
Flash: an efficient and
portable web server

High Level Ideas

• Server performance has several dimensions

• Lots of different choices on how to express and effect
concurrency in a program

• Paper argues that event-driven asynchronous I/O has
least overhead and greatest scalability but Unix has
poor support

Model of a TCP Connection

• TCP flows provide reliable in-order delivery

• Flow control ensures that there is enough buffer
space at the destination

• Congestion control reacts to packet loss

• Slow start allows TCP to probe for available
bandwidth starting with a conservative estimate of 1
packet per RTT

• What implications does this have for the design of a
web server?

Model of a Web page

• Body of the page is HTML content

• Includes links to embedded images and CSS

• Also includes Javascipt that can execute at the client
and trigger loads of other types of content

• Embedded HTML in the form of iFrames

• Server side computation in the form of CGI, PHP, etc.

Model of an HTTP Fetch

• Establish TCP connection

• Send HTTP get request

• Server reads requested content from the file system

• Server performs server-side computation

• Server sends data to the client

• What implications does this have for performance?
for re-designing HTTP? for the web-server?

Model of a Processor

• Processes incur context switching costs, occupy
memory (for stack frames)

• User-level threads implemented within a single process;
OS knows only about the process and not the threads
inside of it

• Kernel threads implemented as OS visible entities;
context switching handled by the kernel

• What are the trade-offs between user-level threads and
kernel threads? What about processes and kernel
threads?

Model of a Disk

• Disks contain tracks (concentric circles) across multiple surfaces
(same track on multiple surfaces form a cylinder)

• Access costs:

• Seek to the appropriate cylinder

• Wait for the appropriate segment to rotate underneath the disk head

• Performance governed by mechanics ==> improvements are
modest over time

• single disk read is about a few milliseconds

• throughput is many tens of mb/s

• What implications does this have for the design of a web server?

Back of the Envelope Calculations

• What would you guess is a typical web page load in
terms of latency?

• How would you determine the number of “active”
web requests on a server?

• Key distinction: “open loop” vs. “closed loop” systems

HTTP Improvements

• Multiple concurrent connections per client

• Early browsers: 4 concurrent connections

• HTTP/1.1 spec: no more than two per hostname

• browsers ignore this guideline; tend to do ~6 per
hostname and subdomains are separate

• What implications does this have for TCP?

• Persistent HTTP connections

• Single congestion window is learned for the session; avoid
slow start for each

• Fewer packets, less memory on server side, lower
overheads

HTTP Improvements

• Pipelining

• Send multiple back to back requests on a single persistent
connection without waiting for replies

• Server sends replies in same order as requests

• Ability to mask the latency of HTTP request/response delay

• SPDY

• Experimental session protocol

• Multiplexes many HTTP sessions on a single TCP
connection; virtualizes many TCPs on a single TCP

• Eliminates the “in the same order” limitation of pipelining

Issues in Server-side Handling

• Static requests:

• Read data from file and send into network

• For small files: advantage in coalescing HTTP header with
the data; some TCP stacks will do this, but for the rest has
to be done manually

• Needless copy from kernel to user-level, back into kernel;
sendfile() optimizes this

• Scheduling policy of requests? Shortest remaining job first
-- lowest average latency, same throughput.

Dynamic Requests

• Need to find or fire up a helper process/thread;
potentially expensive interpreter warmup

• Don’t want to expose the server itself to the risk of
potentially buggy/blocking CGI environment; need it
to be in separate process

• Could involve DB access or RPCs to middleware --
typically a multi-tier server environment

Concurrency in a web server

• Why do we want to exploit it?

• Multi-core: want to be able to exploit multiple CPUs
concurrently

• Multiple disks: want to be able to exploit multiple disk arms
concurrently

• Overcoming latency of networks, flow/congestion control

• Want to be working on a different request while
propagation delay of other requests in flight (or if buffers/
windows are full)

OS Issues

• Potentially blocking system calls

• Some system calls may, in practice, block the calling execution
context (kernel thread/process)

• network receive: caller blocks until data is available

• network send: caller block until send buffer has space available

• network accept: caller blocks until new connection arrives

• Potentially high latency system calls: file I/O

• Core issue: some way to either

• have multiple contexts so that it’s OK if they are blocked

• prevent blocking (i.e., use non-blocking calls)

Concurrency Architectures

• Multiple process (MP): pool of idle processes

• Multiple threads (MT): similar, but pool of idle threads

• Single process Event Driven (ET)

• This paper: a hybrid

AMPED

• Approach:

• Use event driven to process network

• Use MT or MP to process disk, helper processes, etc.

• Connect using pipes

• Benefits:

• the thing that is likely to capture the most blocking
(networking I/O) is the thing that is lightest-weight

• have shared-memory, and single thread tweaking it, so avoid
synchronization issues

• Disadvantages?

Performance Tricks

• Use caches for as many things as possible:

• name translation caches

• response header caches

• Maintain memory mapped files and send data directly
without requiring copies

• Use writev() and padding to minimize overheads

• Test for memory residency before passing task to
helper

• Pre-created CGI helper applications

Evaluations

• What does the paper do well and what does the
paper not accomplish in the evaluations?

Cachable Experiments

Real Traces

Control Working Set Size

WAN Performance

