
Clocks, Event Ordering, and 
Global Predicate Computation



Example of Global 
Predicate

Setting: Locks in distributed system

Objects locked by nodes and moved to the 
node that is currently modifying it

Nodes requesting the object/lock, send a 
message to the current node locking it 
and blocks for a response

How do we detect deadlocks in this scenario?



Events and Histories
Processes execute sequences of events
Events can be of 3 types: local, send, and receive
   is the  -th event of process 

The local history    of process   is the sequence 
of events executed by process 

hp

e
i
p p

p

p

i



Ordering events

Observation 1: 
Events in a local history are totally ordered

time
pi



Ordering events

Observation 1: 
Events in a local history are totally ordered

Observation 2: 
For every message   ,           precedes 

time
pi

time
pi

time

m receive(m)send(m)

m

pj



Happened-before
(Lamport[1978])

A binary relation    defined over events

1. if             and       , then

2. if                and                    , 
then

3. if         and           then 

→

ek
i , el

i ∈ hi k < l e
k
i → e

l
i

ei = send(m) ej = receive(m)
ei → ej

e → e
′

e
′
→ e

′′
e → e

′′



Space-Time diagrams

A graphic representation of a distributed execution
time

p1

p2
p3

p1

p2

p3

H and     impose a partial order→



Global States & Clocks

Need to reason about global states of a 
distributed system

Global state: processor state + communication 
channel state

Consistent global state: causal dependencies are 
captured

Use virtual clocks to reason about the timing 
relationships between events on different nodes



Lamport Clocks

Each process maintains a local variable
                 value of     for event 

LC

LC(e) ≡ LC e

e
i
p e

i+1
p

e
i
p

LC(ei
p) < LC(ei+1

p )

LC(ei
p) < LC(ej

q)
e
j
q

p

q

p



Increment Rules
e
i
p e

i+1
p

p

e
i
p

e
j
q

p

q

LC(ei+1
p ) = LC(ei

p) + 1

LC(ej
q) = max(LC(ej−1

q ), LC(ei
p)) + 1

Timestamp    with m TS(m) = LC(send(m))



A cut C is a subset of the global history of H

The frontier of C is the set of events 

Cuts

p1

p2

p3

e
c1

1
, e

c2

2
, . . . e

cn

n



Consistent cuts and 
consistent global states

A cut is consistent if

A consistent global state is one corresponding 
to a consistent cut 

∀ei, ej : ej ∈ C ∧ ei → ej ⇒ ei ∈ C



What    sees

Not a consistent global state: the cut contains 
the event corresponding to the receipt of the 
last message by    but not the corresponding 
send event

p1

p2

p3

p3

p0



Global Consistent States

Can we use Lamport Clocks as part of a 
mechanism to get globally consistent states?



Global Snapshot

Develop a simple global snapshot protocol

Refine protocol as we relax assumptions 

Record:
processor states
channel states 

Assumptions:
FIFO channels
Each    timestamped with with m T (send(m))



Snapshot I
i.      selects 

ii.     sends “take a snapshot at     ” to all processes

iii. when clock of     reads       then 
a. records its local state 
b. sends an empty message along its outgoing channels
c. starts recording messages received on each of incoming 

channels 
d. stops recording a channel when it receives first message 

with timestamp greater than or equal to 

p0 tss

p0 tss

tss

tss

pi

σi

p



Snapshot II

processor    selects 

    sends “take a snapshot at  ” to all processes; it waits for 
all of them to reply and then sets its logical clock to 

when clock of    reads    then 
records its local state 
sends an empty message along its outgoing channels
starts recording messages received on each incoming 
channel
stops recording a channel when receives first message 
with timestamp greater than or equal to 

Ωp0

σi

p0

Ω

Ω

Ω

Ωpi pi



Relaxing synchrony

Process does nothing 
for the protocol 
during this time!

pi

 take a 
snapshot at   Ω

empty message: 
TS(m) ≥ Ω

monitors
channels records 

local state σi

sends empty message: 
TS(m) ≥ Ω



Snapshot III
processor    sends itself “take a snapshot “

when   receives “take a snapshot” for the first time from    :
records its local state 
sends “take a snapshot” along its outgoing channels
sets channel from    to empty

starts recording messages received over each of its other incoming 
channels

when   receives “take a snapshot” beyond the first time from    :

stops recording channel from  

when    has received “take a snapshot” on all channels, it sends 
! collected state to    and stops. 

p0

pi pj

σi

pkpi

pi

pj

pk

p0



Same problem,   
different approach

Monitor process does not query explicitly

Instead, it passively collects information and 
uses it to build an observation.

(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the 
distributed computation based on  the order in 
which the receiver is notified of the events.



Update rules

pi

pi

ei

m

ei

Message    is 
timestamped with

m

TS(m) = V C(send(m))

V C(ei)[i] := V C[i] + 1

V C(ei) := max(V C, TS(m))

V C(ei)[i] := V C[i] + 1



Example

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3



Operational 
interpretation

= no. of events executed by      up to and including

= no. of events executed by    that happen before    of  

[1,0,0]

[0,1,0]

[2,1,0]

[1,0,1] [1,0,2] [1,0,3]

[3,1,2]

[1,2,3]

[4,1,2] [5,1,2]

[4,3,3]

[5,1,4]

p1

p2

p3

piV C(ei)[i]

V C(ei)[j]

ei

pj piei



The protocol

   maintains an array             of counters

                   where     is the last 
message delivered from 

Rule: Deliver   from    as soon as both of 
the following conditions are satisfied:

p0 D[1, . . . , n]

D[i] = TS(mi)[i] mi

pi

D[j] = TS(m)[j] − 1

D[k] ≥ TS(m)[k],∀k #= j

m pj



Summary

Lamport clocks and vector clocks provide us 
with good tools to reason about timing of 
events in a distributed system

Global snapshot algorithm provides us with 
an efficient mechanism for obtaining 
consistent global states


