
tolerate downtimes exceeding a few min- 
utes. Although the concepts presented in 
this paper are applicable to such systems, 
much more redundancy is needed to meet 
such demands (e.g., duplexed processors 
and disks, and utilities which can recover 
small parts of the database without having 
to recover it all every time). The recovery 
manager presented here is a textbook one, 
whose basic facilities are only a subset of 
those provided by more sophisticated sys- 
tems. 

The transaction model is an unrealizable 
ideal. At best, careful use of redundancy 
minimizes the probability of unrecoverable 
failures and consequent loss of committed 
updates. Redundant copies are designed to 
have independent failure modes, making it 
unlikely that all records will be lost at once. 
However, Murphy's law ensures that  all 
recovery techniques will sometimes fail. As 
seen below, however, System R can tolerate 
any single failure and can often tolerate 
multiple failures. 

1. DESCRIPTION OF SYSTEM R RECOVERY 
MANAGER 

1.1 What is a Transaction? 

The RSS provides actions on the objects it 
implements. These actions include opera- 
tions to create, destroy, manipulate, re- 
trieve, and modify RSS objects (files, rec- 
ord types, record instances, indices, sets, 
and cursors). Each RSS action is atomic-- 

it either happens or has no effect--and 
consistent--if any two actions relate to the 
same object, they appear to execute in some 
serial order. These two qualities are en- 
sured by (1) undoing the partial effects of 
any actions which fail and (2) locking nec- 
essary RSS resources for the duration of 
the action. 

RSS actions are rather primitive. In gen- 
eral, functions like "hire an employee" or 
"make a deposit in an account" require 
several actions. The user, in mapping ab- 
stractions like "employee" or "account" 
into such a system, must combine several 
actions into an atomic transaction. The 
classic example of an atomic transaction is 
a funds transfer which debits one account, 
credits another, writes an activity record, 
and does some terminal input or output. 
The user of such a transaction wants it to 
be an all-or-nothing affair, in that  he does 
not want only some of the actions to have 
occurred. If the transaction is correctly im- 
plemented, it looks and acts atomic. 

In a multiuser environment, transactions 
take on the additional attribute that  any 
two transactions concurrently operating on 
common objects appear to run serially (i.e., 
as though there were no concurrency). This 
property is called consistency and is han- 
dled by the RSS lock subsystem [ESWA76, 
GRAY76, GRAY78, NAUM78]. 

The application declares a sequence of 
actions to be a transaction by beginning the 
sequence with a BEGIN action and ending 
it with a COMMIT action. All intervening 
actions by that  application (be it one or 
several processes) are considered to be 
parts of a single recovery unit. If the appli- 
cation gets into trouble, it may issue the 
ABORT action which undoes all actions in 
the transaction. Further, the system may 
unilaterally abort in-progress transactions 
in case of an authorization violation, re- 
source limit, deadlock, system shutdown, or 
crash. Figure 3 shows the three possible 
outcomes--commit, abort, or system abor- 
t i o n - o f  a transaction, and Figure 4 shows 
the outcomes of five sample transactions in 
the event of a system crash. 

If a transaction either aborts or is 
aborted, the system must undo all actions 
of that  transaction. Once a transaction com- 
mits, however, its updates and messages to 
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BEGIN BEGIN BEGIN 
READ READ READ 
WRITE WRITE WRITE 
READ READ READ 

WRITE ABORT <==SYSTEM ABORTS 
COMMIT TRANSACTION 

Figure 3. The three possible destinms of a transac- 
tion. commits, aborts, or is aborted. 

T1 I I < 
T2 I I < 
T3 I I < 
T4 I < 
T5 I < 

Time ) SYSTEM 
CRASH 

Figure 4. Five transactions. The effects of actions by 
transactions T1, T2, and T3 will survive a system 
crash because they have committed. This is called 
durability. But the effects of transactions T4 and T5 
will be undone because they were in progress at the 
time of the crash (had not yet committed). 

the external world must persist--its effects 
must be durable.  The system will "remem- 
ber" the results of the transaction despite 
any subsequent malfunction. Once the sys- 
tem commits to "open the cash drawer" or 
"retract the reactor rods," it will honor that  
commitment. The only way to undo the 
effect of a committed transaction is to run 
a new transaction which compensates for 
these effects. 

1.2 Transaction Save Points 

The RSS defines the additional notion of 
t ransact ion save point .  A save point is a 
firewall which allows transaction undo to 
stop short of undoing the entire transaction. 
Should a transaction get into trouble (e.g., 
deadlock or authority violation), it may be 
sufficient to back up only as far as an inter- 
mediate save point. Each save point is num- 
bered, with the beginning of a transaction 
being save point 1. The application program 
declares a save point by issuing a SAVE 
action specifying a save point record to be 
entered in the log. This record may be 
retrieved if and when the transaction re- 
turns to the corresponding save point. 

Figure 5 illustrates the use of save points. 
It describes a conversational transaction 

TICKET AGENT APPLICATION PROGRAM 
input message ~ BEGIN 

SAVE {state) 
(actions to reserve first hop) 
SAVE (state) 
new screen 

next hop •* SAVE (hop) 
(actions to reserve next hop) 

last hop =* 

prmted ticket 

SAVE (hop) 
(actions to reserve last hop) 
COMMIT (reservation) 

Figure 5. A multihop airlines reservation transaction 
using save points. If the application program or ticket 
agent detects an error, the transaction can undo to a 
previous save point and continue forward from there 

making a multihop airline reservation in- 
volving several ticket agent interactions-- 
one per hop. The application program es- 
tabhshes a save point before and after each 
interaction, with the save point data includ- 
ing the current state of the program vari- 
ables and the ticket agent screen. If the 
ticket agent makes an error or if a flight is 
unavailable, the agent or program can back 
up to the most recent mutually acceptable 
save point, thereby minimizing the agent's 
retyping. Once the entire ticket is com- 
posed, the transaction commits the data- 
base changes and prints the ticket. The 
program can request a return to save point 
N by issuing the UNDO N action. Of course 
all the save points may be washed away by 
a system restart or serious deadlock, but 
most error situations can be resolved with 
a minimal loss of the ticket agent's work. 

The System R save point facility is in 
contrast to most systems in which each 
message causes the updates of the transac- 
tion to be committed. In such systems 
either the agent must manually delete pre- 
vious steps of the transaction when some- 
thing goes wrong, or the application pro- 
gram must implement recovery by keeping 
an undo log or deferring all updates until 
the last step. Such application program re- 
covery schemes complicate the program 
and may work incorrectly because locks are 
not held between steps (e.g., the lost update 
problem described in GRAY76). 

Save points are used by the RDS to 
implement certain complex operations. 
Some RDS operations require many RSS 
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S] 
$2 

$3 

A9 

BEGIN COMMIT 

Figure 6. An example of nested transactions usmg save points. The transaction T consists of RSS actions A1, 
.. . .  A9. Actions A2, A4, and A7 defined save points $1, $2, and $3 which become nested subtransact]ons of T. 
These are probably RDS actmns which consist of several RSS actmns. Each RSS action is a minitransaction on 
the RSS state. If the RSS actmn gets into trouble, it backs up to the beginning of the action and retries. If that 
fails, undo propagates to the nearest save point that can resolve the issue. This is the spheres of control notatmn 
of DAVI73. 

operations, and the RDS guarantees that  
each SQL statement is atomic. The RDS 
supports atomic SQL statements by begin- 
ning each such complex operation with a 
save point and backing up to this save point 
if the RSS or RDS fails at some point 
during the operation. Figure 6 illustrates 
the use of save points. 

1.3 Summary 

To summarize, the RSS recovery manager 
provides the following actions: 

• BEGIN designates the beginning of a 
transaction. 

• SAVE designates a firewall within the 
transaction. If an incomplete transaction 
is backed up, undo may stop at such a 
point rather than undoing the entire 
transaction. 

• READ__SAVE returns the data saved in 
the log by the application at a designated 
save point. 

• UNDO undoes the effects of a transaction 
to an earlier save point. 

• ABORT undoes all effects of a transaction 
{equivalent to UNDO 0). 

• COMMIT signals successful completion 
of transaction and causes updates to be 
committed. 

Using these primitives, the RDS and appli- 
cation programs using the RDS can con- 

struct groups of actions which are atomic 
and durable. 

This model of recovery is a subset of the 
recovery model formulated by Davies and 
Bjork [BJOR73, DAVI73]. Unlike their 
model, System R transactions have no par- 
allelism within a transaction (i.e., if multi- 
ple nodes of a network are needed to exe- 
cute a single transaction, only one node 
executes at a time). Further, System R 
allows only a limited form of transaction 
nesting via the use of save points (each save 
point may be viewed as the start of an 
internal transaction). These limitations 
stem from our inability to find an accepta- 
ble implementation for the more general 
model. 

2. IMPLEMENTATION OF SYSTEM R 
RECOVERY 

2.1 Files, Versions, and Shadows 

All persistent System R data are stored in 
files. A user may define any number of files. 
A file, for our purposes, is a paged linear 
space of up to 68 billion (236 ) bytes, which 
has been dynamically allocated on disk in 
units of 4096-byte pages. A buffer manager 
maps all the files into a virtual memory 
buffer pool shared by all System R users. 
The buffer manager uses a "Least Recently 
Used" (LRU) algorithm to regulate occu- 
pancy of pages in the pool. The buffer pool 
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D I R E C T O R Y  

A 

Figure 7. T h e  directory s tuc tu re  for 
nonshadowed  and  shadowed  files. File A 
is not  shadowed.  File B is shadowed  and  
has  two directory entrms,  a cu r ren t  ver- 
s ion and  a shadow version. 

B 

B 

C U R R E N T  

S H A D O W  

C H A N G E D  P A G E S  

S H A D O W  
A N D  

U N C H A N G E D  P A G E S  

is volatile and presumed not  to survive sys- 
tem restart .  

Each file carries a part icular  recovery 
protocol  and corresponding overhead of re- 
covery. Files are dichotomized as shadowed 
and nonshadowed. Nonshadowed files 
have no automat ic  recovery. T h e  user is 
responsible for making and storing redun- 
dant  copies of these files. Sys tem R simply 
updates  nonshadowed file pages in the 
buffer pool. Changes to nonshadowed files 
are recorded on disk when the pages are 
removed from the buffer pool (by the LRU 
algorithm) and when the file is saved or 
closed. 

By  contrast,  the  RSS maintains two on- 
line versions of shadowed files, a shadow 
version and a current version. RSS actions 
affect only the current  version of a file and 
never  al ter  the shadow version {except for 
file save and restore commands).  The  cur- 
rent  version of a file can be SAVEd as the 
shadow version, thereby  making the recent  
updates  to the file permanent ;  the current  
version can also be R E S T O R E d  to the 
shadow version, thereby  "undoing" all re- 
cent  updates  to the file (see Figure 7). I f  
data  are spread across several files, it is 
desirable to save or restore all the  files "a t  

once." Therefore  file save or restore can 
apply to sets of shadowed files. 

Although the current  version of a file 
does not  survive restart ,  because recent  up- 
dates to the file m ay  still reside in the buffer 
pool, the shadow version of a file does. 
Hence  at  RSS restar t  {i.e., after  a crash or 
shutdown) all nonshadowed files have their  
values as of the  system crash {modulo up- 
dates to central  memory  which were not  
wri t ten to disk) and all shadowed files are 
reset  to their  shadow versions. As discussed 
below, starting from this shadow state, the 
log is used to remove the effects of abor ted 
transact ions and to restore the effects of 
commit ted  transactions. 

T h e  current  and shadow versions of a file 
are implemented  in a part icularly efficient 
manner.  When  a shadow page is upda ted  in 
the buffer pool for the first time, a new disk 
page frame is assigned to it. Thereaf ter ,  
when tha t  page is wri t ten from the buffer 
pool or read into the buffer pool, the new 
frame is used (the shadow is never  up- 
dated). Saving a file consists of writing to 
disk all al tered pages of the file current ly  in 
the buffer pool and then  writing to disk the 
new page table, and freeing superseded 
shadow pages. Restoring a file is achieved 
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Figure 8. A transaction log is the sequence of changes made by this transactlon 
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by discarding pages of that file in the buffer 
pool, freeing all the new disk pages of that  
file, and returning to the {old) shadow page No log 
table. The paper by Lorie [LoRI77] de- 
scribes the implementation in greater de- 
taft. Log 

2.2 Logs and the DO, UNDO, REDO Protocol 

The shadow-version/current-version di- 
chotomy has strong ties to the old-master/ 
new-master dichotomy common to most 
batch EDP systems in which, if a run fails, 
the old master is used for a successive at- 
tempt; if the run succeeds, the new master 
becomes the old master. Unhappily, this 
technique does not seem to generalize to 
concurrent transactions on a shared file. If 
several transactions concurrently alter a 
file, file save or restore is inappropriate 
because it commits or aborts the updates of 
all transactions to the file. It is desirable to 
be able to commit or undo updates on a 
per-transaction basis. Such a facility is re- 
quired to support the COMMIT, ABORT, 
and UNDO actions, as well as to handle 
such problems as deadlock, system over- 
load, and unexpected user-disconnect. Fur- 
ther, as shown in Figure 4, selective trans- 
action back up and commit are required for 
system restart. 

We were unable to architect a transaction 
mechanism based solely on shadows which 
supported multiple users and save points. 
Instead, the shadow mechanism is com- 
bined with an incremental log of all the 
actions a transaction performs. This log is 
used for transaction UNDO and REDO on 
shared files and is used in combination with 
shadows for system checkpoint and restart. 
Each RSS update action writes a log record 
giving the old and new value of the updated 
object. As Figure 8 shows, these records are 
aggregated by transaction and collected in 
a common system log file (which is option- 
ally duplexed). 

Table 2. Recovery Attributes of Flies 

No shadow Shadow 

Contents un- Contents equal shadow 
predmtable after crash 
after crash 

Not supported All updates logged 
Transaction consistent 

after a crash 

When a shadowed file is defined by a 
user, it is designated as logged or not 
logged. The RSS controls the saving and 
restoration of logged files and maintains a 
log of all updates to logged files. Users 
control the saving and restoration of non- 
logged shadowed files. Nonshadowed files 
have none of the virtues or corresponding 
overhead of recovery (see Table 2). 

In retrospect, we regret not supporting 
the LOG and NO SHADOW option. As 
explained in Section 3.8, the log makes 
shadows redundant, and the shadow mech- 
anism is quite expensive for large files. 

Each time a transaction modifies a logged 
file, a new record is appended to the log. 
Read actions need generate no log records, 
but update actions on logged files must 
enter enough information in the log so that, 
given the log record at a later time, the 
action can be completely undone or redone. 
As seen below, most log writes do not re- 
quire I/O and can be buffered in central 
memory. 

Every RSS operation on a logged file 
must be implemented as a set of operations 
(see Figure 9): 

• a DO operation, which does the action 
and also writes a log record sufficient to 
undo and redo the action; 

• an UNDO operation, which undoes the 
action given the log record written by the 
DO action; 

• a REDO operation, which redoes the ac- 
tion given the log record written by the 
DO action; 
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ILOORECOROI T 

STATE I 

l I LOG RECORD I 

Figure 9. Three aspects of an acnon Action DO 
generates a new state and a log record. Action UNDO 
generates an old state from a new state and a log 
record Action REDO generates a new state from an 
old state and a log record. 

• optionally, a DISPLAY operat ion which 
translates the log record into a human-  
readable format.  

To give an example of an action and the 
log record it must  write, consider the record 
update  action. This  action must  record the 
following in the log: 

* file name, 
* record identifier, 
• old record value, 
• new record value. 

The  log subsystem augments  this with 
the additional fields: 

• t ransact ion identifier, 
• action identifier, 
• t imestamp, 
• length of log record, 
• pointer  to previous log record of this 

transaction. 

The  UNDO operat ion restores the record 
to its old value and appropriately updates  
associated s t ructures  such as indices and 

storage management  information. T h e  
R E D O  operat ion restores the record (and 
its associated structures) to its new value. 
The  display operat ion re turns  a text  string 
giving a symbolic display of the log record. 

Once a log record is recorded,  it  cannot  
be updated.  However  the log manager  pro- 
vides a facility to open read cursors on the 
log which will t raverse the system log or 
t raverse the log of a part icular  t ransact ion 
in e i ther  direction. 

2.3 Commit Processing 

The  essential p roper ty  of a t ransact ion is 
tha t  it  u l t imately commits,  aborts, or is 
abor ted  and tha t  once it commits,  its up- 
dates persist, and once it aborts  or is 
aborted, its updates  are suppressed. 
Achieving this p roper ty  is nontrivial. In 
order  to ensure tha t  a t ransact ion 's  effects 
will survive restar ts  and media failures, the 
system must  be able to redo commit ted  
transactions. Sys tem R ensures tha t  un- 
commit ted  transact ions can be undone and 
tha t  commit ted  transact ions can be redone 
as follows: 

(I) T h e  t ransact ion log is wri t ten to disk 
before the shadow database is replaced 
by the current  database state. 

(2) The  t ransact ion commit  action writes 
a commit  log record in the log buffer 
and then  forces all the  t ransact ion 's  log 
records to disk (with the commit  record 
being the last such record).  

A t ransact ion commits  at  the instant  its 
commit  record appears  on disk. If  the  sys- 
t em crashes prior to tha t  instant,  the  trans- 
action will be aborted.  Because the log is 
wri t ten before the database (item 1), Sys- 
t em R can always undo any uncommit ted  
updates  which have migrated to disk. On 
the other  hand, if the system crashes sub- 
sequent  to the writing of the commit  record 
to disk, then  the t ransact ion will be redone, 
f rom the shadow state, using the log records 
which were forced to disk by  the commit.  
In the terminology of Gray [GRAY78], i tem 
1 is the "write ahead log protocol." 

2.4 Transaction UNDO 

The  logic of action UNDO is very  simple. 
I t  reads a log record, looks at  the name of 
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the action identifier in the log record, and 
invokes the undo operation of that action, 
passing it the log record. Recovery is 
thereby table driven. This table-driven de- 
sign has allowed the addition of new re- 
coverable objects and actions to the RSS 
without any impact on recovery manage- 
ment. 

The effect of any uncommitted transac- 
tion can be undone by reading the log of 
that transaction backward, undoing each 
action in turn. Clearly, this process can be 
stopped halfway, returning the transaction 
to an intermediate transaction save point. 
Transaction save points allow the transac- 
tion to backtrack. " 

From this discussion it follows that  a 
transaction's log is a push-down stack; writ- 
ing a new log record pushes it onto the 
stack, and undoing a record pops it off the 
stack (see Figure 8). To minimize log buffer 
space and log I/O, all transaction logs are 
merged into one system log, which is then 
mapped into a log file. But the log records 
of a particular transaction are chained to- 
gether as a linked list anchored off of the 
transaction descriptor. Notice that UNDO 
requires that the log be directly addressable 
while the transaction is uncommitted. For 
this reason at least one version of the log 
must be on disk (or some other direct-ac- 
cess device). A tape-based log would be 
inconvenient for in-progress transaction 
undo. 

2.5 Transaction Save Points 

A transaction save point records enough 
information to restore the transaction's 
view of the RSS as of the save point. The 
user may record up to 64 kilobytes of ap- 
plication data in the log at each save point. 

One can easily restore a transaction to its 
beginning by undoing all its updates and 
then releasing all its locks and dropping all 
its cursors (since no cursors or locks are 
held at the beginning of the transaction and 
since a list of cursors and locks is main- 
tained on a per-transaction basis). To re- 
store to a save point, the recovery manager 
must know the name and state of each 
active cursor and the name of each lock 
held at the save point. For performance 
reasons, changes to cursors and locks are 
not recorded in the log. Otherwise, every 
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read action would have to write a log rec- 
ord. Instead, the state of locks and cursors 
is only recorded at save points. Assuming 
that all locks are held to end of the trans- 
action, transaction backup can reset cursors 
without having to reacquire any locks. Fur- 
ther, because these locks are kept in a list 
and are not released, one can remember 
them all by remembering the lock at the 
top of the list. At backup to a save point, 
all subsequent locks are released. 

2.6 System Configuration, Startup, and 
Shutdown 

A System R database is created by install- 
ing a "starter system" and then using Sys- 
tem R commands to define and load new 
files and to define transactions which ma- 
nipulate these files. Certain operations (e.g., 
turning dual logging on and off) require a 
system shutdown and restart, but most op- 
erations can be performed while the system 
is operational. In particular we worked 
quite hard to avoid functions like SYSGEN 
and cold-start. 

A monitor process (a task or virtual ma- 
chine) is responsible for system startup, 
shutdown, and checkpoints and for servic- 
ing system operator commands. If several 
instances of System R (several different 
databases) are running on the same ma- 
chine, each instance will have a monitor. 
System R users join a particular instance 
of System R, run transactions in the users' 
process, and then leave the system. In the- 
ory, 254 users may be joined to a system at 
one time. 

2.7 System Checkpoint 

System checkpoints limit the amount of 
work (undo and redo) necessary at restart. 
A checkpoint records information on disk 
which helps locate the end of the log at 
restart and correlates the database state 
with the log state. A checkpoint saves all 
logged shadow files so that  no work prior 
to the checkpoint will have to be redone at 
restart. If checkpoints are taken frequently, 
then restart is fast but the checkpoint over- 
head is high. Balancing the cost of check- 
points against the cost of restart gives an 
optimum checkpoint interval. Because this 
optimum depends critically on the cost of 
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Figure 10. The directory root points 
at the most recent checkpoint record 
in the log. 

LOG 

SHADOW 
DIRECTORY 

~ dress of checkpoint record in log 

1 
I CHECKPOINT I 

RECORD 

a checkpoint, one wants a cheap checkpoint 
facility. 

The simplest form of checkpoint is to re- 
cord a transaction-consistent state by 
quiescing the system, deferring all new 
transactions until all in-progress transac- 
tions complete, and then recording a logi- 
cally consistent snapshot. However, quiesc- 
ing the system causes long interruptions in 
system availability and hence argues for 
infrequent checkpoints. This, in turn, in- 
creases the amount of work that  is lost at 
restart and must be redone. System quiesce, 
consequently, is not a cheap way to obtain 
a transaction-consistent state. 

The RSS uses a lower level of consist- 
ency, augmented by a transaction log, to 
produce a transaction-consistent state. The 
RSS implements checkpoints which are 
snapshots of the system at a time when no 
RSS actions are in progress (an action-con- 
sistent state). Since RSS actions are short 
(less than 10,000 instructions) system avail- 
ability is not adversely affected by frequent 
checkpoints. (Long RSS actions, e.g., sort 
or search, occasionally "come up for air" in 
an action-consistent state to allow check- 
points to occur.) 

Checkpoints are taken after a specified 
amount of log activity or at system operator 
request. At checkpoint, a checkpoint record 
is written in the log. The checkpoint record 
contains a list of all transactions in progress 
and pointers to their most recent log rec- 
ords. After the log records are on disk, all 
logged files are saved (current state replaces 
shadows), which involves flushing the da- 
tabase buffer pool and the shadow-file di- 
rectories to secondary storage. As a last 

step, the log address of the checkpoint 
record is written as part of the directory 
record in the shadow version of the state 
[LoRI77]. The directory root is duplexed on 
disk, enabling the checkpoint process to 
tolerate failures while writing the directory 
root. At restart the system will be able to 
locate the corresponding checkpoint record 
by examining the most recent directory root 
(see Figure 10). 

2.8 System Restart 

Given a checkpoint of the state at time T 
along with a log of all changes to the state 
made by transactions prior to time T + E, 
a transaction-consistent version of the state 
can be constructed by undoing all updates, 
logged prior to time T, of transactions 
which were uncommitted or aborted by 
time T + E, and then redoing the updates, 
logged between time T and time T + E, of 
committed transactions. 

At system restart the system R code is 
loaded and the file manager restores any 
shadowed files to their shadow versions. If 
a shadowed file was not saved at shutdown, 
the then-current version will be replaced by 
its shadow. In particular, all logged files will 
be reset to their state as of the most recent 
system checkpoint. 

Recovery manager is then given control 
and it examines the most recent checkpoint 
record (which, as Figure 10 shows, is 
pointed at by the current directory). If 
there was no work in progress at the time 
of the checkpoint and if the checkpoint is 
the last record in the log, then the system 
is restarting from a shutdown in a quiesced 
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state. No transactions need be undone or 
redone, and restart initializes System R and 
opens up the system for general use. 

On the other hand, if work was in prog- 
ress at the checkpoint, or if there are log 
records after the checkpoint record, then 
this is a restart from a crash. Figure 11 
illustrates the five possible states of trans- 
actions at this point: 

• T1 began and ended before the check- 
point. 

• T2 began before the checkpoint and ended 
before the crash. 

• T3 began after the checkpoint and ended 
before the crash. 

• T4 began before the checkpoint but no 
commit record appears in the log. 

• T5 began after the checkpoint and appar- 
ently never ended. 

To honor the commit of T1, T2, and T3 
transactions requires their updates to ap- 
pear in the system state (done). But T4 and 
T5 have not committed and so their up- 
dates must not appear in the state (un- 
done). 

At restart the shadowed files are as they 
were at the most recent checkpoint. Notice 
that none of the updates of T5 are reflected 
in this state, so T5 is already undone. No- 
tice also that all of the updates of T1 are in 
the shadow state, so it need not be redone. 
T2 and T3 must be redone from the check- 
point forward. (The updates of the first half 
of T2 are already reflected in the shadow 
state.) On the other hand, T4 must be un- 
done from the checkpoint backward. (Here 
we are skipping over the following anomaly: 
If, after a checkpoint, T2 backs up to a save 
point prior to the checkpoint, then some 
undo work is required for T2.) 

Restart uses the log as follows. It reads 
the most recent checkpoint record and as- 
sumes that all the transactions active at the 
time of the checkpoint are of type T4 (ac- 
tive at checkpoint, not committed). It then 
reads the log in the forward direction start- 
ing from the checkpoint record. If it en- 
counters a BEGIN record, it notes that this 
is a transaction of type T5. If it encounters 
the COMMIT record of a T4 transaction, it 
reclassifies the transaction as type T2. Sim- 
ilarly, T5 transactions are reclassified as T3 
transactions if a COMMIT record is found 
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T1 I - - I  + < 
T2 I + I < 
T3 + I J < 
T4 I + < 
T5  + [ < 

C H E C K P O I N T  C R A S H  

Figure 11.  Five t ransac t ion  types  wi th  respec t  to the  
mos t  recen t  checkpoin t  and  the  c rash  point.  

for that transaction. When it reaches the 
end of the log, the restart manager knows 
all the T2, T3, T4, and T5 transactions. T4- 
and T5-type transactions are called "losers" 
and T2- and T3-type transactions are called 
"winners." Restart  reads the log backward 
from the checkpoint, undoing all actions of 
losers, and then reads the log forward from 
the checkpoint, redoing all actions of win- 
ners. Once this is done, a new checkpoint is 
written so that the restart work will not be 
lost. 

Restart must be prepared to tolerate fail- 
ures during the restart process. This prob- 
lem is subtle in most systems, but the Sys- 
tem R shadow mechanism makes it fairly 
straightforward. System R restart does not 
update the log or the shadow version of the 
database until restart is complete. Taking 
a system checkpoint signals the end of a 
successful restart. System checkpoint is 
atomic, so there are only two cases to con- 
sider. Any failure prior to completing the 
checkpoint will return the restart process 
to the original shadow state. Any failure 
after the checkpoint is complete will return 
the database to the new (restarted) state. 

2.9 Media Failure 

In the event of a system failure which 
causes a loss of disk storage integrity, it 
must be possible to continue with a mini- 
mum of lost work. Such situations are han- 
dled by periodically making a copy of the 
database state and keeping it in an archive. 
This copy, plus a log of subsequent activity, 
can be used to reconstruct the current state. 
The archive mechanism used by System R 
periodically dumps a transaction-consistent 
copy of the database to magnetic tape. 

It is important that  the archive mecha- 
nism have failure modes independent of the 
failure modes of the on-line storage system. 
Using duplexed disks protects against a disk 
head crash, but does not protect against 
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Figure 12. Bytes between F I R E _  
WALL and LOG_END are needed for 
system restart and hence are kept m the 
log ring buffer. 

LOG__END 
C H E C K _ P O I N T  
LOG_BEGIN[TIll] - -  
LOG_BEGIN[T250] 

LOG_BEGIN[T345] 
LOG__BEGIN[T346] 
LOG__ARCHIVE 

LOG: 
11 

FIRE__WALL T 
errors in disk programs or fire in the ma- 
chine room. 

In the event of a single media failure, the 
following occurs: 

• If one of the duplexed on-line logs fails, 
then a new log is allocated and the good 
version of the duplexed log is copied to 
the new one. 

• If any other file fails, the most recent 
surviving dump tape is loaded back into 
the database, and then all committed up- 
date actions subsequent to the check- 
point record of the archive state are re- 
done using the log. 

Recovery from an archive state appears to 
the recovery manager as a restart from a 
very old checkpoint. No special code has 
been written for archive recovery. 

The most vulnerable part of this system 
is the possible failure of both instances of 
the on-line log. Assuming the log software 
has no bugs, we estimate the mean time 
between such coincident failures at about 
1000 years. As mentioned in the summary 
to the Introduction, operational errors are 
much more frequent, and so make log fail- 
ure a minor source of unrecoverable errors. 

Although performing a checkpoint causes 
relatively few disk writes and takes only a 
short time, dumping the entire database is 
a lengthy operation (10 minutes per 100 
megabytes). Maintaining transaction 
quiesce for the duration of the dump oper- 
ation is undesirable, or even impossible, 
depending on the real-time constraints im- 
posed by system users. Lorie [LORI77] de- 
scribes a scheme based on shadows for mak- 
ing an archive dump while the system is 

operating. Gray [GRAY78] describes a 
"fuzzy" dump mechanism which allows the 
database to be dumped while it is in oper- 
ation (the log is later used to focus the 
dump on some specified time). IMS and 
other commercial systems provide facilities 
for dumping and restoring fragments of files 
rather than whole databases. We did not 
implement one of these fancier designs be- 
cause the simple approach was adequate 
for our needs. 

2.10 Managing the Log 

The log is a very long sequence of pages, 
each with a unique sequence number. 
Transactions undo and redo need quick 
access to the log but most of it can be kept 
off-line or discarded. Figure 12 illustrates 
the bookkeeping of the on-line log. The on- 
line log file is used to hold the "useful" 
parts of the log. It is managed as a ring 
buffer, with LOG__END pointing just be- 
yond the last useful byte of the log and 
CHECK__POINT pointing at the most re- 
cent checkpoint. Clearly, all records since 
the checkpoint must be kept on-line in sup- 
port of transaction redo. Further, transac- 
tion undo needs all records of incomplete 
transactions on-line (LOG__BEGIN(I) for 
active transaction I). Last, one cannot free 
the space occupied by a log record in the 
ring until the database is archived (this 
point is addressed by LOG_ARCHIVE).  
So at restart the system may need records 
back to the FIRE WALL where 
FIRE__WALL is the minimum of 
LOG__ARCHIVE, CHECK__POINT, and 
LOG__BEGIN(I) for each active transac- 
tion I. Bytes prior to FIRE__WALL need 
not reside in the on-line ring buffer. 
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If the on-line ring buffer fills, it is because 
(1) archiving of the log is required, (2) a 
checkpoint is required, or (3) a transaction 
has been running for a very long time (and 
hence has a very low LOG__BEGIN). The 
first two problems are solved by periodic 
archiving and checkpoints. The third prob- 
lem is solved by aborting very old transac- 
tions. For many applications, dual on-line 
logs of 1 megabyte are adequate, although 
10 to 100 megabytes are more typical. 

Duplexing of the log is a system option 
which may be changed at each restart. Du- 
plexing is transparent above the log inter- 
face; reads (usually) go to one instance of 
the log, and writes go to both instances. If 
one instance fails, the other is used at re- 
start (on a page-by-page basis). 

2.11 Recovery and Locking 

Recovery has implications for and places 
requirements on the lock subsystem. 

In order to blindly undo the actions of 
one transaction without erasing subsequent 
updates by other transactions, it is essential 
that  all transactions lock all updates in 
exclusive mode and hold all such locks until 
the transaction is committed or undone. In 
fact System R automatically acquires both 
share and exclusive locks and holds them 
all until the end of the transaction. See 
GRAY76 for a detailed discussion of the 
various locking options supported by Sys- 
tem R. 

A second issue is that  transaction undo 
cannot tolerate deadlock (we do not want 
to have to undo undo's). Undo may take 
advantage of the fact that it only accesses 
records the transaction locked in the do 
step; hence it need not re-request these 
locks. (This is a consequence of holding all 
exclusive locks until the end of the trans- 
action.) But transaction undo may have to 
set some locks because other RSS actions 
are in progress and because RSS actions 
release some locks at the end of each RSS 
action (e.g., physical page locks when logi- 
cal record locking is the actual granularity). 
To solve this problem, transactions which 
are performing transaction undo are 
marked as "golden." Golden transactions 
are never chosen as deadlock victims; 
whenever they get into a deadlock with 
some other transactions, the other trans- 
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actions are preempted. To assure that  this 
rule does not produce unbreakable dead- 
lock cycles (ones containing only golden 
transactions), the additional rule is adopted 
that only one golden transaction can exe- 
cute at a time (and hence that  no deadlock 
cycle involves more than one golden trans- 
action). A special lock (RSSBACKUP) is 
requested in exclusive mode by each golden 
transaction before it begins each undo step. 
This lock is released at the end of each such 
undo step. 

During restart, locking is turned off. Es- 
sentially, the entire database is locked dur- 
ing the restart process which sequentially 
executes actions in the order they appear 
in the log (making an undo pass followed 
by a redo pass). 

3. EVALUATION 

We were apprehensive on several counts 
when we first designed the System R recov- 
ery system. First, we were skeptical of our 
ability to write RSS actions which could 
always undo and redo themselves. Second, 
we were apprehensive about the perform- 
ance and complexity of such programs. And 
third, we were concerned that the added 
complexity might create more crashes than 
it cured. In retrospect, the recovery system 
was comparatively easy to write and cer- 
tainly has contributed to the system's reli- 
ability. 

3.1 Implementation Cost 

The RSS was designed in 1974 and 1975 
and became operational in 1976. Since then 
we have had a lot of experience with it. 

Writing recoverable actions (ones which 
can undo and redo themselves) is quite 
hard. Subjectively, writing a recoverable 
action is 30 percent harder and, objectively, 
it requires about 20 percent more code than 
a nonrecoverable action. In addition, the 
recovery system itself (log management, 
system restart, checkpoint, commit, abort, 
etc.) contributes about 15 percent of the 
code of the RSS. However, the RSS is less 
than half of System R, so these numbers 
may be divided in half when assessing the 
overall system implementation cost, leaving 
the marginal cost of implementing recovery 
at about 10 percent. 
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3.2 Execution Cost 

Another component of cost is the instruc- 
tions added to execution of a transaction to 
support recovery (frequently called "path 
length"). Fortunately, most transactions 
commit and hence make no use of the undo 
or redo code. In the normal case the only 
cost imposed by recovery is the writing of 
log records. Further, only update opera- 
tions need write log records. Typically, the 
cost of keeping a log is less than 5 percent 
increased path length. In addition, the ex- 
ecution cost, associated with recovery, of 
periodic checkpoints is minimal. Restart is 
quite fast, typically running ten times faster 
than the original processing (primarily be- 
cause updates are infrequent). Hence if the 
checkpoint interval is 5 minutes, the system 
averages 15 seconds to restart. As described 
in the next section, checkpoint is I/O 
bound. 

3.3 I / 0  Cost 

A third component of recovery cost is I/O 
added by the recovery system. Each trans- 
action commit adds two I/Os to the cost of 
the transaction when the duplexed log is 
forced to disk (as part of the commit ac- 
tion). This cost is reduced to one extra I/O 
if dual logging is not selected. Log force is 
suppressed for read-only transactions. De- 
pending on the application, log force may 
be a significant overhead. In an application 
in which each transaction is a few (50) RSS 
actions, it constitutes a 20 percent I/O over- 
head. The transaction of Figure 1 would 
have about a 25 percent log I/O overhead. 
In another application in which the data- 
base is all resident in central memory, the 
log accounts for all of the disk I/O. IMS 
Fast Path solves this problem by logging 
several transactions in one I/O so that  one 
gets less than one log I/O per transaction. 
The shadow mechanism when used with 
large databases often implies extra I/O, 
both during normal operation and at check- 
point. Lorie's estimates in LoRI77 are cor- 
rect: a checkpoint requires several seconds 
of I/O after 5 minutes of work on a 100- 
megabyte database. This work increases 
with larger databases and with high trans- 
action rates. It becomes significant at 10 
transactions per second or for billion-byte 
files. 

3.4 Success Rate 

Perhaps the most significant aspect of the 
System R recovery manager is the confi- 
dence it inspires in users. During develop- 
ment of the system, we routinely crashed 
the system knowing that  the recovery sys- 
tem will be able to pick up the pieces. 
Recovery from the archive is not unheard 
of, but it is very uncommon. This has cre- 
ated the problem that  some users do not 
take precautions to protect themselves 
from media failures. 

3.5 Complexity 

It seems to be the case that the recovery 
system cures many more failures than it 
introduces. Among other things this means 
that everybody who coded the RSS under- 
stood the do-undo-redo protocol reasona- 
bly well and that  they were able to write 
recoverable actions. As the system has 
evolved, new people have added new re- 
coverable objects and actions to the system. 
Their ability to understand the interface 
and to fit into its table-driven structure is 
a major success of the basic design. 

The decision to put all responsibility for 
recovery into the RSS made the RDS much 
simpler. There is essentially no code in the 
RDS to handle transaction management 
beyond the code to externalize the begin, 
commit, and abort actions and the code to 
report transaction abort to the application 
program. 

3.6 Disk-Based Log 

A major departure of the RSS from other 
data managers is the use of a disk-based log 
and its merging of the undo and redo logs. 
The rationale for the use of disk is that  
disks cost about as much as tapes {typically 
$30,000 per unit if controllers are included), 
but disks are more capacious than tapes 
(500 megabytes rather than 50 megabytes 
per unit) and can be allocated in smaller 
units (a disk-based log can use half of the 
disk cylinders; it is not easy to use half of a 
tape drive). Further, a disk-based log is 
consistent with the evolution of tape ar- 
chives such as the IBM 3850 and the AM- 
PEX Terabit Store. Last, but most impor- 
tant, a disk-based log eliminates operator 
intervention at system restart. This is es- 
sential if restart is to occur automatically 

Computing Surveys, Vol. 13, No. 2, June 1981 



The Recovery Manager of the System R Database Manager 

and within seconds. Since restart is infre- 
quent, operators are likely to make errors 
during the restart process (even if they have 
regular "fire drills"). A disk-based log re- 
duces opportunities for operator error. 

Several systems observe that  the undo 
log is not needed once a transaction com- 
mits. Hence they separate the undo and 
redo log and discard the undo log at trans- 
action commit. Merging the two logs causes 
the log to grow roughly twice as fast but 
leads to a simpler design. Since transactions 
typically write only 200 to 500 bytes of log 
data, we do not consider splitting the undo 
and redo logs to be worth the effort. 

3.7 Save Points 
Transaction save points are an elegant idea 
which the RSS can implement cheaply. 
Transaction save points are used by the 
RDS to undo complex RDS operations {i.e., 
make them atomic). However, transaction 
save points are not available to application 
programs using the SQL language. Unfor- 
tunately, the RDS implementors let PL/I  
do most of the storage control, so the RDS 
processor does not know how to save its 
state and PL/I  does not offer it a facility to 
reset its state even if the RDS could re- 
member the state. The RDS, therefore, 
does not show the RSS save point facility 
to users. 

Supporting save points is an unsolved 
language-design issue for SQL. If SQL were 
imbedded in a language which supported 
backtrack programming, save points might 
be implemented rather naturally. INTER- 
LISP is a natural candidate for this 
[TEIT72], since it already supports the no- 
tion of undo as an integral part of the 
language. 

We had originally intended to have sys- 
tem restart reset in-progress transactions 
to their most recent save point and then to 
invoke the application at an exception entry 
point (rather than abort all uncommitted 
transactions at restart). (CICS does some- 
thing like this.) However, the absence of 
save point support in the RDS and certain 
operating system problems precluded this 
feature. 

3.8 Shadows 

The file shadow mechanism of System R is 
a key part of the recovery design. It is used 
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to create and discard user scratch files, to 
store user work files, and to support logged 
files. A major virtue of shadows is that  they 
ensure that system restart always begins 
with an RSS action-consistent state. This 
is quite a simplification and probably con- 
tributes to the success of system restart. 

To understand the problem that  shadows 
solve at restart, imagine that  System R did 
not use shadows but rather updated pages 
in place on the disk. Imagine two pages P1 
and P2 of some file F, and suppose that  P1 
and P2 are related to one another in some 
way. To be specific, suppose that P1 con- 
tains a reference R1 to a record R2 on P2. 
Suppose that  a transaction deletes R2 and 
invalidates R1 thereby altering P1 and P2. 
If the system crashes there are four possi- 
bilities: 

(1) Neither P1 nor P2 is updated on disk. 
(2) P1 but not P2 is updated on disk. 
(3) P2 but not P1 is updated on disk. 
(4) Both P1 and P2 are updated on disk. 

In states 2 and 3, P1 and P2 are not RSS- 
action consistent: either the reference, R1, 
or referenced object, R2, is missing. System 
restart must be prepared to redo and undo 
in any of these four cases. The shadow 
mechanism eliminates cases 2 and 3 by 
checkpointing the state only when it is 
RSS-action consistent {hence restart sees 
the shadow version recorded at checkpoint 
rather than the version current at the time 
of the crash). Without the shadow mecha- 
nism, the other two cases must be dealt 
with in some way. 

One alternative is the "write ahead log" 
(WAL) protocol used by IMS [IBMa]. IMS 
log records apply to page updates {rather 
than to actions). WAL requires that log 
records be written to secondary storage 
ahead of (i.e., before) the corresponding 
updates. Further, it requires that undo and 
redo be restartable: attempting to redo a 
done page will have no effect and attempt- 
ing to undo an undone page will have no 
effect, allowing restart to fail and retry as 
though it were a first attempt. WAL is 
extensively discussed by Gray [GRAY78]. 

There is general consensus that  heavy 
reliance on shadows for large shared files 
was a mistake. We recognized this fact 
rather late (shadows have several seductive 
properties), so late in fact that  a major 
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rewrite of the RSS is required to reverse 
the decision. Fortunately, the performance 
of shadows is not unacceptable. In fact for 
small databases (fewer than 10 megabytes) 
shadows have excellent performance. 

Our adoption of shadows is largely his- 
torical. Lorie implemented a single-user re- 
lational system called XRAM which used 
the shadow mechanism to give recovery for 
private files. When fries are shared, one 
needs a transaction log of all changes made 
to the files by individual users so that  the 
changes corresponding to one user may be 
undone independently of the other users' 
changes. This transaction log makes the 
shadow mechanism redundant. Of course 
the shadow mechanism is still a good recov- 
ery technique for private files. A good sys- 
tem should support both shadows for pri- 
vate files and log-based recovery for shared 
files. Several other systems, notable QBE 
[IBMb], the DataComputer [MAre75], and 
the Lampson and Sturgis file system 
[LAlviP81] have a similar use of shadows. It  
therefore seems appropriate to present our 
assessment of the shadow mechanism. 

The conventional way of describing a 
large file (e.g., over a billion bytes) is as a 
sequence of al locatmn units. An allocation 
unit is typically a group of disk cylinders, 
called an extent. If the file grows, new ex- 
tents are added to the list. A file might be 
represented by 10 extents and the corre- 
sponding descriptor might be 200 bytes. 
Accessing a page consists of accessing the 
extent table to find the location of the ex- 
tent containing the page and then accessing 
the page. 

By contrast, a shadow mechanism is 
much more complex and expensive. Each 
page of the file has an individual descriptor 
in the page table. Such descriptors need to 
be at least 4 bytes long and there need to 
be two of them (current and shadow). Fur- 
ther, there are various free-space bit maps 
(a bit per page) and other housekeeping 
items. Hence the directories needed for a 
file are about 0.2 percent of the file size 
(actually 0.2 percent of the maximum file 
size). For a billion-byte file this is 2 mega- 
bytes of directories rather than the 200 
bytes cited for the extent oriented descrip- 
tors. 

For large fries this means that  the direc- 
tories cannot reside in primary storage; 
they must be paged from secondary storage. 
The RSS maintains two buffer pools: a pool 
of 4-kilobyte data pages and another pool 
of 512-byte directory pages. Management 
and use of this second pool added complex- 
ity inside the RSS. More significantly, di- 
rect processing (hashing or indexing single 
records by key) may suffer a directory I/O 
for each data I/O. 

Another consequence of shadows is that 
"next" in a file is not "next" on the disk 
(logical sequential does not mean physical 
sequential). When a page is updated for the 
first time, it moves. Unless one is careful, 
and the RSS is not careful about this, get- 
ting the next page frequently involves a 
disk seek. (Lorie in LORI77 suggests a 
shadow scheme which maintains physical 
clustering within a cylinder.) So it appears 
that  shadows are bad for direct (random) 
processing and for sequential processing. 

Shadows consume an inconsequential 
amount of disk space for directories (less 
than 1 percent). On the other hand, in order 
to use the shadow mechanism, one must 
reserve a large amount (20 percent) of disk 
space to hold the shadow pages. In fact 
some batch operations and the system re- 
start facility may completely rewrite the 
database. This requires either a 100 percent 
shadow overhead or the operation must be 
able to tolerate several checkpoints (i.e., 
reclaim shadow) while it is in progress. This 
problem complicates system restart (its so- 
lution was too complex to describe in the 
system restart section). 

The RSS recovery system does not use 
shadowed files for the log; rather, it uses 
disk extents (one per log file). However the 
recovery system does use the shadow mech- 
anism at checkpoint and restart. At check- 
point all the current versions of all recover- 
able files are made the shadow versions. 
This stops the system and triggers a flurry 
of I/O activity. The altered pages in the 
database buffer pool are written to disk, 
and much directory I/O is done to free 
obsolete pages and to mark the current 
pages as allocated. The major work in this 
operation is that three I/Os must be done 
for every directory page that  has changed 
since the last checkpoint. If updates to the 
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database are randomly scattered, this could 
mean three I/Os at checkpoint for each 
update in the interval between checkpoints. 
In practice updates are not scattered ran- 
domly and so things are not that  bad, but 
checkpoint can involve many I/Os. 

We have devised several schemes to 
make the shadow I/O asynchronous to the 
checkpoint operation and to reduce the 
quantity of the I/O. It appears, however, 
that much of the I /O is inherent in the 
shadow mechanism and cannot be elimi- 
nated entirely. This means that  the RSS 
(System R) must stop transaction process- 
ing for seconds. That  in turn means that  
user response times will occasionally be 
quite long. 

These observations cause us to believe 
that we should have adopted the IMS-like 
approach of using the WAL protocol for 
large shared files. That  is, we should have 
supported the log and no-shadow option in 
Figure 9. If we had done this, the current 
and shadow directories would be replaced 
by a much smaller set of file descriptors 
(perhaps a few thousand bytes). This would 
eliminate the directory buffer pool and its 
attendant page I/O. Further, checkpoint 
would consist of a log quiesce followed by 
writing a checkpoint record and a pointer 
to the checkpoint record to disk (two or 
three I /Os rather than hundreds). WAL 
would not be simpler to program (for ex- 
ample, WAL requires more detailed log- 
ging). But the performance of WAL is bet- 
ter for large shared databases (bigger than 
100 megabytes). 

3.9 Message Recovery, an Oversight 

As pointed out by the examples in Figures 
1 and 4, a transaction's database actions 
and output messages must either all be 
committed or all be undone. We did not 
appreciate this in the initial design of Sys- 
tem R and hence did not integrate a mes- 
sage system with the database system. 
Rather, application programs use the 
standard terminal I /O interfaces provided 
by the operating system, and messages have 
no recovery associated with them. This was 
a major design error. The output messages 
of a transaction must be logged and their 
delivery must be coordinated by the corn- 
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mit processor. Commercial data manage- 
ment systems do this correctly. 

3.10 New Features 

We recently added two new facilities to the 
recovery component and to the SQL inter- 
face. First the COMMIT command was 
extended to allow an application to com- 
bine a COMMIT with a BEGIN and pre- 
serve the transaction's locks and cursors 
while exposing (committing) its updates. 
COMMIT now accepts a list of cursors and 
locks which are to be kept for the next 
transaction. These locks are downgraded 
from exclusive to shared locks, and all other 
cursors and locks are released. A typical 
use of this is an application which scans a 
large file. After processing the A's it com- 
mits and processes the B's, then commits 
and then processes the C's, and so on. In 
order to maintain cursor positioning across 
each step, the application uses the special 
form of commit which commits one trans- 
action and begins the next. 

A second extension involved support for 
the two-phase commit protocol required 
for distributed systems [GRAY78]. A 
PHASE__ONE action was added to the 
RSS and to SQL to allow transactions to 
prepare to commit. This causes the RSS to 
log the transaction's locks and to force the 
log. Further, at restart there are now three 
kinds of transactions: winners, losers, and 
in-doubt. In-doubt transactions are redone 
and their locks are reacquired at restart. 
Each such transaction continues to be in- 
doubt until the transaction coordinator 
commits or aborts it (or the system opera- 
tor forces it). During the debugging of this 
code, several transactions were in-doubt for 
two weeks and for tens of system restarts. 

At present our major interest is in a 
distributed version of System R. We are 
extending the System R prototype to sup- 
port transparent distribution of data among 
multiple database sites. 
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