Google File System

Google File System

e Google needed a good distributed file system

e Why not use an existing file system?

Google Workload

e Hundreds of web-crawling application
e Files: few million of 100MB+ files

e Reads: small random reads and large streaming

Life without random writes

® E.g., results of a previous search:

www.pagel.com -> www.my.blogspot.com
www.page2.com -> www.my.blogspot.com

® Let's say new results: page2 no longer has the link, but there is a
hew page, page3:

www.pagel.com -> www.my.blogspot.com
www.page3.com -> www.my.blogspot.com

http://www.page1.com
http://www.my.blogspot.com
http://www.page2.com
http://www.my.blogspot.com
http://www.page1.com
http://www.my.blogspot.com
http://www.page3.com
http://www.my.blogspot.com

Atomic Record Append

e GFS client contacts the master
e Master chooses and returns the offset

e Client appends the data to each replica at

GFS Design Decisions

e Files stored as chunks (fixed size: 64MB)
e Reliability through replication

e each chunk replicated over 3+ chunkservers

e Simple master to coordinate access, keep
~ metadata

o

GFS Architecture

Application| _ : ‘FS maste ‘oo/bar
Pt (file name, chunk index) | GFS master o~ [Too/bar

A&) " . YNy
GFS client File namespace chunk 2el0

(chunk handle,

chunk locations) _

Legend:

mmmd Dala messages
Instructions to chunkserver —_— Control messages
Chunkserver state
(chunk handle, byte range)
GFS chunkserver GFS chunkserver
chunk data

e What are the implications of this design?

Key Design Choices

e Shadow masters

e Minimize master involvement

* Never move data through it (only metadata)

Metadata

e Global metadata is stored on the master
e File and chunk namespaces

* Mapping from files to chunks

Durability

e Master has an operation log for persistent
logging of critical metadata updates

e each log write is 2PC to multiple remote machines
e replicated transactional redo log

L]
e group commit to reduce the overneaa
o v [s 9 w P R P UUUU x S Yy s PRt g = = =rSF Gl g PR Ll L2t S - (i

Mutable Operations

Mutation is write or
append

_ Master
Goal: minimize master 3
i nVO IVemenT Secondary

Replica A

Lease mechanism

Primary

e Master picks one replica as e Lezend:
primary. gives it a lease —— Control
. ; : Sccn‘nd;u'} - Data
e Primary defines a serial Replica B

order of mutations

Data flow decoupled from
control flow

Write Operations

e Application originates write request

e GFS client translates request from (fname,
data) --> (fname, chunk-index) sends it to
master

e Master responds with chunk handle and

alaTalala Y N2
|

Write Operations (contd.)

Primary determines serial order for data
instances stored in its buffer and writes the
instances in that order to the chunk

Primary sends serial order to the secondaries
and tells them to perform the write

Secondaries respond to the primary
Primary responds back to client

Note: if write fails at one of the
chunkservers, client is informed and retries
the write

BigTable Motivation

e Lots of (semi)-structured data at Google
e URLs: contents, crawl metadata, links
e Per-user data: preference settings, recent queries

e (Geographic locations: physical entities, roads,
satellite image data

Why not use commercial DB?

e Scale is too large for most commercial
databases

e Evenif it weren't, cost would be very high

e Building internally means system can be applied
across many projects

Goals

® Want asynchronous processes to be continuously
updating different pieces of data

® want access to most current data
®* Need to support:

® very high read/write rates (million ops/s)

Building blocks

e GFS: stores persistent state

e Scheduler: schedules jobs involved in BigTable
serving

BigTable Overview

e Data Model

e Implementation structure

- ¢ Tablets, compactions, locality groups, ...

Basic Data Model

e Distributed multi-dimensional sparse map
e (row, column, timestamp) --> cell contents

e Good match for most of Google's
applications

"contents:” "anchor:cnnsi.com" "anchor:my.look.ca”

"com.cnn.www"

Rows

 Name is an arbitrary string
e Access to data in a row is atomic

* Row creation is implicit upon storing data

Tablets

e Large tables broken into "tablets" at row
boundaries

e Tablet holds contiguous range of rows
e Aim for 100MB to 200MB of data/tablet

b Oerving macnine resobonsibile tTor abpout @‘

Tablets & Splitting

“language” “contents”

v]

dda.com

cnrn.com

cnn.comy/sports. html

TABLETS

Website.com

Zuppa.com/menu.html

Locating Tablets

® Approach: 3-level hierarchical lookup scheme for tablets
® Location is ip:port of relevant server
® 1st level: bootstrapped from lock server, points o METAO
® 2nd level: Uses METAO data to find owner of META1 tablet
® 3rdlevel: METALI table holds location of tablets of all other tables

UserTable1
TADSE (oI
METADATA
iabiets TR

Chubby file {15 METADATA tzbiet)

UserTabloN

Basic Implementation

e Werites go to log then to in-memory table
"memtable” (key, value)

e Periodically move in-memory table to disk

e SSTable is immutable ordered subset of table;

S el :

Basic Implementation

® Reads: maintain in-memory map of keys to SSTables
® current version is in exactly one SSTable or memtable

® reading based on timestamp requires multiple reads

® may also have to read many SSTables to get all of the
columns

Bloom filters

® Goal: efficient test for set membership: member(key)
-> true/false

® false ==> definitely not in the set

® true ==> probably is in the set

® (Generally supports adding elements but not removing
them

