Log-Structured File
Systems

I

Outline

Disk Structure

Background

e I-node: structure for per-file metadata

e contains ownership, permissions, timestamps + 10
datablock pointers

e form an array, indexed by "“i-number”

y is explicit in Unix File

: system, im

Ii_iT. oS e

Unix File System

e Original Unix file system was simple and
elegant, but slow

Unix File System

e Original Unix file system was simple and
elegant, but slow

e achieve only about 2% of disk bandwidth

e Problems:

Unix Fast File System

e Larger block size (4K to 8K)

e why not choose even larger blocks?

e Disk divided into cylinder groups

L] L]
- -.;,:.l’ ‘,‘, Ln‘ea’}_".q‘.!'._to,-“ <

Locality

e Key ideas:

o don't let disk fill up in any one area

Locality Policies

e Keep directory within a cylinder group, spread out
different directories to other groups

e Allocate runs of blocks within a cylinder group;
every once in a while, jump to a new cylinder group

LFS

e Radically different file system design

e Technology motivations:

D
- o CP
.

'Us outpacing disks: I/O becomes more of the

Implications

e Problems:
e |ots of little writes
e because reads are taken care of

e because most files are small

Basic Idea of LFS

* Log all data and meta-data with efficient,
arge, sequential writes

e Log is the "only and entire" truth, there is
i 2oy nQ-hi..,e. .

Two Potential Problems

e No update-in-place; (almost) nothing has a
permanent home

e 5o how do we find things? (log retrieval)

Log Retrieval

e Keep same basic file structure as Unix (data,
inode, indirect blocks)

e Let i-nodes float, so we need to find a file's
inode

. We " . . .
. ‘e . L T‘; . - e ‘4'. . * 2 ‘?-.” .'[ma" v»‘.v','- T l'., ."_- ' gl- .._| !-l!.{: LA N :

LFS Data Structures

e Read:

e follow: map of inode map, to inode map, to inode, to
block

e get some locality in inode map; cache a lot of it in

s 1 [— LS 2K o o Sl o afini i 4 ", - R N e IR - % I8 Ml s

Two Potential Problems

e No update-in-place; (almost) nothing has a
permanent home

e 5o how do we find things? (log retrieval)

p—

Approach #1. Compaction

HE- -

'

T —

e Works fine if you have a mostly empty disk

e But suppose 90% utilization:
e write 10%
e compact 90% (read 90%, write 90%)

* repeat!

Approach #2: Threading

e Fill in empty spaces

e Start at the beginning of disk once you reach
end

e What is the problem with this approach?

Solution: Segmented Log

L —— A
RS A I |

e Use both compaction & threading

e compaction: big free space

e threading: leave long living things in place & dont copy
e Segmented log:

e chop disk into a bunch of large segments

e compaction within segment, threading among segments

Segmented Log (contd.)

e When writing, use only clean segments (i.e., no
live data)

e Occasionally clean segments:

e read in several, write out live data in compacted

e | g

Cleaning Issues

s Hich segmenis 1o ceanz ’

Cleaning Goals

e Want bimodal distribution:

e small number of low-utilized segments (so cleaner
can find easy segments to clean)

e |arge number of high-utilized segments (so disk is
well utilized)

Greedy cleaner

e Pick the lowest util to clean
e Works not so great for random workload

e For “hot-cold” workload: even worse

Hot-and-cold

_ Uniform

00 02 04 06 08 1.
Segment utilization

Induce Bi-modal

Segments are like "fish": swimming to the left

Cleaner spends all its time repeatedly slinging a few
hot fish back

Cold fish hide lots of free space, but cleaner can't get
to them fast

Fraction of segments hot fish get thrown back
e N ana clltuc%ﬁv come back
0.008) -
e
|

0.007 g cold fish piling up
0.006 :

0.005

0.004

0.003

0.002

0.001

0.000

)

Hot-and cold

Uniform

Induce Bi-modal

e Cold segment space more valuable: if you clean cold
segments, takes them longer to come back

 Hot free space is less valuable: might as well wait a

bit longer

Fraction of segments

0.008 !
0.007
0.006 -
0.005
0.004 -
0.003 -
0.002
0.001

0.000

‘ Go after cold
&z) fish ealier

Let hot fish
swim farther

LFS Cost-Benefnn
LFS Greedy

02 04 06 08 10
Segment utilization

Key Feature of the Paper

e Keen awareness of technology trends

e Willing to radically depart from conventional
practice

- * Yet keep sufficient compatibility

