Paxos
The Part-Time Parliament

- Parliament determines laws by passing sequence of numbered decrees
- Legislators can leave and enter the chamber at arbitrary times
- No centralized record of approved decrees—instead, each legislator carries a ledger
No two ledgers contain contradictory information.

If a majority of legislators were in the Chamber and no one entered or left the Chamber for a sufficiently long time, then:
- any decree proposed by a legislator would eventually be passed.
- any passed decree would appear on the ledger of every legislator.
Paxos legislature is non-partisan, progressive, and well-intentioned

Legislators only care that something is agreed to, not what is agreed to

We’ll take care of Byzantine legislators later
Back to the future

- A set of processes that can propose values
- Processes can crash and recover
- Processes have access to stable storage
- Asynchronous communication via messages
- Messages can be lost and duplicated, but not corrupted
The Game: Consensus

SAFETY

- Only a value that has been proposed can be chosen
- Only a single value is chosen
- A process never learns that a value has been chosen unless it has been

LIVENESS

- Some proposed value is eventually chosen
- If a value is chosen, a process eventually learns it
The Players

- Proposers
- Acceptors
- Learners
Choosing a value

Use a single acceptor

\[a_1 \]

5

7

6

2
What if the acceptor fails?

Choose only when a "large enough" set of acceptors accepts.

Using a majority set guarantees that at most one value is chosen.

6 is chosen!
Accepting a value

Suppose only one value is proposed by a single proposer.

That value should be chosen!

First requirement:

P1: An acceptor must accept the first proposal that it receives

...but what if we have multiple proposers, each proposing a different value?
P1 + multiple proposers

No value is chosen!
Handling multiple proposals

- Acceptors must accept more than one proposal.

- To keep track of different proposals, assign a natural number to each proposal.
 - A proposal is then a pair \((\text{psn}, \text{value})\).
 - Different proposals have different \(\text{psn}\).
 - A proposal is chosen when it has been accepted by a majority of acceptors.
 - A value is chosen when a single proposal with that value has been chosen.
Choosing a unique value

“Any acceptor can accept as many proposals as he wants, so long as they all propose the same value”

Leslie Lamport

P2. If a proposal with value ν is chosen, then every higher-numbered proposal that is chosen has value ν
It's up to the Acceptors!

P2. If a proposal with value ν is chosen, then every higher-numbered proposal that is chosen has value ν

We strengthen it to:

P2a. If a proposal with value ν is chosen, then every higher-numbered proposal accepted by any acceptor has value ν
What about P1?

Do we still need P1? YES, to ensure that some proposal is accepted

How well do P1 and P2a play together? Asynchrony is a problem...

How does a_1 know it should not accept?

6 is chosen!
It’s up to the Proposers!

Recall P2a:

P2a. If a proposal with value ν is chosen, then every higher-numbered proposal accepted by any acceptor has value ν

We strengthen it to:

P2b. If a proposal with value ν is chosen, then every higher-numbered proposal issued by any proposer has value ν
What to propose

P2b: If a proposal with value \(v \) is chosen, then every higher-numbered proposal issued by any proposer has value \(v \)

Suppose \(p \) wants to issue a proposal numbered \(n \).

- If \(p \) can be certain that no proposal numbered \(n' < n \) has been chosen then \(p \) can propose any value!

 - If a proposal numbered \(n' < n \) has been chosen, then it has been accepted by a majority set \(S \)
 - Any majority set \(S' \) must intersect \(S \)
 - If \(p \) can find one \(S' \) in which no acceptors has accepted a proposal numbered \(n' < n \), then no such proposal can have yet been chosen!
 - If no such \(S' \), a proposal numbered \(n' < n \) may have been chosen...
 - Then what?
What to propose

$P2b$: If a proposal with value v is chosen, then every higher-numbered proposal issued by any proposer has value v

Suppose p wants to issue a proposal numbered n.

- If p can be certain that no proposal numbered $n' < n$ has been chosen then p can propose any value!
- If not, p should propose the chosen value. But how?
What to propose

P2b: If a proposal with value \(v \) is chosen, then every higher-numbered proposal issued by any proposer has value \(v \)

Suppose \(p \) wants to issue a proposal numbered \(n \).

- If \(p \) can be certain that no proposal numbered \(n' < n \) has been chosen then \(p \) can propose any value!

- If not, \(p \) should propose the chosen value. But how?
 - What about using induction...
 - Say proposal numbered \(m \) with value \(v \) is chosen: some majority-set \(C \) of acceptors has accepted it
 - Suppose every proposal issued with number \(m...n-1 \) has value \(v \)
 - Consider proposal \(n \): since every majority set \(S' \) intersects with \(C \) and every proposal accepted by any acceptor with sequence number in \(m...n-1 \) has value \(v \), then
 - \(p \) should propose the highest numbered proposal among all proposals, numbered less than \(n \), accepted by some majority set \(S \)
It’s up to an invariant!

P2b: If a proposal with value \(v \) is chosen, then every higher-numbered proposal issued by any proposer has value \(v \)

Achieved by enforcing the following invariant

P2c: For any \(v \) and \(n \), if a proposal with value \(v \) and number \(n \) is issued, then there is a set \(S \) consisting of a majority of acceptors such that either:

- no acceptor in \(S \) has accepted any proposal numbered less than \(n \), or
- \(v \) is the value of the highest-numbered proposal among all proposals numbered less than \(n \) accepted by the acceptors in \(S \)
P2c in action

\[v \text{ is the value of the highest-numbered proposal among all proposals numbered less than } n \text{ and accepted by the acceptors in } S \]
P2c in action

No acceptor in S has accepted any proposal numbered less than n

The invariant is violated
Future telling?

p must learn the highest-numbered proposal with number less than n, if any, that has been or will be accepted by each acceptor in some majority of acceptors.

Avoid predicting the future by extracting a promise from a majority of acceptors not to subsequently accept any proposals numbered less than n.
The proposer's protocol (I)

A proposer chooses a new proposal number n and sends a request to each member of some set of acceptors, asking it to respond with:

a. A promise never again to accept a proposal numbered less than n, and
b. The accepted proposal with highest number less than n if any.

...call this a prepare request with number n
The proposer’s protocol (II)

If the proposer receives a response from a majority of acceptors, then it can issue a proposal with number n and value v, where v is

a. the value of the highest-numbered proposal among the responses, or
b. is any value selected by the proposer if responders returned no proposals

A proposes issues a proposal by sending, to some set of acceptors, a request that the proposal be accepted.
...call this an accept request.
The acceptor’s protocol

An acceptor receives **prepare** and **accept** requests from proposers.

- It can always respond to a **prepare** request.
- It can respond to an **accept** request, accepting the proposal, iff it has not promised not to, e.g.

\[P1a: \text{An acceptor can accept a proposal numbered } n \text{ iff it has not responded to a prepare request having number greater than } n \]

...which subsumes P1.
Small optimizations

If an acceptor receives a prepare request \(r \) numbered \(n \) when it has already responded to a prepare request for \(n' > n \), then the acceptor can simply ignore \(r \).

...so an acceptor needs only remember the highest numbered proposal it has accepted and the number of the highest-numbered prepare request to which it has responded.
Choosing a value:
Phase 1

A proposer chooses a new \(n \) and sends \(<\text{prepare}, n>\) to a majority of acceptors.

If an acceptor \(a \) receives \(<\text{prepare}, n'>\), where \(n' > n \) of any \(<\text{prepare}, n>\) to which it has responded, then it responds to \(<\text{prepare}, n'>\) with:

- A promise not to accept any more proposals numbered less than \(n' \)
- The highest numbered proposal (if any) that it has accepted
Choosing a value: Phase 2

- If the proposer receives a response to \(\text{prepare}, n\) from a majority of acceptors, then it sends to each \(\text{accept}, n, v\), where \(v\) is either
 - the value of the highest numbered proposal among the responses
 - any value if the responses reported no proposals

- If an acceptor receives \(\text{accept}, n, v\), it accepts the proposal unless it has in the meantime responded to \(\text{prepare}, n'\), where \(n' > n\)
Learning chosen values (I)

Once a value is chosen, learners should find out about it. Many strategies are possible:

i. Each acceptor informs each learner whenever it accepts a proposal.

ii. Acceptors inform a distinguished learner, who informs the other learners.

iii. Something in between (a set of not-quite-as-distinguished learners)
Questions

What are the liveness properties of Paxos?
Question

What do you do when nodes fail?
Question

Are there any advantages/disadvantages to having a designated leader?
Question

What are the costs to using Paxos? Is it practical?
Implementing State Machine Replication

- Implement a sequence of separate instances of consensus, where the value chosen by the i^{th} instance is the i^{th} message in the sequence.

- Each server assumes all three roles in each instance of the algorithm.

- Assume that the set of servers is fixed
The role of the leader

- In normal operation, elect a single server to be a leader. The leader acts as the distinguished proposer in all instances of the consensus algorithm.

- Clients send commands to the leader, which decides where in the sequence each command should appear.

- If the leader, for example, decides that a client command is the k^{th} command, it tries to have the command chosen as the value in the k^{th} instance of consensus.
A new leader λ is elected...

Since λ is a learner in all instances of consensus, it should know most of the commands that have already been chosen. For example, it might know commands 1-10, 13, and 15.

- It executes phase 1 of instances 11, 12, and 14 and of all instances 16 and larger.
- This might leave, say, 14 and 16 constrained and 11, 12 and all commands after 16 unconstrained.
- λ then executes phase 2 of 14 and 16, thereby choosing the commands numbered 14 and 16.
Stop-gap measures

- All replicas can execute commands 1-10, but not 13-16 because 11 and 12 haven't yet been chosen.

- λ can either take the next two commands requested by clients to be commands 11 and 12, or can propose immediately that 11 and 12 be no-op commands.

- λ runs phase 2 of consensus for instance numbers 11 and 12.

- Once consensus is achieved, all replicas can execute all commands through 16.
To infinity, and beyond

- λ can efficiently execute phase 1 for infinitely many instances of consensus! (e.g. command 16 and higher)

- λ just sends a message with a sufficiently high proposal number for all instances

- An acceptor replies non trivially only for instances for which it has already accepted a value