
Experience with Processes 
and Monitors in Mesa

Arvind Krishnamurthy



Background

• Focus of this paper: light-weight processes (threads) 
and how they synchronize with each other

• History:

• Second system; followed the Alto

• Advent of things like server machines and networking 
introduced applications that are highly concurrent

• Single user system

• Safety was to come from language



Background

• Large system, many programmers, many applications

• Module-based programming with information hiding

• Since they were starting “from scratch”, they could 
integrate the hardware, the runtime software, and the 
language with each other



Programming model

• Two choices for programming concurrency:

• Shared memory

• Message passing

• What are their strengths/weaknesses?

• Needham & Lauer claimed the two models are duals

• Mesa uses shared memory model because it fits as a 
language construct more naturally



Synchronizing Processes

• Goal: mutual exclusion

• An option:  non-preemptive scheduler

• Process owns the processor till it yields

• What are the downsides of using a non-preemptive 
scheduler?

• Another option: simple locking (e.g., semaphores)

• How does it compare to monitors?



Mesa Language Constructs

• Light weight processes

• Monitors

• Condition variables



Light weight Processes

• Easy forking and synchronization

• Shared address space

• Fast performance for creation, switching, and 
synchronization

• Low storage overheads

• Mesa is a single user system;  what would change if it 
were to be used in a multi-user system?

• Dangling references similar to those of pointers

• How can you prevent these dangling references?



Monitors

• Monitor lock for synchronization

• Tied to module structure of the language; makes it clear 
what is being monitored

• Language automatically acquires and releases the lock

• Tied to a particular invariant, which helps users think 
about the program



Modules and Monitors

• Three types of procedures in a monitor module:

• entry (acquires and releases lock)

• internal (no locking done): can’t be called from outside the 
module

• external (no locking done): externally callable

• Allows grouping of related things into a module

• Allows doing some of the work outside the monitor 
lock

• Allows controlled release and reacquisition of 
monitor lock



Condition Variables

• Notify semantics options:

• Cede lock to waking process

• Notifier keeps lock, waking process gets put in front of 
monitor queue

• Notifier keeps lock, wakes process with no guarantees

• What are the strengths/weaknesses of the different 
options?



Notification in Mesa

• It is a “hint”.  Notifying process keeps the lock/control

• Other related aspects of notify:

• Timeouts

• Broadcasts: why is this useful?

• Aborts:

• Request to abort; allows the target process to reach a 
wait or monitor exit and then it voluntarily aborts

• No need to re-establish the invariant, as compared to just 
killing the process outright



Deadlocks

• Typical deadlock scenarios:

• Recursion on the same module

• Enter multiple monitors in different orders

• Process 1 obtains monitor A followed by B;  Process 2 
obtains monitor B followed by A

• Enter multiple monitors in the same order, but wait inside the 
second monitor does not release the lock of the first monitor

• General problem with modular systems and 
synchronization

• Synchronization requires global knowledge about locks, which 
violates the information hiding paradigm



Other Issues

• Is monitor deadlock as onerous as the yield problem 
for non-preemptive schedulers?

• Lock granularity: introduced monitored records so 
that the same monitor code could handle multiple 
instances of something in parallel

• Interrupts: interrupt handler can’t block waiting

• Introduced naked notifies: notifies done without holding the 
monitor lock

• What is the problem with naked notifies?

• How can this be addressed?



Priority, locks, scheduling

• There are subtle interactions between priorities and 
scheduling and holding locks

• Mars Pathfinder:

• Success story for the first few days

• Landed with fancy airbags, released a “rover”, shot some 
spectacular photos of the Mars landscape

• Few days later after it started collecting meteorological 
data, system started resetting itself periodically



Priority Inversion

• “Information bus” is a shared memory region shared 
across the following processes:

• Bus manager (high priority process)

• Meteorological data gatherer (low priority)

• Reset if Bus Manager hasn’t run for a while

• Protected by a lock

• If Bus Manager is scheduled by context-switching out the 
data gatherer, it will sleep for a bit, let the data gatherer run, 
which will release the lock in a short while



Priority Inversion

• Another thread: communications task

• Medium priority, long running task

• Sometimes the communications task would get scheduled 
instead of the data gatherer

• Neither the lower priority data gatherer nor the higher 
priority bus manager would run

• Works in pairs, but not all three together.  Resulted in 
periodic resets

• How do we fix this problem?



Other Issues

• Exceptions:

• Must restore monitor invariant as you unwind the stack

• The idea that you just kill a process and release the locks is 
naive

• Entry procedures that have an exception, but no exception 
handler do not release the monitor lock

• This ensures deadlock and a trip into the debugger, but at 
least it maintains the invariant



Performance

• Context switch is very fast

• Two procedure calls

• Ended up not mattering much!

• Ran only on uniprocessor systems

• Concurrency mostly used for clean structuring purposes

• Procedure calls: 30 instructions

• Is this a reasonable number?  If not, why is this high?

• Process creation is about 1100 instructions

• Good enough; “fast fork” implemented later keeps around a 
pool of available processes



Key Features of the Paper

• Describes the experiences designers had with 
designing, building, and using a large system that relies 
on lightweight processes

• Describes various subtle issues of implementing 
monitors

• Discusses the performance and overheads of various 
primitives

• What are its weaknesses?



Discussion

• What about distributed memory systems or clusters?  
What is a good programming model for concurrency 
in such systems?

• What other issues come up for multi-core systems?  
Is the Mesa model appropriate for multi-cores?

• What are the key differences between Mesa and its 
modern counterparts?


