

The Part-Time Parliament

@ Parliament determines
laws by passing sequence
of numbered decrees

@ Legislators can leave and
enter the chamber at
arbitrary times

@ No centralized record of
approved decrees-
instead, each legislator
carries a ledger

Government 101

@ No two ledgers contain contradictory
information

@ If a majority of legislators were in the
Chamber and no one entered or left the
Chamber for a sufficiently long time, then

O any decree proposed by a legislator would
eventually be passed

O any passed decree would appear on the
ledger of every legislator

Government 102

@ Paxos legislature is non-partisan, progressive,
and well-infentioned

@ Legislators only care that something is
agreed to, not what is agreed to

@ We'll take care of Byzantine legislators later

Back to the future

@ A set of processes that can propose values
@ Processes can crash and recover

@ Processes have access to stable storage

@ Asynchronous communication via messages

@ Messages can be lost and duplicated, but not
corrupted

The Game: Consensus

SAFETY

@ Only a value that has been proposed can be chosen
@ Only a single value is chosen

@ A process never learns that a value has been
chosen unless it has been

LIVENESS

@ Some proposed value is eventually chosen

@ If a value is chosen, a process eventually learns it

The Players

@ Proposers
@ Acceptors

@ Learners

Choosing a value

Use a single
acceptor

N\l

What if

the acceptor fails?

6 is chosen!

@ Choose only when a
“large enough” set
of acceptors accepts

@ Using a majority set
guarantees that at
most one value is
chosen

Accepting a value

@ Suppose only one value is proposed by a single
proposer.

@ That value should be chosen!
@ First requirement:

Pl: An acceptor must accept the first
proposal that it receives

@ ..but what if we have multiple proposers, each
proposing a different value?

Pl + multiple proposers

Handling
multiple proposals

@ Acceptors must accept more than one proposal

@ To keep track of different proposals, assign a
natural number to each proposal

O A proposal is then a pair (psn, value)
O Different proposals have different psn

O A proposal is chosen when it has been
accepted by a majority of acceptors

O A value is chosen when a single proposal
with that value has been chosen

Choosing a unique value

"Any acceptor can accept as many proposals as he

wants, so long as they all propose the same value”
Leslie Lamport

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is chosen
has value v

Its up to the Acceptors!

P2. If a proposal with value v is chosen, then
every higher-numbered proposal that is
chosen has value v

We strengthen it to:

P2a. If a proposal with value v is chosen,
then every higher-numbered proposal
accepted by any acceptor has value v

What about P17

How does a; know
it should not accept? @® Do we still need P1?

a YES, to ensure that some
/ a1 proposal is accepted
/ @ @® How well do Pl and P2a

a2

play together?

\ Asynchrony is a problem...
(1,6) il o
%

6 Is chosen!

Its up to the Proposers!

@ Recall P2a:

P2a. If a proposal with value v is chosen, then
every higher-numbered proposal accepted by
any acceptor has value v

We strengthen it to:

P2b. If a proposal with value v is chosen, then
every higher-numbered proposal issued by
any proposer has value v

What fo propose

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Suppose p wants to issue a proposal numbered n.

@ If p can be certfain that no proposal numbered n’ <n has
been chosen then p can propose any value!

O If a proposal numbered n’ <n has been chosen, then it has been
accepted by a majority set S

Any majority set S’ must intersect S

o [l

If p can find one S’ in which no acceptors has accepted a proposal
numbered n’ <n, then no such proposal can have yet been chosen!

O

If no such S’, a proposal numbered 7’ <7 may have been chosen...
Then what?

O

What fo propose

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Suppose p wants to issue a proposal numbered n.

@ If p can be certfain that no proposal numbered n’ <n has
been chosen then p can propose any value!

@ If not, p should propose the chosen value. But how?

What fo propose

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Suppose p wants to issue a proposal numbered n.

@ If p can be certfain that no proposal numbered n’ <n has
been chosen then p can propose any value!

@ If not, p should propose the chosen value. But how?

O What about using induction...

O Say proposal numbered m with value v is chosen: some majority-set C of acceptors has accepted it
O Suppose every proposdl issued with number m...n-1 has value v
0

Consider proposal 7: since every majority set S’ intersects with C and ever proposal accepted by
any acceptor with sequence number in m...n-1 has value v, then

0O p should propose the highest numbered proposal among all proposals,
numbered less than n, accepted by some majority set S

Its up to an invariant!

P2b: If a proposal with value v is chosen, then every higher-
numbered proposal issued by any proposer has value v

Achieved by enforcing the following invariant

P2c: For any v and n, if a proposal with value v and
number 7 is issued, then there is a set S consisting of a
majority of acceptors such that either:

0 no acceptor in S has accepted any proposal numbered
less than 7, or

o v is the value of the highest-numbered proposal
among all proposals numbered less than 7 accepted
by the acceptors in S

P2c in action

S
(4,8) .
a @ v is the value of the
, highest-numbered
f proposal among all
Q\%.ﬂ (3.2) proposals numbered
i less than n and
accepted by the

(5.2) acceptors in S
as

P2c in action

S
(4,8)
a1
(e @ No acceptor in S
P (€>/ (1,5) has accepted any
ao proposal numbered

less than

, (1,4)
(5.) a; The invariant is violated

Future telling?

@ p must learn the highest-numbered proposal
with number less than #, if any, that has
been or will be accepted by each acceptor in
some majority of acceptors.

@ Avoid predicting the future by extracting a
promise from a majority of acceptors not to
subsequently accept any proposals numbered
less than »

The proposers protocol (I)

@ A proposer chooses a new proposal number 7z and sends

a request to each member of some set of acceptors,
asking it to respond with:

a. A promise never again to accept a proposal
numbered less than n, and

b. The accepted proposal with highest number less
than 7 if any.

...call this a with number 7

The proposers protocol (II)

@ If the proposer receives a response from a majority
of acceptors, then it can issue a proposal with
number 7 and value v, where v is

a. the value of the highest-numbered proposal
among the responses, or

b. is any value selected by the proposer if
responders returned no proposals

A proposes issues a proposal by sending, to some set of
acceptors, a request that the proposal be accepted.

..call this an accept request.

The acceptors protocol

@ An acceptor receives and accept requests
from proposers.

0 It can always respond to a request

O It can respond to an accept request, accepting
the proposal, iff it has not promised not fo, e.g.

Pla: An acceptor can accept a proposal numbered
n iff it has not responded to a prepare
request having number greater than »

..which subsumes P1l.

Small optimizations

@ If an acceptor receives a request » numbered 7
when it has already responded to a request for
n’ >n, then the acceptor can simply ignore r.

.50 an acceptor needs only remember the highest
numbered proposal it has accepted and the number of
the highest-numbered request to which it has
responded.

Choosing a value:
Phase 1

@ A proposer chooses a new 7 and sends <prepare,n> to a
majority of acceptors

@ If an acceptor a receives <prepare,n’>, where n’ > n of
any <prepare,n> to which it has responded, then it
responds to <prepare, n’> with

O a promise not to accept any more proposals
numbered less than n’

0 the highest numbered proposal (if any) that it has
accepted

Choosing a value:
Phase 2

@ If the proposer receives a response to <prepare,n>
from a majority of acceptors, then it sends to each
<accept,n,v>, where v is either

O the value of the highest numbered proposal
among the responses

O any value if the responses reported no proposals

@ If an acceptor receives <accept,n,v>, it accepts the
proposal unless it has in the meantime responded fo
<prepare,n’> , Where n’ >n

Learning chosen
values (I)

Once a value is chosen, learners should find out
about it. Many strategies are possible:

i. Each acceptor informs each learner
whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner,
who informs the other learners

iii. Something in between (a set of not-
quite-as-distinguished learners)

Questions

@ What are the liveness properties of Paxos?

Question

@ Are there any advantages/disadvantages to
having a designated leader?

Question

@ What are the costs to using Paxos? Is it
practical?

Implementing State
Machine Replication

@ Implement a sequence of separate instances of
consensus, where the value chosen by the i™
instance is the i message in the sequence.

@ Each server assumes all three roles in each
instance of the algorithm.

@ Assume that the set of servers is fixed

The role of the leader

@ In normal operation, elect a single server to be
a leader. The leader acts as the distinguished

proposer in all instances of the consensus
algorithm.

O Clients send commands to the leader, which decides
where in the sequence each command should appear.

0 If the leader, for example, decides that a client
command is the £ command, it tries to have the

command chosen as the value in the #” instance of
consensus.

A new leader) is elected...

@ Since)\ is a learner in all instances of consensus, it
should know most of the commands that have
already been chosen. For example, it might know
commands 1-10, 13, and 15.

O It executes phase 1 of instances 11, 12, and 14 and
of all instances 16 and larger.

O This might leave, say, 14 and 16 constrained and
11, 12 and all commands after 16 unconstrained.

0O A then executes phase 2 of 14 and 16, thereby
choosing the commands numbered 14 and 16

Stop-gap measures

@ All replicas can execute commands 1-10, but not 13-16
because 11 and 12 haven't yet been chosen.

@ A can either take the next two commands requested
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

@) runs phase 2 of consensus for instance numbers 11
and 12.

@ Once consensus is achieved, all replicas can execute
all commands through 16.

To infinity, and beyond

@) can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

O A just sends a message with a sufficiently high
proposal number for all instances

O An acceptor replies non ftrivially only for instances for
which it has already accepted a value

