
Paxos

The Part-Time Parliament

Parliament determines
laws by passing sequence
of numbered decrees

Legislators can leave and
enter the chamber at
arbitrary times

No centralized record of
approved decrees–
instead, each legislator
carries a ledger

Government 101

No two ledgers contain contradictory
information

If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

any decree proposed by a legislator would
eventually be passed

any passed decree would appear on the
ledger of every legislator

Government 102

Paxos legislature is non-partisan, progressive,
and well-intentioned

Legislators only care that something is
agreed to, not what is agreed to

We’ll take care of Byzantine legislators later

Back to the future

A set of processes that can propose values

Processes can crash and recover

Processes have access to stable storage

Asynchronous communication via messages

Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

Only a value that has been proposed can be chosen

Only a single value is chosen

A process never learns that a value has been
chosen unless it has been

LIVENESS

Some proposed value is eventually chosen

If a value is chosen, a process eventually learns it

The Players

Proposers

Acceptors

Learners

Choosing a value

Use a single
acceptor

5

7

6

2

6
a1

What if
the acceptor fails?

Choose only when a
“large enough” set
of acceptors accepts

Using a majority set
guarantees that at
most one value is
chosen

6

6
6 is chosen!

6
6

a1

a2

a3

Accepting a value

Suppose only one value is proposed by a single
proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first
proposal that it receives

...but what if we have multiple proposers, each
proposing a different value?

P1 + multiple proposers

5

7

6

2

5

6

2

No value is chosen!

a1

a2

a3

Handling
multiple proposals

Acceptors must accept more than one proposal

To keep track of different proposals, assign a
natural number to each proposal

A proposal is then a pair (psn, value)

Different proposals have different psn

A proposal is chosen when it has been
accepted by a majority of acceptors

A value is chosen when a single proposal
with that value has been chosen

Choosing a unique value
!

“Any acceptor can accept as many proposals as he
wants, so long as they all propose the same value”

 Leslie Lamport

!

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is chosen
has value v

It’s up to the Acceptors!

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is
chosen has value v

We strengthen it to:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
accepted by any acceptor has value v

(2,7)

What about P1?

Do we still need P1?

YES, to ensure that some
proposal is accepted

How well do P1 and P2a
play together?

Asynchrony is a problem...

(1,6)

(1,6)

6 is chosen!

5

7

6

2

a1

a2

a3

How does know

it should not accept?

a1

It’s up to the Proposers!

Recall P2a:

P2a. If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b. If a proposal with value v is chosen, then
every higher-numbered proposal issued by
any proposer has value v

What to propose

Suppose p wants to issue a proposal numbered n.

If p can be certain that no proposal numbered n’ < n has
been chosen then p can propose any value!

If a proposal numbered n’ < n has been chosen, then it has been
accepted by a majority set S

Any majority set S’ must intersect S

If p can find one S’ in which no acceptors has accepted a proposal
numbered n’ < n , then no such proposal can have yet been chosen!

If no such S’, a proposal numbered n’ < n may have been
chosen...

Then what?

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

What to propose

Suppose p wants to issue a proposal numbered n.

If p can be certain that no proposal numbered n’ < n has
been chosen then p can propose any value!

If not, p should propose the chosen value. But how?

What about using induction...

Say proposal numbered m with value v is chosen: some majority-set C of acceptors has accepted it

Suppose every proposal issued with number m...n-1 has value v

Consider proposal n : since every majority set S’ intersects with C and every proposal accepted by
any acceptor with sequence number in m...n-1 has value v, then

p should propose the highest numbered proposal among all proposals,
numbered less than n, accepted by some majority set S

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

It’s up to an invariant!

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number n is issued, then there is a set S consisting of a
majority of acceptors such that either:

no acceptor in S has accepted any proposal numbered
less than n, or

v is the value of the highest-numbered proposal
among all proposals numbered less than n accepted
by the acceptors in S

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(4,8)

(3,2)

(5,2)

S

(18,2)

a1

a2

a3

P2c in action

v is the value of the
highest-numbered
proposal among all
proposals numbered
less than n and
accepted by the
acceptors in S

(2,2)

(3,2)

(4,1)

S(18,1)

(5,2)
(5,2)

The invariant is violated

Future telling?

p must learn the highest-numbered proposal
with number less than n, if any, that has
been or will be accepted by each acceptor in
some majority of acceptors.

Avoid predicting the future by extracting a
promise from a majority of acceptors not to
subsequently accept any proposals numbered
less than n

 The proposer’s protocol (I)

A proposer chooses a new proposal number n and sends
a request to each member of some set of acceptors,
asking it to respond with:

a. A promise never again to accept a proposal
numbered less than n, and

b. The accepted proposal with highest number less
than n if any.

...call this a prepare request with number n

 The proposer’s protocol (II)
If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number n and value v, where v is

• the value of the highest-numbered proposal among
the responses, or

• is any value selected by the proposer if responders
returned no proposals

A proposer issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.

...call this an accept request.

 The acceptor’s protocol
An acceptor receives prepare and accept requests
from proposers.

It can always respond to a prepare request

It can respond to an accept request, accepting
the proposal, iff it has not promised not to, e.g.

P1a: An acceptor can accept a proposal numbered
 n iff it has not responded to a prepare
request having number greater than n

...which subsumes P1.

Small optimizations

If an acceptor receives a prepare request r numbered n
when it has already responded to a prepare request for
n’ > n, then the acceptor can simply ignore r.

...so an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered prepare request to which it has
responded.

Choosing a value:
Phase 1

A proposer chooses a new n and sends <prepare,n> to a
majority of acceptors

If an acceptor a receives <prepare,n’>, where n’ > n of
any <prepare,n> to which it has responded, then it
responds to <prepare, n’ > with

a promise not to accept any more proposals
numbered less than n’

the highest numbered proposal (if any) that it has
accepted

Choosing a value:
Phase 2

If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

the value of the highest numbered proposal
among the responses

any value if the responses reported no proposals

If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded to
<prepare,n’> , where n’ > n

Learning chosen
values (I)

Once a value is chosen, learners should find out
about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

Failures

Paxos handles failures very well

Proposed values can be persisted by other
proposers even if the original proposer
fails

Questions

Should we use UDP or TCP for
communications?

What should be in stable storage? Can we
have Paxos that does not use stable storage?

Should we use leader-based or leader-less
Paxos?

Leader Election

Local state: currentTerm, currentLeader

If currentLeader is not pingable:

propose myself as leader for instance
currentTerm+1

Upon learning value for instance currentTerm
+1

Update currentTerm, currentLeader

Leader Paxos

Perform Paxos over two sets of instances

Leader election log, command log

If elected as leader for currentTerm

Issue “prepare <currentTerm>” for all higher
instances than what is currently known

Receive client commands and perform “accept
client command, currentTerm” on a higher instance

To infinity, and beyond

Leader can efficiently execute phase 1 for
infinitely many instances of consensus! (e.g.
command 16 and higher)

 just sends a message with a sufficiently high
proposal number for all instances

An acceptor replies non trivially only for instances for
which it has already accepted a value

λ

λ

A new leader 	 	 is elected...

Since	 	 	 	 is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

 then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

λ

λ

λ

Stop-gap measures

All replicas can execute commands 1-10, but not 13-16
because 11 and 12 haven't yet been chosen.

 can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

 runs phase 2 of consensus for instance numbers 11
and 12.

Once consensus is achieved, all replicas can execute
all commands through 16.

λ

λ

Questions

What are the liveness properties of Paxos?

Question

What do you do when nodes fail?

Question

What are the costs to using Paxos? Is it
practical?

