
Log-Structured File 
Systems



Outline

• Unix Fast File Systems

• Log structured file systems



Disk Structure



Background

• I-node: structure for per-file metadata

• contains ownership, permissions, timestamps + 10 
datablock pointers

• form an array, indexed by “i-number”

• array is explicit in Unix File system, implicit for LFS

• Indirect blocks:

• i-node only holds a small number of datablock ptrs

• for larger files, i-node points to an indirect block, which 
in turn points to the data blocks

• can have multiple levels of indirect blocks



Unix File System

• Original Unix file system was simple and 
elegant, but slow

• achieve only about 2% of disk bandwidth

• What can explain such bad performance?



Unix File System

• Original Unix file system was simple and 
elegant, but slow

• achieve only about 2% of disk bandwidth

• Problems:

• blocks too small

• consecutive blocks of files not close together

• i-nodes far from data

• i-nodes of directory not close together

• no read-ahead



Unix Fast File System

• Larger block size (4K to 8K)

• why not choose even larger blocks?

• Disk divided into cylinder groups

• Each contains super-block, i-nodes, bitmap of free 
blocks, usage summary information

• I-nodes are now spread across the disk

• keep i-node near file, i-nodes of a directory together

• cylinder groups ~ 16 cylinders



Locality

• Key ideas:

• don’t let disk fill up in any one area

• paradox: to achieve locality, must spread unrelated 
things far apart

• result: achieved about 20% of disk bandwidth



Locality Policies

• Keep directory within a cylinder group, spread out 
different directories to other groups

• Allocate runs of blocks within a cylinder group; 
every once in a while, jump to a new cylinder group

• Layout policy: global & local

• global policy allocates files & directories to cylinder 
groups

• local allocation search order:

• rotationally closest in current cylinder, current 
cylinder group, hash to another cylinder group



LFS

• Radically different file system design

• Technology motivations:

• CPUs outpacing disks: I/O becomes more of the 
bottleneck

• Big memories: file caches work well, making most 
disk traffic writes

• Disks becoming more complicated



Implications

• Problems:

• lots of little writes

• because reads are taken care of

• because most files are small

• synchronous: wait for disk in too many places

• because of recovery concerns

• 5 seeks to create a file:

• file i-node (create), file data, directory entry, 
file i-node (finalize), directory i-node (mod time)



Basic Idea of LFS

• Log all data and meta-data with efficient, 
large, sequential writes 

• Log is the “only and entire” truth, there is 
nothing else

• turn the disk into a tape!

• keep an index of the log’s contents

• Rely on a large memory to provide fast access 
through caching



Two Potential Problems

• No update-in-place; (almost) nothing has a 
permanent home

• so how do we find things? (log retrieval)

• Wrap around: what happens when end of disk 
is reached?

• no longer any big, empty runs available

• how to prevent fragmentation?



Log Retrieval

• Keep same basic file structure as Unix (data, 
inode, indirect blocks)

• Let i-nodes float, so we need to find a file’s 
inode

• Solution: an “inode map” that tells position of inode

• inode map gets written to log like everything else

• But need “map of inode map” to keep track of inode 
maps; small enough to be in memory

• Map of inode map gets written in special checkpoint 
location on disk; used in crash recovery



LFS Data Structures

• Read:

• follow: map of inode map, to inode map, to inode, to 
block

• get some locality in inode map; cache a lot of it in 
memory

• number of I/Os: little less than Fast File System

• Recover:

• read checkpoint, get map of map

• roll forward in log to update map of map



Two Potential Problems

• No update-in-place; (almost) nothing has a 
permanent home

• so how do we find things? (log retrieval)

• Wrap around: what happens when end of disk 
is reached?

• no longer any big, empty runs available

• how to prevent fragmentation?



Approach #1: Compaction

• Works fine if you have a mostly empty disk

• But suppose 90% utilization:

• write 10%

• compact 90% (read 90%, write 90%)

• repeat!



Approach #2: Threading

• Fill in empty spaces

• Start at the beginning of disk once you reach 
end

• What is the problem with this approach?



Solution: Segmented Log

• Use both compaction & threading

• compaction: big free space

• threading: leave long living things in place & dont copy

• Segmented log:

• chop disk into a bunch of large segments

• compaction within segment, threading among segments



Segmented Log (contd.)

• When writing, use only clean segments (i.e., no 
live data)

• Occasionally clean segments:

• read in several, write out live data in compacted 
form, leaving some segments free

• try to collect long-lived information into segments 
that never need to be cleaned

• note there is not a free list of blocks, only a list of 
clean segments



Cleaning Issues

• Which segments to clean?

• What information to keep track per segment? 
(and how to keep track of them)



Cleaning Goals

• Want bimodal distribution:

• small number of low-utilized segments (so cleaner 
can find easy segments to clean)

• large number of high-utilized segments (so disk is 
well utilized)



Greedy cleaner

• Pick the lowest util to clean

• Works not so great for random workload

• For “hot-cold” workload: even worse



Induce Bi-modal
• Segments are like “fish”: swimming to the left

• Cleaner spends all its time repeatedly slinging a few 
hot fish back

• Cold fish hide lots of free space, but cleaner can’t get 
to them fast



Induce Bi-modal

• Cold segment space more valuable: if you clean cold 
segments, takes them longer to come back

• Hot free space is less valuable: might as well wait a 
bit longer



Key Feature of the Paper

• Keen awareness of technology trends

• Willing to radically depart from conventional 
practice

• Yet keep sufficient compatibility

• Provide insight with simplified math

• Simulation to evaluate and validate ideas

• Rethink what is primary and what is secondary 
in a design


