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Probably the most basic reason behind the absence of a general 
treatment of resource allocation in modern computer systems is 
an adequate model for program behavior. In this paper a new 
model, the "working set model," is developed. The working set 
of pages associated with a process, defined to be the collec- 
tion of its most recently used pages, provides knowledge vital 
to the dynamic management of paged memories. "Process" 
and "working set" are shown to be manifestations of the same 
ongoing computational activity; then "processor demand" 
and "memory demand" are defined; and resource allocation 
is formulated as the problem of balancing demands against 
available equipment. 
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1. I n t r o d u c t i o n  

Resource allocation is a tr icky business. Recently there 
has been much dialog about process scheduling and core 
memory management,  yet  development of techniques has 
progressed independently along both these lines. No one 
will deny that  a unified approach is needed. Here we show 
that  it is possible to develop a unified approach. Starting 
from the observation that  every running program places 
demands jointly on all system resources, particularly 
processor and memory, we eventually define "system 
demand";  the allocation problem will consist of balancing 
demands against available resources• 

We regard a computation as being the fundamental 
act ivi ty in a computer system; in this paper, a computation 
consists of a single process together with the information 
available to it. (For a complete discussion of the meaning 
of "computat ion,"  see Dennis and Van Horn [1].) The 
usual notion "process" is one manifestation of a computa- 
tion, in the form of a demand for a processor (a "processor 
demand")  The notion '~working set of information" 
introduced here is another manifestation of a computation, 
in the form of a demand for memory (a "memory demand"). 
A computation's "system demand" will consist jointly of 
its processor and memory demands. 

Probably the most basic reason for the absence of a 
general t reatment  of resource allocation is the lack of an 
adequate model for program behavior. In  this paper we 
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develop a new model, the working set model, which em- 
bodies certain important  behavioral properties of com- 
putations operating in multiprogrammed environs, en- 
abling us to decide which information is in use by a running 
program and which is not. We do not intend that  the pro- 
posed model be considered "final"; rather, we hope to 
stimulate a new kind of thinking that may be of consider- 
able help in solving many operating system design prob- 
lems. 

The working set is intended to model the behavior of 
programs in the general purpose computer system, or 
computer utility. For this reason we assume that  the 
operating system must determine on its own the behavior 
of programs it runs; it cannot count on outside help. Two 
commonly proposed sources of externally supplied allo- 
c a t i o n  information are the user and the compiler. We 
claim neither is adequate. 

Because resources are multiplexed, each user is given the 
illusion that  he has a complete computing system at his 
sole disposal: a virtual computer. For our purposes, the 
basic elements of a virtual computer are its virtual proc- 
essor and an "infinite," one-level virtual memory, Dynamic 
"advice" regarding resource requirements cannot be ob- 
tained successfully from users for several reasons: 

(1) A user may  build his program on the work of others, 
frequently sharing procedures whose time and storage 
requirements may  be either unknown or, because of data  
dependence, indeterminable. Therefore he cannot be ex- 
pected to estimate processor-memory needs. 

(2) I t  is not clear what sort of "advice" might be solic- 
ited. Nor is it clear how the operating system should use it, 
for overhead incurred by using advice could well negate 
any advantages attained. 

(3) Any advice acquired from a user would be intended 
(by him) to optimize the environment for his own pro- 
gram. Configuring resources to suit individuals may inter- 
fere with overall good service to the community of users. 
Thus it seems inadvisable at the present time to permit a 
user, at his discretion, to advise the operating system of his 
needs. 

Likewise, compilers cannot be expected to supply 
information extracted from the structure of the program 
regarding resource requirements: ~ 

(1) Programs will be modular in construction; informa- 
tion about other modules may be unavailable at compila- 
tion time. Because of data dependence there may be no 

1 There have been attempts to do this. Ramamoorthy [2], for 
example, has put forth a proposal for automatic segmentation of 
programs during compilation. 
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way to decide (until run time) just  which modules will be 
included in a computation. 

(2) Compilers cluttered with extra machinery to predict 
memory needs will be slower in operation. Many  users are 
less interested in whether their programs operate eftieiently 
than whether they operate at all, and are therefore eon- 
eerned with rapid compilation. Furthermoi'e the compiler 
is an often-used component of the operating system; if slow 
and bulky, it can be a serious drain on system resources. 

Therefore we are recommending mechanisms that  
monitor the behavior of a eomputation, basing allocation 
decisions on currently observed characteristics and not on 
advisories from programmers or compilers. Only a mech- 
anism that  oversees the behavior of a program in operation 
can cope with arbitrary intereonneetions of arbitrary 
modules having arbitrary characteristics. 

Our t reatment  proceeds as follows. As background, we 
define the type of eomputer system in which our ideas are 
developed and discuss previous work with problems of 
memory management. We define the working set model, 
examine its properties, and then outline a method of 
implementing memory management  based on this model. 
Finally, we show how "memory demand"  is defined by a 
working set, how "processor demand"  is defined by a 
process, and how resource allocation is a problem of 
balancing demands against equipment. 

2. Background 

We assume that  the reader is already familiar with the 
concepts of a computer utility [3-5], of segmentation 
and paging [1, 6], and of program and addressing structure 
[1, 7-9]; so we only mention these topics here. 
Briefly, each process has access to its own private, seg- 
mented name space; each segment known to the process is 
sliced into equal-size units, called pages, to facilitate 
mapping it into the paged main memory. Associated with 
each segment is a page table, whose entries point to the 
segment's pages. An "in-core" bit in each page table entry 
is turned ON whenever the designated page is present in 

PROCESSORS 

,-Traverse Time T 

FiG. 1. Two-level memory system 
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main memory2; an a t tempt  to reference a page whose 
"in-(tore" bit is OFF causes a page fault, initiating pro- 
ceedings to secure the missing page. A process has three 
states of existence: running, when a processor is assigned 
to it; ready, when it would be running if only a processor 
were available; or bloeked, when it has no need of a 
processor (for example, during a page fault or during a 
console interaction). When talking about processes in 
execution, we will have to distinguish between "process- 
t ime" and "reM-time." Process-time is time as seen by a 
process unaware of suspensions; tha t  is, as if it executed 
without interruptions. 

We restrict a t tent ion to a two-level memory system, 
indicated by Figure 1. Only data  residing in main memory 
is accessible to a processor; all other data  resides in aux- 
iliary memory,  which we regard as having infinite capacity. 
There is a time T, the traverse time, involved in transferring 
a page between memories, which is measured from the 
moment  a page fault occurs until  the moment  the missing 
page is in main memory ready for use. T is actually the 
expectation of a random variable composed of waits in 
queues and mechanical positioning delays. Though it 
usually takes less time to store into auxiliary memory 
than to read from it, we shall regard the traverse time T 
to be the same regardless of which direction a page is 
moved. 

A basic allocation problem, "core memory manage- 
ment ,"  is that  of deciding just which pages are to occupy 
main memory. The fundamental  s trategy advocated 
here - -a  compromise against a lot of expensive main 
memory- - i s  to minimize paeye trad~c, a There are at least 
three reasons for this: 

(1) The  more data  traffic between the two levels of 
memory,  the more the computational overhead will be 
deciding just what  to move and where to move it. 

(2) Because the traverse time T is long compared to a 
memory cycle, too much data  movement can result in 
congestion on the channel bridging the two memory levels. 

(3) Too much data  traffic can result in serious inter- 
ference with processor efficiency on account of auxiliary 
memory devices "stealing" memory cycles. 

Roughly speaking, a working set of pages is the mini- 
mum collection of pages that  must be loaded in main 
memory for a process to operate efficiently, without "un- 
necessary" page faults. According to our definitions, a 
"process" and its "working s e t "  are but  two manifesta- 
tions of the same ongoing computational activity... 

Pi~EVmUS WORK. In this section we review stratcgies 
tha t  have been set forth in the past for memory manage- 
ment;  the interested reader is referred to the literature for 
detail. 

Consistent with current usage, we will use tile terms "core 
memory" and "main memory" interchangeably. 
3 Since data is stored and transmitted by pages, we can (without 
ambiguity) refer to data movement between memories as "page 
traffic." 
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We regard manf~gement of paged memories as operating 
ii~ two stages: 

(1) Pag'ir~g-ir~: locate the required page in auxiliary 
memory, load it into m~in memory, turn the 
"in-core" bit of the appropriate page table entry 

(2) Paging-out: remove some page from main memory, 
: turn the "in-core" bit of the appropriate page 

table entry OFF. 
.... Management algorithms can be classified according to 

i 
their methods of paging-in and paging-out. Nearly every 
strategy pages in on demand; that  is, no action is taken to 
load a page into memory until some process attempts to 
reference it. There have been few proposals to date 
recommending look-ahead, or anticipatory page-loading, 
because (as we have stressed) there is no reliable advance 
source of allocation information, be it the programmer or 
the compiler. Although the working set is the desired 

! 

information, it might still be futile to preload pages: there 
? is no guarantee tha t  a process will not block shortly after 

resumption, having referenced only a fraction of its work- 
mg set. The operating system could devote its already 
precious time to activities more rewarding than loading 
pages which may not be used. Thus we will assume that  
paging-in is done on demand only, via the page fault 

: mechanism. 
: The chief problem in memory management is not to 

decide which pages to load, but which pages to remove. 
For, if the page with the least likelihood of being reused in 
the immediate future is retired to auxiliary memory, the 
best choice has been made. Nearly every worker in the 
field has recognized this. Debate has arisen over which 
strategy to employ for retiring pages; that  is, which page- 
turning or replacement algorithm to use. 

A good measure of performance for a paging policy is 
page tra~c (the number of pages per unit time being 
moved between memories) because erroneously removed 

! 

pages add to the traffic of returning pages. In the following 
we use this as a basis of comparison for several strategies. 

Random Selection. Whenever a fresh page of memory 
is needed, a page to be replaced is selected at random. 
Although utterly s imple to implement, this method 
frequently removes useful pages (which must be recalled), 
and results therefore in high page traffic. 

FIFO (First-In/First-Out) Selection. Whenever a fresh 
page of memory is needed, the page least recently paged in 
is retired and another page is brought in to fill the now 
vacant slot. Implementation is simple. The pages of main 
memory are ordered in a cyclic list; suppose the M pages 
of memory are numbered O, 1 , . . . ,  ( M -  1) and a 
pointer k indicates that  the kth page was most recently 
paged in. When a fresh page of memory is needed, [(Ic q- 1) 
rood M] -+ k, and page k is retired. This method is based on 
the assumption that  programs tend to follow sequences of 
instructions, so that  references in the immediate future 
will most likely be close to present references. So the page 
which has been in memory longest is least likely to be 
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reused: hence the cyclic list. We see two ways in which this 
algorithm can fail. First, we question its basic assumption. 
I t  is not at all clear that  modular programs, which execute 
numerous intermodule calls, will indeed exhibit sequential 
instruction fetch patterns. The thread of control will not 
string pages together linearly; rather, it will entwine them 
intricately. Fine et al. [10] and Varian and Coffman [11] 
have experimental evidence to support this, namely, that  
references will be scattered over a large collection of 
pages. Second, this algorithm is subject to overloading 
when used in multiprogrammed memories. When core 
demand is too heavy, one cycle of the list completes 
rapidly and the pages deleted are still needed by their 
processes. This can create a self-intensifying crisis. Pro- 
grams, deprived of still-needed pages, generate a plethora 
of page faults; the resulting traffic of returning pages dis- 
places still other useful pages, leading to more page faults, 
and so on. 

Least Recently Used (LRU) Selection. Each page-table 
entry contains a "use" bit, set to ON each time the page is 
referenced. At periodic intervals all page-table entries are 
searched and usage records updated. When a fresh page of 
memory is needed, the page unrefereneed for the longest 
time is removed. One can see that  this method is intrin- 
sically reasonable by considering the simple ease of a 
computer where there is exactly one process whose pages 
cannot all fit into main memory. In  this case a very reason- 
able choice for a page to replace is the least recently used 
page. Unfortunately, this method is also susceptible to 
overloading when many processes compete for main 
memory. 

A T L A S  Loop Detection Method. The Ferranti ATLAS 
computer [12] had proposed a page-turning policy that  
attempted to detect loop behavior in page reference 
patterns and then to minimize page traffic by maximizing 
the time between page transfers,  that, is, by removing 
pages not expected to be needed for the longest time. I t  
was only successful for looping programs. Performance 
was unimpressive for programs exhibiting random ref- 
erence patterns. Implementation was costly. 

Various studies concerning behavior of paging al- 
gorithms have appeared. Fine et al. [10] have investigated 
the effects of demand paging and have seriously questioned 
whether paging is worthwhile at all. We cannot agree 
more with their data, nor agree less with their conclusion. 
Their experiments, as well as those of Varian and Coffnmn 
[11], confirm that  should there not be enough core memory 
to contain most of a program, considerable paging activity 
will interfere with efficiency. The remedy is not to dismiss 
paging; it is to provide enough core memory! Put  another 
way, there should be enough core memory to contain a 
program's working set. Paging is no substitute for real core. 

Belady [13] has compared some of the algorithms 
mathematically. His most important conclusion is that  the 
"ideal" algorithm should possess much of the simplicity of 
Random or FIFO selection (for eff iciency)and some, 
though not much, accumulation of data on past reference 
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patterns. He has shown that too much "historical" d:~t:~ 
can have adverse effects (witness ATLAS). 

In Section 3 we begin investigation of the working set 

concept. Even though the ideas are not entirely new [9, 

14, 15], there has been no detailed documentation publicly 

available. 

3. W o r k i n g  S e t  M o d e l  

From the programmer's standpoint, the working set of 
information is the smallest collection of information that  
must be present in main memory to assure efficient execu- 
tion of his program. We have already stressed that  there 
will be no advance notice from either the programmer or 
the compiler regarding what information "ought"  to be in 
main memory. I t  is up to the operating system to deter- 
mine, on the basis of page reference patterns, whether 
pages are in use. Therefore the working set of information 
associated with a process is, from the system standpoint, 
the set of most recently referenced pages. 

We define the working set of information W(t, z) of a 
process at time t to be the collection of information refer- 
enced by the process during the process time interval 
(t -- r, t). 

Thus, the information a process has referenced during 
the last ~- seconds of its execution constitutes its working 
set (Figure 2). r will be called the working set parameter. We 

A working set W(t, r) has four important,  general 
properties. All are properties of typical programs and need 
not hold in special eases. During the following discussion of 
these properties, assume that  W(t, r) is continuously in ii 
main memory, tha t  its process is never interrupted except 
for page faults, tha t  a page is removed from main memory 
the moment it leaves W(t, r), and that  no two working 
sets overlap (there is no sharing of information). 

P1. Size. I t  should be clear immediately that 
oo(t O) = 0 since no page reference can occur in zero time. 
I t  should be equally clear that,  as a function of ~-, co(t, r) 
is monotonically increasing, since more pages can be refer- 
eneed in longer intervals, oo(t, r) is concave downward. 
To see this, note tha t  

}!!~! 

w( t ,  2~) = w ( t ,  ~-) U w ( t  - r, ~-), (3 )  

which implies tha t  

o~(t, 2r) =< oo(t, r) + w(t -- r, r) .  (4) 

Assuming statistical regularity, ~(t, r) behaves on the : 
average like ~(z -- r, r) ,  so that  on the average 

oo(t, 2r) =< 2oo(t, r) .  (5) 

The general character of oo(t, ~-) is suggested by the i 
smoothed curve of Figure 3. .i 

I 

I 
I 
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FIG. 2. 

= process time 

pages referenced in this~ 
interval constitute w(t,~-) J 
Definition of W(t, ~-) 

regard the elements of W(t, r) as being pages, though they 
could just as well be any other named units of infor- 
mation. The working set size oo( t, r) is 

w(t, r) = number of pages in W(t, r).  (1) 

Let  the random variable x denote the process-time 
interval between successive references to the same page; 
let F,(a)  = Pr [x =< a] be its distribution function; let 
f , (a )  = dF~(a)/da be its density function; and 2 denote 
its mean: 

P ~o 

:~ = J0 af=(c~) da. (2) 

These interreference intervals x are useful for expressing 
working set properties. 

~o(t ~) 

0 

FIO. 3. Behavior of w(t, r) 

---" 3 "  

P2. Prediction. We expect intuitively tha t  the im- 
mediate  past page reference behavior of a program con- 
stitutes a good prediction of its immediate future page 
reference behavior: for small time separations a, the set 
W(t,  T) is a good predictor for the set W(t  + a, r). To 
see this more clearly, suppose a < r. Then 

W(t  + a, r) = W( t  + o~, a) U W(t,  r - ,~). (6) 

Because references to the same page tend to cluster in 
time, the probability 

Pr [W(t + a, a) f'l W(t ,  r) = ~o] 

tends to be small. Therefore some pages of W(t, r) will 
still be in use after time t (i.e. pages in W(t  + a, a) ; since 
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~ t l s ( )  

pv(t, ¢ - ~) _~ t;v(~, ¢) N ~,~(t + ~, ¢), (7) 

W(t, r)  is a good predietor for W(t + ~, r ) .  On the other 
hand, for large time separations ~ (say, o~ >> r)  control 
will have passed tkrough a great many program modules 
during the interval (t, t ÷ c~), and IV(t, ~) is not a good 
predictor for W(t + c~, r). 

P3. Reentry Rate. As r is reduced, co(t, r) decreases, 
so the probability tha t  useful pages are not in W(t, r) 
increases; correspondingly the rate at which pages are 
recalled to W(t, r) increases. We define two func- 
tions: a process-time reentry rate X(r) defined so that  the 
mean process time between the instants at which a given 
page reenters W(t, r) is 1/X(r) ,  arid a real-time reentry 
rate e ( r )  defined so that  the mean real-time between the 
instants at which a given page reenters W(t, r) is 1 /~( r ) .  

Let {t,~},,.ao he a sequence of instants in process time at 
which successive references to a given page occur. The n th  
interreferenee interval is x~ = t~ - t,~q; but we are 
assuming the interreferenee intervNs {Xn},~¢1 are inde- 
pendent,  identically distributed random variables, so 
that  for all n ->_ 1, ];~(a) = f , ( a ) .  A reentry point is a 
reference instant  which finds the page not in W(t, r ) :  
at such an instant  the page reenters W(t, r). The refer- 
ence instant t~ is a reentry point if x~ > r, independently 
of other reference instants. Suppose to is a reentry point; 
we are interested in 7r,,, the probability tha t  t~ is the first 
reentry point after to. The probabilities {7r.}~¢1 are dis- 
t r ibuted geometrically: 

~r~ = Pr  [t., first reentry after to] = ~'"-l(1 -- ~'), (8) 

where ~- = l?r [x =< r] = F , ( r ) .  Tha t  is, t,~is the first 
reentry after to if all the instants {h, " . .  , &_~} are not 
reentry instants, and t~ is a reentry. The expected num- 
ber ~ of reference instants until  the first reentry is 

= nrr~ - . ( 9 )  
r * = l  1 - -  ~" 

Each reference interval is of expected length 2 [eq. (2)], 
so the mean time re(r) between reentries is re(r) = 
~2. Therefore 

re(r)  - 
1 - -  Fx(r)" 

We define the reentry rate X(r) to be 

X(r) - 1 _ 1 - F,(r) (10) 
m ( ~ )  .~ ' 

whm~ X(r) is the average process-time rate at which one 
page is I,~entering W(t, r ) .  

Assuming that  storage management mechanisms retain 
in main memory only the pages of W(t, r), every page 
reentering W(t, r) must be recalled from auxiliary mem- 
ory and contributes to page traffic; we here estimate this 
contribution. In an interval A of process time, the ex- 

peered number of times a single page reenters W(t, r) 
is A t ( r ) ;  each reentry causes the process to enter a 
"page-wait" state for one traverse time T, a total of 
(AX(r )T)  seeonds spent in page wait. Therefore the total 
real-time spent to recall a page AX(r) times is (A + 
AX(r )T) .  Tile return tra~c rate ~(r) is 

~ ( r )  - A t ( r )  
A + Ax(~)T' 

that. is, 

~(~) = X ( r )  
1 + X(r )T '  (11)  

where ~(r )  estimates the average reM-time rate at which 
one page is reentering W(t, r). That  is, the mean real- 
time between reentries is 1 / e ( r ) .  

Later in the paper we define "memory balance," a 
condition in which the collection of working sets residing in 
main memory at any time just consumes some predeter- 
mined portion ¢~ of the available M pages of main memory. 
That  is, on the average, 

oo(t, r) = ¢~M. (12) 
w 0 r k i  ng  s e t s  

i n  m a i n  m e m o r y  

In this ease, the average nulnber of pages in memory be- 
longing to working sets is ~M; we define the total return 
trafic rate q~(r) to be the total reentry rate in real-time to 
main memory, when the worldng sets contained therein 
are not interrupted except for page waits: 

• (r) = 5Me(r) - BMX(r) 
1 + X ( r ) T '  (13 )  

where ~ ( r )  estimates the average number of pages per 
unit real-time returning to main memory from auxiliary 
memory. Since "memory balance" is an equilibrium con- 
dition, there must  also be a flow of pages ~ ( r )  from main 
to auxiliary memory. Therefore 2 ¢ ( r ) m e a s u r e s  the 
capacity required of the channel bridging the two memory 
levels. 

I t  must be emphasized that  the reentry rate functions 
X(r), ~'(r), and ~I,(r) are estimates. The important  point 
is: starting from the probability density fnnction f,(c~) for 
the page interreference intervals x, it is possible to esti- 
mate the page trafiqc which results from the use of working 
sets for memory allocation. 

P4. r-Sensitivity. I t  is useful to define a sensitivity 
function ~r(r) tha t  measures how sensitive is the reentry 
rate X(r) to changes in r. We define the r-sensitivity of a 
worldng set W(t, r) to be 

d X(r) .L(~) (14) 
~ ( r )  = - -d-~  - 

That  is, if r is decreased by dr, X(r) increases by o-(r) dr. 
I t  is obvious that  z ( r )  => 0; reducing r can never result 
in a decrease in the reentry rate X(r). 

CHOICE OF r. The value ultimately selected for r w i l l  
reflect the working set properties and etfieiency requite- 
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ments and will be influenced by system parameters such 
as core memory size and memory traverse time. Should ~- 
be too small, pages may be removed from main men,cry 
while still useful, resulting in a high traffic of returning 
pages. The return traffic functions X(r), ~ ( r ) ,  and 4'(r) ,  
and the r-sensitivity z ( r ) ,  play roles in determining when 
r is " too small." Should r be too large, pages may renmJn 
in main memory long after they were used, resulting in 
wasted main memory. The desired nmnber  of working sets 
simultaneously to occupy a core memory of given size 
plays a role in determining when r is "too large." Thus the 
value selected for r will have to represent a compromise 
between too rnueh page traffic and too much wasted 
memory space. 

The following consideration leads us to recommend for r 
a value comparable to the memory traverse time T. 
Define the residency of a page to be the fraction of time it 
is potentially available in core memory. Assuming that  
memory allocation procedures bMk at removing from main 
memory any page in a working set. once a page has en- 
tered W(t, r) it will remain in main memory for at least 
r seconds. Letting x be the interreference interval to a 
given page, we have: 

( 1 ) If x N r, the page will reside in main memory t00 per- 
cent of the time. 

(2) I I r  < z =< ( r  + T),  the page will reside in main 
memory r / ( r  + 2T) of the time: it resides in main memory 
for an interval of r seconds, after Which it  is dispatched to 
auxiliary memory;  while in transit it  is rerefereneed, so it 
nmst begin a return trip as soon as it reaches auxiliary 
memory, a total of two traverse times for the round trip. 
Therefore the page reappears in main memory ( r  -I- 27') 
seconds after the previous reference. 

(3) If x > ( r  + T),  the page will reside in main 
memory r / (x  ÷ T) of the time: it residesin main memory 
for an interval of r seconds, after which it  is dispatched to 
auxiliary memory; sometime after having reached auxiliary 
memory it is rereferenced, requiring T seconds for the 
return trip. Therefore the page reappears in main memory 
(x + T) seconds after the previous reference. 

Residency 

I00% 

T 

~'+2T 
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Figure 4 shows the residency as a funeti(m of x. ti~ the 
i~terest of efi icieney, it is desirable that  the drop from 
100 percent to r / ( r - F  2T) a t z  = r is not too severe; 
thus, for example, should we wish to limit the drop to 
50 percent, we should have to choose r :~ 27'. 

D~r~:cm~N(~ W(t, r). According to our definition, 
W(t, r) is the set of its pages a process has referenced 
within the last r seconds of its execution. This suggests 
tha t  memory management can be controlled with hard- 
ware mechanisms, by associating with each page of main 
memory a timer. Each time a page is referenced, its timer 
is set to r and begins to run down; if the timer succeeds in 
running down, a flag is set to mark the page for removal 
whenever the space is needed. In the Appendix we describe 
a hardware memory management  meehanism that  could 
be housed within the memory boxes. I t  has two interesting 
features: 

(1) i t  operates asynehronously attd independently of 
the supervisor, whose only responsibility in memory 
management is handling page faults. Quite literally, 
memory manages itself. 

(2) Analog devices such as eapacitative timers could be 
used to measure intervals. 

Unfortunately it is not  practical to add hardware to 
existing systems. We seek a method of handling memory 
management within the software. The procedure we pro- 
pose here samples the page table entries of pages in core 
memory at process-time intervals of z seconds (or is called 
the "sampling interval")  where z = r /K,  K an integer 
constant chosen to make the sampling intervals as "fine 
grain" as desired. On the basis of page references during 
each of the last K sampling intervals, the working set 
W(t,  K~r) can be determined. 

As indicated by Figure 5, each page table ent ry  eontains 
an "in-core" bit M, where M = 1 if and only if the page is 
present in main memory.  It. also contains a string of use 
bits Uo, u , ,  . . .  , UK. Each time a page reference occurs 
l -~ u0. At the end of eaeh sampling interval or, the bit 

r r+T  
FIG. 4. Residency 
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pattern c(mtained i~ uo, u~, 
ti(m, ~c 0 c~ters U0, and UK iS disc,q,rded : 

• -- , UK is shifted (me posi- 

(15) 
"~gO ~ ~1 

0 --4. %~0 • 

Then the logical sum U of the use bits is computed: 

U = u0 + ul q- . . .  + u~,  (16) 

so that U = 1 if and only if the page has been referenced 
during the last K sampling intervals; of all the pages 
associated with a process, those with U = 1 constitute its 
working set W(t, K~r). If U = 0 when M = 1, the page is 
no longer in a working set and may be removed from main 
memory. 

ME~aOaY ALLOCaTmN. The  basic assumption in mem- 
ory allocation is that  a program will not be run unless there 
is space in memory for its working set. 

In our discussion so far we have seen two alternative 
quantities of possible use in memory allocation: the work- 
ing set W(t, r) and the working set size co(t, r) .  Use of 
co(t, r)  is sufficient. 

Complete knowledge of W(t, r) ,  page for page, would be 
needed if look-ahead were contemplated. We have already 
discussed why past paging policies have eschewed look- 
ahead: the strong possibility that  preloading could be 
futile. A program organization likely to be typical of 
interactive, modular programs, shown in Figure 6, fortifies 
our previous argument against look-aheM. The  user sends 
requests to the interface procedure A ; having interpreted 
the request, A calls on one of the procedures B , ,  -. • , B~ 
to perform an operation on the data D. The  called B- 
procedure then retunis to A for the next user request. 

~ Each time the process of this program blocks, the working 
set W(t, r) is likely to change radically--sometimes only 
A may be in W(t, r ) ,  at other times one of the B-pro- 
cedures and D may be in W(t, r). The pages of W(t, r) 

USER 

FIG. 6. Organization of a program 
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are likely to be different. Thus, that  a process blocks for an 
interaetiort (not page faults) can be a strong indication of 
an imminent change in W(t, r). Therefore the look-ahead, 
which is most often used just after a process unblocks, 
would probably load pages not  likely to be used. 

Knowledge of only co(t, r)  with demand paging suffices 
to manage memory well. Before running a process we 
insure that  there are enough pages of memory free to con- 
tain its working set W(t, r), whose pages fill free slots 
upon demand. By implication, enough free storage has 
been reserved so that  no page of a working set of another 
program is displaced by a page of W(t, r ) ,  as can be the 
case with other page-turning policies, co(t, r )  is a good 
measure of memory demand. 

4.  S c h e d u l i n g  

The previous discussion has indicated a skeleton for 
implementing memory management  using working sets. 
Now we fill in the flesh. 

If the working set ideas are to contribute to good service, 
an implementation should at  least have these properties: 

(1) Since there is such an intimate relation between a 
process and its working set, memory management and 
process scheduling must be closely related activities. One 
cannot take place independently of the other. 

(2) Efficiency should be of prime importance. When 
sampling of page tables is done, it should be only on pages 
in currently changing working sets, and it should be done 
as infrequently as possible. 

(3) The mechanism ought to be capable of providing 
measurements of current working set sizes and processor 
time consumptions for each process. 

Figure 7 displays an implementation having these 
properties. Each solid box represents a delay. The solid 
arrows indicate the paths that  may be followed by a 
process identifier while it traverses the network of queues. 
The dashed boxes and arrows show when operations am to 
be performed on the time-used variable t~ associated with 
process i; processor time used by process i since it was last 
blocked (page faults excluded) is recorded in t~. Let us 
trace a single process through this system: 

(1) When process i is created, an identifier for it is 
placed in the rea@ list, which lists all the processes in the 
ready state. Processes are selected from the ready list 
according to the prevailing priority rule. 

(2) Once selected front the ready list, process i is 
assigned a quantum q~, which.upper-bounds its time in 
the running list. This list is a cyclic queue; process i cycles 
through repeatedly, receiving bursts cr of processor time 
until it blocks or exceeds its quantum q~. Note that  the 
processor burst ~ is also the sampling interval. 

(3) If process i blocks, its identifier is placed in the 
blocked list, where it remains until the process unblocks; 
it is then re-entered in the ready list. 

Perennially present in the running list is a special proc- 
ess, the checker. The checker perfotzns core management 
functions. I t  samples the page tables of each process that  

C o m m u n i c a t i o n s  o f  t h e  ACM 329 



has received service since the last, time it ( the checker) 
was run, removing pages according to the algorithm dis- 
cussed at eqs. (15) and (16). i t  should be clear that if th(~ 
length of the running list is l and thePe are N processors, 
sampling of page tables occurs about every Ic~/N seconds. 
not every ~r seconds. 

Associated with process i is a counter w; giving fl~e cur- 
rent size of its working set. Each time a page fault occurs 
a new page enters W / t ,  r),  and so w~ must be increased 
by one. Each time a page is removed from IVy(t, r)  by  the 
checker, w; must be decreased by one. 

Having completed its management duties, the checker 
replenishes vacancies in the running list by  selecting jobs 
from the ready list according to the prevailing priority 
rule. This is diseussed in more detail below. 

5. Shar ing  

Sharing finds its place naturally. 
When pages are shared, working sets will overlap. If  

Arden's [7] suggestion concerning program structure 4 is 
followed, sharing of data can be accomplished without 
modification of the regime of Figure 7. I f  a page is in at 
least one working set, the "use bits" in the page table 
entry will be ON and the page will not be removed. To 
prevent anomalies, the checker must  not be permitted to 
examine the same page table more than once during one of 

ti ~ qi ti ~ qi 
~[t~ [quantum runout] 

urst over] 

R u n  on a processor 
for burst 0" 

,~-- - - 1.~,.2 or--'- t, ] 

page faul~ 

' pagelwalt 
(r seconds) 

[q ,tl 

¢ ¢ ¢  
t l  

Fssign quantum q i T l / ~  

unblocked] 

rs -,.-t3, 
I._2__!2 

[run process i] 

~.0 ~....~. t~L- . . . . .  "*.t [begin ~ 

It 'iG, 7, Implementa t ion  of schedul ing 

its samples. Allocation poll(des should {ol~(l to rtm tw0 
I)Poce~s~ tog(~ther in tim(, ~xhe~ever they nre sharing 
information (8ymptomiz{'d by overt:It) of their working 
sets), i~ order to a.v{)id tmnecessry Pelo:~.{ti~g (}[' the s:mle 
inl'oPnm.lion, l tow processes should be chaPged fop memory 
fist/go whorl  their working sets overlap is still ata ()pen clues- 
rich, and is under investigation. 

6. R e s o u r c e  Al loca t ion :  A B a l a n c i n g  P r o b l e m  

We have already pointed ou{; {ha{. a comi)ut;ation places 
demands jointly on the processor tHld InollloFy re so ln ' eos  

of a eompui;er system. A eomputation's  processor demand 
manifests itself as a process; its memory demand manifests 
itself as a working set.. i n  this section we show how notions 
of ' :demand" can be made precise and how resource 
allocation can be formulated as a problem of balancing 
processor and memory demands against available equip- 
ment.  

DES, rAND. Our purpose here is to define "memory 
demand"  and "processor demand,"  then eombi.ne these 
into the single notion "system demand."  

We define the memory demand m.; of computat ion i to be 

), m£ = rain \ M '  1 0 -< m~ ~ 1, (17) 

where M is the number  of pages of main memory,  and 
w~ = oo~(t, ~-) is the working set count, such as maintained 
by the scheduler of Figure 7. If a working set eontMns 
more than M pages (it is bigger than main memory) ,  we 
regard its demand to be rn = 1. Presumably M is large 
enough so that  the probability (over the ensemble of all 
processes) Pr[m = 1] is very smM1. 

"Processor demand" is more difficult to define. Just as 
m e m o r y  demand is in some sense g prediction of memory 
requirements in the immediate future, so processor d,~inand 
should be a prediction of processor requirements for the 

f (x) 

I 

J 

- - L  ~"  X 
T 

FIG. 8. P robab i l i t y  densi ty  function for q 

4 If a segment  is shared,  there  will be an  en t ry  for i t  in the segment 
tables  of each par t i c ipa t ing  process;  however,  each e n t r y  points 
to the same page table.  Each  physical segment  has exact ly  one 
page tab le  descr ibing it, bu t  a name for the  segment  mt~y appear 
in m a n y  segment  gables. 
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near future. There are many ways in which processor 
delna:nd could be defined. The method we have chosen, 
described below, defines a eomputation's  processor demand 
to be the fraction of a standard interval a process is ex- 
pected to use before it blocks. 

Let q be the random variable of processor time used by 
a process between interactions. (A process " interacts"  when 
it communicates with something outside its name space, 
e.g. with a user, or with another process.) In general 
character, fq(z), the probability density function for q, is 
hyper-exponential (for a complete discussion, see Fife 
[16]) : 

0 < a < b ,  
fq(z) = cae-a~ + (1 - b ,  - c)be , (18) 

O < c < l ,  

where f~(z) is diagrammed in Figure 8; most of the proba- 
bility is concentrated toward small q (i.e. frequently 
interacting processes), but fq(z) has a long exponential 
tail. 

Given that  it has been y seconds (process time) since 
the last interaction, the conditional density function for 
the time beyond ~, until the next  interaction is 

+ 
- -  oo P 

J~ fq(y) dy (19) 

cae -a¢~+~) -t- (1 -- c)be -b(~+~) 
= cce-'~ + (1 -- c)e-*~ ' z >=0, 

which is just tha t  portion of f , ( z )  for q => ~ with its area 
normalized to unity.  The conditional expectation of q, 
given % is 

P ao 

Q(~) 
= 1o dz 

(20) 
(c/a)e - ~  + [(1 -- c)/b]e -b~ 

ce-'~ + (1 -- c)e-b~ 

The conditional expectation function Q(.y) is shown in 
Figure 9. I t  starts at Q(0) = c/a + [(1 - c)/b] and rises 
toward a constant maximum of Q( oo ) = 1/a. Note that,  
for large enough % the conditional expectation becomes 
independent of v. 

The conditional expectation Q@) is a useful prediction 
function--if  7 seconds of processor time have been con- 
sumed by a process since its last interaction, we may 
expect Q(~) seconds of process time to elapse before its 
next interaction. I t  should be clear tha t  the conditional 
expectation function Q(~) can be determined and updated 
automatically by  the operating system. 

In order to make a definition of processor demand 
"reasonable," it is useful to establish symmetry  between 
space and time. Just as we are unwilling to allocate more 
than M pages of memory, so we may be unwilling to 
allocate processor time for more than a standard interval 
A into the future. A can be chosen to reflect the maximum 
tolerable response time to a user: for if processor time is 
allocated to some set of processes such that  their expected 

times till interactions total A, no process in tha t  set expects 
to wait more than A time units before its own interaction. 

We define the processor demand p~ of computation i to be 

P~ Q(ti) Q(0) < P~ < Q ( ~ )  
- N A  ' N A  = = N A "  (21)  

where N is the number of processors and ti is the time-used 
quanti ty for process i, such as maintained by the scheduler 
of Figure 7. 

The (system) demand D~ of computation i is a pair 

Di = (p i ,  mi), (22) 

where p~ is its processor demand [eq. (2 ! ) ]  and ml its 
memory demand [eq. (17)]. 

That  the processor demand is p~ tells us to expect com- 
putation i to use p~ of the processors for the next A units of 
execution time, before its next interaction. 5 That  the 
memory demand is m~ tells us to expect computation i to 
use (miM) pages of memory during the immediate future. 

BAT_~e~, Let  constants a and ~ be given. The computer 
system is said to be balanced if simultaneously 

p = a, 0 < ~_~ 1; (23) 
p r o c e s s e s  i n  
r u n n i n g  l i s t  

and 

m = f l ,  0</3_<_ 1, (24) 
p r o ~ s s e 8  i n  
r u n n i n g  l i s t  

where p is a processor demand, m a memory demand, and 
a, fl are constants chosen to cause any desired fraction of 
resource to constitute balance. I f  the system is balanced, 
the total demand presented by running processes just 
consumes the available fractions of processor and memory 
resources. Equation (23) defines "processor balance" and 
eq. (24) defines "memory balance," We can write eqs. 
(23) and (24) in the more compact form 

s =  D = ( p , m ) ,  (25) 
p r o c e s s e s  i n  
running l i s t  

so that  balance exists whenever eq. (25) holds; that  is, 
whenever S = (a, f~). 

Q(T) 

Q(®) 

O(O) 

T 

FIG. 9. Conditional expectation function for q 

' A reasonable choice for the quantum q~ (Fig. 7) granted to com- 
putation i might be qi = kQ(t~), for some suitable constant k ~ 1. 
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Whenever the system is balanced, it means that (~M) 
pages of memory have been committed to running com- 
putations, and that (aNA) units of processor time have 
been committed to running computations. 

Dynamic maintenance of S = ~ D  is straightforward. 
Whenever a process of demand (p, m) is admitted to the 
running list, S -4- (p, m) --~ S. Whenever a process of 
demand (p, m) exits the running list (except for page 
faults), S - (p, m) ~ S. Therefore S always measures 
the current total running list demand. 

BALANCE POLICIES. A "balance policy" is a resource 
allocation policy whose objective is to keep the computer 
system in balance. Expressed as a minimization problem 
it is: 

{minimize (S - (a, ~))}. (26) 

Instead of a priority in the ready list, a process has asso- 
ciated its demand D. In the event of imbalance, the next 
job (or set of jobs) to leave the ready list should be that 
whose demand comes closest to restoring balance. [2~eans 
of formulating this type of policy are currently under in- 
vestigation as part of doctoral research into the whole 
problem of resource allocation.] 

We do not wish to venture further here into the alluring 
problems of Mloeation policies; our aim is primarily to 
stimulate new thinking by sowing seeds of ideas. There 
are, however, three points we want to stress about policy 
(26): 

(1) I t  is quite clear that system performance is particu- 
larly sensitive to overcommitment of memory: when too 
many working sets occupy main memory, each is displac- 
ing another's pages in an attempt to have its own pages 
present. This phenomenon, known as "thrashing," can 
easily result in a large number of programs stalled in the 
page-walt state, implying sticky congestion on the channel 
to attxiliary memory and serious degradation of service. 
It is, therefore, highly desirable first to balance memory, 
then to balance processor. That is, in the event of im- 
balance, the next job selected from the ready list should be 
the one that comes closest to restoring memory balance; 
if there are several jobs available to accomplish this pur- 
pose, the tie can be broken by selecting the one that comes 
closest to restoring processor balance. 

(2) The balance criterion is basically an equipment 
utilization criterion. I t  is well known that equipment 
utilization and good response to users are not mutually- 
aiding criteria. As it stands, policy (26) will tend to favor 
jobs of small demand and discriminate against jobs of large 
demand; but with modifications and the methods sug- 
gested by Figure 7, together with proper adjustment of the 
"balance constants" a and ~, it is possible to maintain 
"almost-balance" along with good service to users. 

(3) Even with intuitively simple strategies such as 
balance, the allocation problem is far from trivial-- 
interactions such as those between process and worldng 
set, and between balance and good service, are not yet 
fully understood. 

7. Conclusions 

Starting from the observation that "process" and "work- 
ing set" are two manifestations of a computation, we have 
shown that it is possible to define precise notions of 
"processor demand," of "memory demand," and of "sys- 
tem demand." Resource allocation is then the problem of 
"balancing" memory and processor demands against 
equipment. A "balance policy" strives to maintain balance 
by judiciously selecting jobs to run. The notions "demand" 
and "bMance" can play important roles in understanding 
the complex interactions among computer system com- 
ponents. I t  is quite clear that even with these intuitively 
simple notions, interactions are exceedingly complex. 

In order to arrive at notions of memory demand, we had 
to define a model for program behavior. The working set 
model affords a convenient way to determine which in- 
formation is in use by a computation and which is not; it 
enables simple determination of memory demands. 

I t  is interesting that Oppenheimer and Weizer [17] have 
used notions related to "working set" and "memory 
balance" in their simulations of the RCA Spectra 70/46 
Time-Sharing Operating System; their evidence indicates 
that system performance can be improved markedly 
through these techniques. 

Regarding this paper from a slightly different point of 
view, we have seeu four major contenders for page-turning 
policies for use in memory management: random, first-in/ 
first-out (FIFO), least recently used (LRU), and working 
set. Each of these policies pages in on demand, believing 
that paging out is the heart of the problem, for if pages 
least likely to be reused in the near future are removed 
from main memory, the traffic of returning pages is mini- 
mized. Random brings on the highest page traffic, working 
set the lowest. Although Random and FIFO are the easiest 
to implement, the added cost of working set is more than 
offset by its accuracy and compatibility with generalized 
allocation strategies. 

Acknowledgment. I thank Jack B. Dennis and Donald 
R. Slutz for many helpful criticisms. 

A P P E N D I X .  H a r d w a r e  I m p l e m e n t a t i o  n o f  N I e m o r y  
M a n a g e m e n t  

Just as hardware is used to streamline the address- 
mapping mechanism, so hardware can be used to stream- 
line memory management. The hardware described here 
associates a timer with each physical page of main storage 
to measure multiples of the working set parameter r. 

Each process, upon creation, is assigned an identification 
number, i, which is used to index the process table. The ith 
entry in the process table contains information about the 
ith process, including its current demand (p~, rod. Be- 
cause this demand information is stored in a coInmon 
place, the memory hardware can update the memory 
demand m~ without calling the supervisor. Whenever a 
page fault occurs, the new page is located in auxiliary 
memory and transferred to main memory; then a signal 
is sent to the management hardware to free a page of main 
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memory in readiness for the next page fault. The hardware 
selects a page not  in any working set and dispatches it 
directly to auxiliary memory,  without  troubling the super- 
visor. This hardware modifies the page table entry point- 
ing to the newly deleted page, turning the "in-core" bit 
OFF, and leaving a pointer to help loeate the page in 
auxiliary memory.  

Figure A indicates tha t  with each page of memory  there 
is associated a page register, having three fields: 

(1) st-field. ~r is a pointer to the memory  location of the 
page table  ent ry  pointing to this page. A page table 
cannot be moved or removed without modifying ~r. 

(2) t-field, t is a t imer to measure off the interval r. 
The  value to be used for r is found in the t-register. 
The supervisor modifies the contents of the t-reg- 
ister as diseussed below. 

(3) A-field. A is an " a l a rm "  bit, set to 1 if the t imer 
t runs out. Operation proceeds as follows: 

(1) When a page is loaded into main memory,  7r is set 
to point to the memory  location of the correct page table 
entry. The "in-core" bit of tha t  entry is turned ON. 

(2) Each t ime a reference to some location within a 
page occurs, its page register is modified: r ~ t and 0 --~ A. 
The t imer t begins to run down (in real-time), taking r 
seconds to do so. 

(3) I f  t runs down, 1 --~ A. Whenever a fresh page of 
memory is needed, the supervisor sends a signal to addi- 
tional memory  hardware (not  shown) which scans pages 
looking for a page with A = 1. Such a page is dispatched 
directly to auxiliary memory.  7r is used to find the page 
table entry, turn  the "in-core" bit OFF, and leave in- 
formation there to permit  future  retrieval of the  page from 
anxiliary memory .  Note  tha t  a page need not  be removed 
when A = 1; it is only subject to removal. This means a 
page m a y  leave and later reenter a working set with- 
out actually leaving main memory.  

The t imers t are running down in real time. The value in 
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the t-register must  be modifiable by the supervisor for the 
following reason. As in Figure 7, the running list is cyclic, 
except now we suppose tha t  each process is given a burst  
¢~ of processor t ime (¢~ need not be related to the sampling 
interval ~), and continues to receive bursts ¢~ until its 
running-list quantum is exhausted. If  on a partieular 
cycle there are n entries in the list and N processors in 
service, a given process will be unable to reference any of 
its pages for about  nl~/N seconds, the time to  complete a 
cycle through the queue. T h a t  is, one unit  of process t ime 
elapses for a program about each n units of real-time. So 
the supervisor should be able to set the contents of the 
t-register to some multiple of nr,  for otherwise manage- 
ment  hardware will begin removing pages of working sets 
of running processes. However  the t-register contents 
should never be less than some multiple of the traverse 
t ime T, for otherwise when a process interrupts for a page 
fault its working set may  disappear from core memory.  
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