Clocks, Event Ordering, and Global Predicate Computation
Example of Global Predicate

Setting: Locks in distributed system

Objects locked by nodes and moved to the node that is currently modifying it

Nodes requesting the object/lock, send a message to the current node locking it and blocks for a response

How do we detect deadlocks in this scenario?
Events and Histories

- Processes execute sequences of events.
- Events can be of 3 types: local, send, and receive.
- e_p^i is the i-th event of process p.
- The local history h_p of process p is the sequence of events executed by process p.
Observation 1:
Events in a local history are **totally ordered**
Ordering events

Observation 1:
Events in a local history are totally ordered

P_i \rightarrow time

Observation 2:
For every message m, $send(m)$ precedes $receive(m)$

P_i \rightarrow time

P_j \rightarrow time
Happened-before (Lamport[1978])

A binary relation \(\rightarrow \) defined over events

1. if \(e_i^k, e_i^l \in h_i \) and \(k < l \), then \(e_i^k \rightarrow e_i^l \)

2. if \(e_i = \text{send}(m) \) and \(e_j = \text{receive}(m) \),
 then \(e_i \rightarrow e_j \)

3. if \(e \rightarrow e' \) and \(e' \rightarrow e'' \) then \(e \rightarrow e'' \)
Space-Time diagrams

A graphic representation of a distributed execution

\[H \text{ and } \rightarrow \text{ impose a partial order} \]
Global States & Clocks

- Need to reason about global states of a distributed system
- Global state: processor state + communication channel state
- Consistent global state: causal dependencies are captured
- Use virtual clocks to reason about the timing relationships between events on different nodes
Lamport Clocks

Each process maintains a local variable LC

$L_C(e) \equiv \text{value of } L_C \text{ for event } e$

p \hspace{1cm} e_p^i \hspace{1cm} e_p^{i+1} \hspace{1cm} $LC(e_p^i) < LC(e_p^{i+1})$

p \hspace{1cm} e_p^i \hspace{1cm} e_q^j \hspace{1cm} $LC(e_p^i) < LC(e_q^j)$
Increment Rules

$$LC(e_{p}^{i+1}) = LC(e_{p}^{i}) + 1$$

$$LC(e_{q}^{j}) = \max(LC(e_{q}^{j-1}), LC(e_{p}^{i})) + 1$$

Timestamp m with $TS(m) = LC(send(m))$
Cuts

A cut C is a subset of the global history of H

The frontier of C is the set of events $e_{c_1}^1, e_{c_2}^2, \ldots e_{c_n}^n$
Consistent cuts and consistent global states

A cut is consistent if

\[\forall e_i, e_j : e_j \in C \land e_i \rightarrow e_j \Rightarrow e_i \in C \]

A **consistent global state** is one corresponding to a consistent cut
What p_0 sees

Not a consistent global state: the cut contains the event corresponding to the receipt of the last message by p_3 but not the corresponding send event.
Global Consistent States

Can we use Lamport Clocks as part of a mechanism to get globally consistent states?
Global Snapshot

- Develop a simple global snapshot protocol
- Refine protocol as we relax assumptions
- Record:
 - processor states
 - channel states
- Assumptions:
 - FIFO channels
 - Each m timestamped with $T(send(m))$
Snapshot I

i. p_0 selects t_{ss}

ii. p_0 sends “take a snapshot at t_{ss}” to all processes

iii. when clock of p_i reads t_{ss} then p
 a. records its local state σ_i
 b. sends an empty message along its outgoing channels
 c. starts recording messages received on each of incoming channels
 d. stops recording a channel when it receives first message with timestamp greater than or equal to t_{ss}
Snapshot II

processor p_0 selects Ω

p_0 sends “take a snapshot at Ω” to all processes; it waits for all of them to reply and then sets its logical clock to Ω

when clock of p_i reads Ω then p_i

- records its local state σ_i
- sends an empty message along its outgoing channels
- starts recording messages received on each incoming channel
- stops recording a channel when receives first message with timestamp greater than or equal to Ω
Relaxing synchrony

Process does nothing for the protocol during this time!

\[\text{take a snapshot at } \Omega \]

\[p_i \]

Empty message:
\[TS(m) \geq \Omega \]

Records local state \(\sigma_i \)

Sends empty message:
\[TS(m) \geq \Omega \]

Monitors channels
Snapshot III

processor p_0 sends itself “take a snapshot”

when p_i receives “take a snapshot” for the first time from p_j:

☐ records its local state σ_i

☐ sends “take a snapshot” along its outgoing channels

☐ sets channel from p_j to empty

☐ starts recording messages received over each of its other incoming channels

when p_i receives “take a snapshot” beyond the first time from p_k:

☐ stops recording channel from p_k

when p_i has received “take a snapshot” on all channels, it sends collected state to p_0 and stops.
Same problem, different approach

Monitor process does not query explicitly

Instead, it passively collects information and uses it to build an observation.
(reactive architectures, Harel and Pnueli [1985])

An observation is an ordering of event of the distributed computation based on the order in which the receiver is notified of the events.
Update rules

Message m is timestamped with $TS(m) = VC(send(m))$

$VC(e_i) := max(VC, TS(m))$

$VC(e_i)[i] := VC[i] + 1$

$VC(e_i)[i] := VC[i] + 1$
Example
Operational interpretation

$VC(e_i)[i] = \text{no. of events executed by } p_i \text{ up to and including } e_i$

$VC(e_i)[j] = \text{no. of events executed by } p_j \text{ that happen before } e_i \text{ of } p_i$
The protocol

1. p_0 maintains an array $D[1, \ldots, n]$ of counters

2. $D[i] = TS(m_i)[i]$ where m_i is the last message delivered from p_i

Rule: Deliver m from p_j as soon as both of the following conditions are satisfied:

$$D[j] = TS(m)[j] - 1$$

$$D[k] \geq TS(m)[k], \forall k \neq j$$
Summary

- Lamport clocks and vector clocks provide us with good tools to reason about timing of events in a distributed system.

- Global snapshot algorithm provides us with an efficient mechanism for obtaining consistent global states.