Experience with Processes
and Monitors in Mesa

Background

® Focus of this paper: light-weight processes (threads)
and how they synchronize with each other

® History:

Background

® |arge system, many programmers, many applications

® Module-based programming with information hiding

Programming model

® T[wo choices for programming concurrency:

® Shared memory

® Message passing

Synchronizing Processes

® Goal: mutual exclusion

® An option: non-preemptive scheduler

® Process owns the processor till it yields

Mesa Language Constructs

5 b2 . '\Light-weight Proc-esses RN Ui B s R 3 ad

Light weight Processes

® FEasy forking and synchronization

® Shared address space

® Fast performance for creation, switching, and
synchronization

Monitors

® Monitor lock for synchronization

® Tied to module structure of the language; makes it clear

- WDNA3 peing monitorea (L0 S Ll 1 o

Modules and Monitors

® Three types of procedures in a monitor module:
® entry (acquires and releases lock)

® internal (no locking done): can’t be called from outside the
module

® external (no locking done): externally callable

r -

lu‘ alpaw

Condition Variables

® Notify semantics options:

® Cede lock to waking process

® Notifier keeps lock, waking process gets put in front of

Notification in Mesa

® |tis a“hint”. Notifying process keeps the lock/control

® Other related aspects of notify:
® Timeouts

- ® Broadcasts: why is this useful?

Deadlocks

® Typical deadlock scenarios:
® Recursion on the same module
® Enter multiple monitors in different orders
® Process | obtains monitor A followed by B; Process 2

obtains monitor B followed by A

Sy

mlies S 4k 4 ous

- 0
| §

Other Issues

® |s monitor deadlock as onerous as the yield problem
for non-preemptive schedulers?

® | ock granularity: introduced monitored records so
that the same monitor code could handle multiple

instances of something in parallel

‘

gl s

vy ‘g S AP

Priority, locks, scheduling

® There are subtle interactions between priorities and
scheduling and holding locks

Priority Inversion

® “Information bus” is a shared memory region shared
across the following processes:

® Bus manager (high priority process)

® Meteorological data gatherer (low priority)

Priority Inversion

® Another thread: communications task
® Medium priority, long running task

® Sometimes the communications task would get scheduled
instead of the data gatherer

"-:‘ ".-" ' v'.. ‘."- ..-\4 4'.."- . ",' -. 9‘ v:-... rl .t_ oy & q r:: '- -.:‘,:"._[. ‘ . -H o ' » ' = - -!"-"t --' "'r .. - :

Capatenve § = (e

Other Issues

® Exceptions:
® Must restore monitor invariant as you unwind the stack

® The idea that you just kill a process and release the locks is

A -)
r \/ A e e ..

-

Performance

® Context switch is very fast
® Two procedure calls

® Ended up not mattering much!

® Ran only on uniprocessor systems

Key Features of the Paper

® Describes the experiences designers had with
designing, building, and using a large system that relies

on lightweight processes

® Describes various subtle issues of implementing

Discussion

® What about distributed memory systems or clusters!?
What is a good programming model for concurrency
in such systems!

