Clocks, Event Ordering, and
Global Predicate Computation

Events and Histories

@ Processes execute sequences of
@ Events can be of 3 types: local, send, and receive
@ ¢ is the i-th event of process p

@ The h, of process p is the sequence
of events executed by process p

Ordering events

@ Observation 1:
@ Events in a local history are totally ordered

& N\ N\ N N\ N\ 0\ o\ ra\ Y oY O)
’L S S ' S Ao A4 S S S S . et

time

@ Observation 2:
@ For every message m,send(m) precedes receive(m)

e. 0O)) i\)))))) V-)
’L A4 A4 J J J A\ 4 A\ 4 A4 A 4 J ~

time

m

5 Py o o o o) o o) O O
j O O \ O O - \ - -

(@)
o
\/

time

Happened-before
(Lamport[1978])

A binary relation —defined over events

1. if ef,el € h; and k < I, then ef — ¢!

1

2. if e; = send(m) and e; = receive(m),
then €; — €5

3. if e —-¢e’and ¢/ — €’ then e — €”

Lamport Clocks

Each process maintains a local variable LC
LC(e) = value of LC for event e

7 1+1
b 619

D o o > LC’(e;) < LC(e;’fl)

p >
\ LC(e') < LC(el)
€
q >

Increment Rules

LC(e max(LC’(eJ SR)) +1

q

Timestamp m with T'S(m) = LC(send(m))

Discussion

@ What are the strengths of Lamport clocks?
@ What are the limitations of Lamport clocks?

@ What model assumptions are too constraining
in Lamports clock paper?

Example of Global
Predicate

@ Setting: Locks in distributed system

@ Objects locked by nodes and moved to the
node that is currently modifying it

@ Nodes requesting the object/lock, send a
message to the current node locking it
and blocks for a response

@ How do we detect deadlocks in this scenario?

Global States & Clocks

@ Need to reason about global states of a
distributed system

@ Global state: processor state + communication
channel state

@ Consistent global state: causal dependencies are
captured

@ Use virtual clocks to reason about the timing
relationships between events on different nodes

Space-Time diagrams

A graphic representation of a distributed execution

time

NG -

O

——

H and — impose a partial order

Cuts

A cut C is a subset of the global history of H

The frontier of C is the set of events

T

Consistent cuts and
consistent global states

@ A cut is consistent if

Vei,ej:ejEC'/\eiﬁejieiEC

@ A consistent global state is one corresponding
to a consistent cut

What pg sees

v

the cut contains
the event corresponding to the receipt of the
last message by ps but not the corresponding
send event

Global Consistent States

@ Can we use Lamport Clocks as part of a
mechanism to get globally consistent states?

Global Snapshot

@ Develop a simple global snapshot protocol
@ Refine protocol as we relax assumptions

@ Record:
O processor states
o channel states

@ Assumpftions:
o FIFO channels
o Eachm timestamped with with T'(send(m))

Snapshot 1

i. po selects tss

po sends "take a shapshot at ¢s5" to all processes

when clock of p; reads tss then p
a. records its local state o;
b. sends an empty message along its outgoing channels

c. starts recording messages received on each of incoming
channels

d. stops recording a channel when it receives first message
with timestamp greater than or equal to %,

Snapshot 11

@ processor po selects (2

@ po sends “take a snapshot at Q“ to all processes; it waits for
all of them to reply and then sefs its logical clock fo Q

® when clock of p; reads () then p;

O records its local state o;
O sends an empty message along its outgoing channels

O starts recording messages received on each incoming
channel

O stops recording a channel when receives first message
with timestamp greater than or equal tfo)

Relaxing synchrony

take a
snapshot at ()

empty message:

TS(m)=

Pi

Process does nothing
for the protocol
during this timel

T s s s ™ it B A R 1 L e o
|
records'———~—-

|
|
local state o; |
|
|

sends empty message:
LS (m)ik)

monitors
channels

Snapshot III

@ processor po sends itself “take a snapshot *

@ when p; receives "take a snapshot” for the first time from p;:

O records its local state 0;
D sends “take a snapshot” along its outgoing channels

0O sets channel from p; fo empty

DO starts recording messages received over each of its other incoming
channels

@ when p; receives "take a snapshot” beyond the first time from py:

0 stops recording channel from py

@ when p; has received “take a snapshot” on all channels, it sends
collected state to po and stops.

Same problem,
different approach

@ Monitor process does not query explicitly

@ Instead, it passively collects information and
uses it to build an observation.
(reactive architectures, Harel and Pnueli [1985])

An IS an ordering of event of the
distributed computation based on the order in
which the receiver is notified of the events.

Di

Update rules

m
€;

>

Message m is

timestamped with
TS(m)=VC(send(m))

V O edig= maxVaCs TS]

VC(e)[i] := VO] + 1

>

)

Example

[1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

Gt

[0,1.0] / / [4.3,3]
P3

[1,0,1] [1,0,2] [1,0,3] [5,1,4]

Operational
iInterpretation

[1,0,0] [2,1,0] [3,1,2] [4,1,2] [5,1,2]

[0,1,0] / / [4,3,3]
P3

[1,0,1] [1,0,2] [1,0,3] [5,1,4]

VC(e;)[i] = no. of events executed by p; up fo and including e;

VC(e;)|j] = no. of events executed by p; that happen before ¢e; of p;

VC properties:
event ordering

Given two vectors V and V, less than is defined as:
Vi WV =@ VN, 1 sslesn o Vikl e JAIE]

@ Strong Clock Condition: e — ¢ =V C(e) < VC(€)

@ Simple Strong Clock Condition:
Given e; of p; and ¢; of pj, where i # j
e; — e; = VC(e)[i] < VCl(e;)]i]
@ Concurrency
Given e; of p; and ¢; of p;, where i # j
ei || e5 = (VC(ei)[i) > VC(ej)[i]) A (VC(ej)li] > VC(ei)lil)

The protocol

@ po maintains an array D|1,...,n|of counters

@ Dli]| = TS(m;)|i]| where m; is the last
message delivered from p;

Rule: Deliverm from p; as soon as both of
the following conditions are satisfied:

Dlj] = TS(m)|j] =1
D[k] = TS(m)[k|,Vk # j

Summary

@ Lamport clocks and vector clocks provide us
with good tools to reason about timing of
events in a distributed system

@ Global snapshot algorithm provides us with
an efficient mechanism for obtaining
consistent global states

