
The Working Set Model for Program
Peter J. Denning

Massachusetts Institute of Technology, Cambridge, Massachusetts

Behavior

Probably the most basic reason behind the absence of a general
treatment of resource allocation in modern computer systems is
an adequate model for program behavior. In this paper a new
model, the "working set model," is developed. The working set
of pages associated with a process, defined to be the collec-
tion of its most recently used pages, provides knowledge vital
to the dynamic management of paged memories. "Process"
and "working set" are shown to be manifestations of the same
ongoing computational activity; then "processor demand"
and "memory demand" are defined; and resource allocation
is formulated as the problem of balancing demands against
available equipment.

KEY WORDS AND PHRASES: general operating system concepts, multiprocess-
ing, multiprogramming, operating systems, program behavior, program
models, resource allocation, scheduling, storage allocation

CR CATEGORIES: 4.30, 4.32

1. I n t r o d u c t i o n

Resource allocation is a tr icky business. Recently there
has been much dialog about process scheduling and core
memory management, yet development of techniques has
progressed independently along both these lines. No one
will deny that a unified approach is needed. Here we show
that it is possible to develop a unified approach. Starting
from the observation that every running program places
demands jointly on all system resources, particularly
processor and memory, we eventually define "system
demand"; the allocation problem will consist of balancing
demands against available resources•

We regard a computation as being the fundamental
act ivi ty in a computer system; in this paper, a computation
consists of a single process together with the information
available to it. (For a complete discussion of the meaning
of "computat ion," see Dennis and Van Horn [1].) The
usual notion "process" is one manifestation of a computa-
tion, in the form of a demand for a processor (a "processor
demand") The notion '~working set of information"
introduced here is another manifestation of a computation,
in the form of a demand for memory (a "memory demand").
A computation's "system demand" will consist jointly of
its processor and memory demands.

Probably the most basic reason for the absence of a
general t reatment of resource allocation is the lack of an
adequate model for program behavior. In this paper we

Presented at an ACM Symposium on Operating System Principles,
Gatlinburg, Tenn., October 1-4, 1967; revised November, 1967.
Work reported herein was supported in part by Project MAC,
an M.I.T. research project sponsored by the Advanced Projects
Research Agency, Department of Defense, under Office of Naval
Research Contract Number Nonr-4102(01).

develop a new model, the working set model, which em-
bodies certain important behavioral properties of com-
putations operating in multiprogrammed environs, en-
abling us to decide which information is in use by a running
program and which is not. We do not intend that the pro-
posed model be considered "final"; rather, we hope to
stimulate a new kind of thinking that may be of consider-
able help in solving many operating system design prob-
lems.

The working set is intended to model the behavior of
programs in the general purpose computer system, or
computer utility. For this reason we assume that the
operating system must determine on its own the behavior
of programs it runs; it cannot count on outside help. Two
commonly proposed sources of externally supplied allo-
c a t i o n information are the user and the compiler. We
claim neither is adequate.

Because resources are multiplexed, each user is given the
illusion that he has a complete computing system at his
sole disposal: a virtual computer. For our purposes, the
basic elements of a virtual computer are its virtual proc-
essor and an "infinite," one-level virtual memory, Dynamic
"advice" regarding resource requirements cannot be ob-
tained successfully from users for several reasons:

(1) A user may build his program on the work of others,
frequently sharing procedures whose time and storage
requirements may be either unknown or, because of data
dependence, indeterminable. Therefore he cannot be ex-
pected to estimate processor-memory needs.

(2) I t is not clear what sort of "advice" might be solic-
ited. Nor is it clear how the operating system should use it,
for overhead incurred by using advice could well negate
any advantages attained.

(3) Any advice acquired from a user would be intended
(by him) to optimize the environment for his own pro-
gram. Configuring resources to suit individuals may inter-
fere with overall good service to the community of users.
Thus it seems inadvisable at the present time to permit a
user, at his discretion, to advise the operating system of his
needs.

Likewise, compilers cannot be expected to supply
information extracted from the structure of the program
regarding resource requirements: ~

(1) Programs will be modular in construction; informa-
tion about other modules may be unavailable at compila-
tion time. Because of data dependence there may be no

1 There have been attempts to do this. Ramamoorthy [2], for
example, has put forth a proposal for automatic segmentation of
programs during compilation.

Volume 11 / Number 5 / May, 1968 Communica t ions o f the ACM 323

way to decide (until run time) just which modules will be
included in a computation.

(2) Compilers cluttered with extra machinery to predict
memory needs will be slower in operation. Many users are
less interested in whether their programs operate eftieiently
than whether they operate at all, and are therefore eon-
eerned with rapid compilation. Furthermoi'e the compiler
is an often-used component of the operating system; if slow
and bulky, it can be a serious drain on system resources.

Therefore we are recommending mechanisms that
monitor the behavior of a eomputation, basing allocation
decisions on currently observed characteristics and not on
advisories from programmers or compilers. Only a mech-
anism that oversees the behavior of a program in operation
can cope with arbitrary intereonneetions of arbitrary
modules having arbitrary characteristics.

Our t reatment proceeds as follows. As background, we
define the type of eomputer system in which our ideas are
developed and discuss previous work with problems of
memory management. We define the working set model,
examine its properties, and then outline a method of
implementing memory management based on this model.
Finally, we show how "memory demand" is defined by a
working set, how "processor demand" is defined by a
process, and how resource allocation is a problem of
balancing demands against equipment.

2. Background

We assume that the reader is already familiar with the
concepts of a computer utility [3-5], of segmentation
and paging [1, 6], and of program and addressing structure
[1, 7-9]; so we only mention these topics here.
Briefly, each process has access to its own private, seg-
mented name space; each segment known to the process is
sliced into equal-size units, called pages, to facilitate
mapping it into the paged main memory. Associated with
each segment is a page table, whose entries point to the
segment's pages. An "in-core" bit in each page table entry
is turned ON whenever the designated page is present in

PROCESSORS

,-Traverse Time T

FiG. 1. Two-level memory system

324 Communications of the ACM

main memory2; an a t tempt to reference a page whose
"in-(tore" bit is OFF causes a page fault, initiating pro-
ceedings to secure the missing page. A process has three
states of existence: running, when a processor is assigned
to it; ready, when it would be running if only a processor
were available; or bloeked, when it has no need of a
processor (for example, during a page fault or during a
console interaction). When talking about processes in
execution, we will have to distinguish between "process-
t ime" and "reM-time." Process-time is time as seen by a
process unaware of suspensions; tha t is, as if it executed
without interruptions.

We restrict a t tent ion to a two-level memory system,
indicated by Figure 1. Only data residing in main memory
is accessible to a processor; all other data resides in aux-
iliary memory, which we regard as having infinite capacity.
There is a time T, the traverse time, involved in transferring
a page between memories, which is measured from the
moment a page fault occurs until the moment the missing
page is in main memory ready for use. T is actually the
expectation of a random variable composed of waits in
queues and mechanical positioning delays. Though it
usually takes less time to store into auxiliary memory
than to read from it, we shall regard the traverse time T
to be the same regardless of which direction a page is
moved.

A basic allocation problem, "core memory manage-
ment ," is that of deciding just which pages are to occupy
main memory. The fundamental s trategy advocated
here - -a compromise against a lot of expensive main
memory- - i s to minimize paeye trad~c, a There are at least
three reasons for this:

(1) The more data traffic between the two levels of
memory, the more the computational overhead will be
deciding just what to move and where to move it.

(2) Because the traverse time T is long compared to a
memory cycle, too much data movement can result in
congestion on the channel bridging the two memory levels.

(3) Too much data traffic can result in serious inter-
ference with processor efficiency on account of auxiliary
memory devices "stealing" memory cycles.

Roughly speaking, a working set of pages is the mini-
mum collection of pages that must be loaded in main
memory for a process to operate efficiently, without "un-
necessary" page faults. According to our definitions, a
"process" and its "working s e t " are but two manifesta-
tions of the same ongoing computational activity...

Pi~EVmUS WORK. In this section we review stratcgies
tha t have been set forth in the past for memory manage-
ment; the interested reader is referred to the literature for
detail.

Consistent with current usage, we will use tile terms "core
memory" and "main memory" interchangeably.
3 Since data is stored and transmitted by pages, we can (without
ambiguity) refer to data movement between memories as "page
traffic."

Volume 11 / Number 5 / May, 1968

We regard manf~gement of paged memories as operating
ii~ two stages:

(1) Pag'ir~g-ir~: locate the required page in auxiliary
memory, load it into m~in memory, turn the
"in-core" bit of the appropriate page table entry

(2) Paging-out: remove some page from main memory,
: turn the "in-core" bit of the appropriate page

table entry OFF.
.... Management algorithms can be classified according to

i
their methods of paging-in and paging-out. Nearly every
strategy pages in on demand; that is, no action is taken to
load a page into memory until some process attempts to
reference it. There have been few proposals to date
recommending look-ahead, or anticipatory page-loading,
because (as we have stressed) there is no reliable advance
source of allocation information, be it the programmer or
the compiler. Although the working set is the desired

!

information, it might still be futile to preload pages: there
? is no guarantee tha t a process will not block shortly after

resumption, having referenced only a fraction of its work-
mg set. The operating system could devote its already
precious time to activities more rewarding than loading
pages which may not be used. Thus we will assume that
paging-in is done on demand only, via the page fault

: mechanism.
: The chief problem in memory management is not to

decide which pages to load, but which pages to remove.
For, if the page with the least likelihood of being reused in
the immediate future is retired to auxiliary memory, the
best choice has been made. Nearly every worker in the
field has recognized this. Debate has arisen over which
strategy to employ for retiring pages; that is, which page-
turning or replacement algorithm to use.

A good measure of performance for a paging policy is
page tra~c (the number of pages per unit time being
moved between memories) because erroneously removed

!

pages add to the traffic of returning pages. In the following
we use this as a basis of comparison for several strategies.

Random Selection. Whenever a fresh page of memory
is needed, a page to be replaced is selected at random.
Although utterly s imple to implement, this method
frequently removes useful pages (which must be recalled),
and results therefore in high page traffic.

FIFO (First-In/First-Out) Selection. Whenever a fresh
page of memory is needed, the page least recently paged in
is retired and another page is brought in to fill the now
vacant slot. Implementation is simple. The pages of main
memory are ordered in a cyclic list; suppose the M pages
of memory are numbered O, 1 , . . . , (M - 1) and a
pointer k indicates that the kth page was most recently
paged in. When a fresh page of memory is needed, [(Ic q- 1)
rood M] -+ k, and page k is retired. This method is based on
the assumption that programs tend to follow sequences of
instructions, so that references in the immediate future
will most likely be close to present references. So the page
which has been in memory longest is least likely to be

V o l u m e 1:l / N m n h e r 5 / May, 1968

reused: hence the cyclic list. We see two ways in which this
algorithm can fail. First, we question its basic assumption.
I t is not at all clear that modular programs, which execute
numerous intermodule calls, will indeed exhibit sequential
instruction fetch patterns. The thread of control will not
string pages together linearly; rather, it will entwine them
intricately. Fine et al. [10] and Varian and Coffman [11]
have experimental evidence to support this, namely, that
references will be scattered over a large collection of
pages. Second, this algorithm is subject to overloading
when used in multiprogrammed memories. When core
demand is too heavy, one cycle of the list completes
rapidly and the pages deleted are still needed by their
processes. This can create a self-intensifying crisis. Pro-
grams, deprived of still-needed pages, generate a plethora
of page faults; the resulting traffic of returning pages dis-
places still other useful pages, leading to more page faults,
and so on.

Least Recently Used (LRU) Selection. Each page-table
entry contains a "use" bit, set to ON each time the page is
referenced. At periodic intervals all page-table entries are
searched and usage records updated. When a fresh page of
memory is needed, the page unrefereneed for the longest
time is removed. One can see that this method is intrin-
sically reasonable by considering the simple ease of a
computer where there is exactly one process whose pages
cannot all fit into main memory. In this case a very reason-
able choice for a page to replace is the least recently used
page. Unfortunately, this method is also susceptible to
overloading when many processes compete for main
memory.

A T L A S Loop Detection Method. The Ferranti ATLAS
computer [12] had proposed a page-turning policy that
attempted to detect loop behavior in page reference
patterns and then to minimize page traffic by maximizing
the time between page transfers, that, is, by removing
pages not expected to be needed for the longest time. I t
was only successful for looping programs. Performance
was unimpressive for programs exhibiting random ref-
erence patterns. Implementation was costly.

Various studies concerning behavior of paging al-
gorithms have appeared. Fine et al. [10] have investigated
the effects of demand paging and have seriously questioned
whether paging is worthwhile at all. We cannot agree
more with their data, nor agree less with their conclusion.
Their experiments, as well as those of Varian and Coffnmn
[11], confirm that should there not be enough core memory
to contain most of a program, considerable paging activity
will interfere with efficiency. The remedy is not to dismiss
paging; it is to provide enough core memory! Put another
way, there should be enough core memory to contain a
program's working set. Paging is no substitute for real core.

Belady [13] has compared some of the algorithms
mathematically. His most important conclusion is that the
"ideal" algorithm should possess much of the simplicity of
Random or FIFO selection (for eff iciency)and some,
though not much, accumulation of data on past reference

C o m m u n i c a t i o n s of t h e ACM 325

patterns. He has shown that too much "historical" d:~t:~
can have adverse effects (witness ATLAS).

In Section 3 we begin investigation of the working set

concept. Even though the ideas are not entirely new [9,

14, 15], there has been no detailed documentation publicly

available.

3. W o r k i n g S e t M o d e l

From the programmer's standpoint, the working set of
information is the smallest collection of information that
must be present in main memory to assure efficient execu-
tion of his program. We have already stressed that there
will be no advance notice from either the programmer or
the compiler regarding what information "ought" to be in
main memory. I t is up to the operating system to deter-
mine, on the basis of page reference patterns, whether
pages are in use. Therefore the working set of information
associated with a process is, from the system standpoint,
the set of most recently referenced pages.

We define the working set of information W(t, z) of a
process at time t to be the collection of information refer-
enced by the process during the process time interval
(t -- r, t).

Thus, the information a process has referenced during
the last ~- seconds of its execution constitutes its working
set (Figure 2). r will be called the working set parameter. We

A working set W(t, r) has four important, general
properties. All are properties of typical programs and need
not hold in special eases. During the following discussion of
these properties, assume that W(t, r) is continuously in ii
main memory, tha t its process is never interrupted except
for page faults, tha t a page is removed from main memory
the moment it leaves W(t, r), and that no two working
sets overlap (there is no sharing of information).

P1. Size. I t should be clear immediately that
oo(t O) = 0 since no page reference can occur in zero time.
I t should be equally clear that, as a function of ~-, co(t, r)
is monotonically increasing, since more pages can be refer-
eneed in longer intervals, oo(t, r) is concave downward.
To see this, note tha t

}!!~!

w(t , 2~) = w (t , ~-) U w (t - r, ~-), (3)

which implies tha t

o~(t, 2r) =< oo(t, r) + w(t -- r, r) . (4)

Assuming statistical regularity, ~(t, r) behaves on the :
average like ~(z -- r, r) , so that on the average

oo(t, 2r) =< 2oo(t, r) . (5)

The general character of oo(t, ~-) is suggested by the i
smoothed curve of Figure 3. .i

I

I
I

L//// / / / / / iq// / / / / / / / / / / / / / / / /]
IFI//III/IIIIIIIIII//I////I////AI
m I / I

I
I

FIG. 2.

= process time

pages referenced in this~
interval constitute w(t,~-) J
Definition of W(t, ~-)

regard the elements of W(t, r) as being pages, though they
could just as well be any other named units of infor-
mation. The working set size oo(t, r) is

w(t, r) = number of pages in W(t, r). (1)

Let the random variable x denote the process-time
interval between successive references to the same page;
let F,(a) = Pr [x =< a] be its distribution function; let
f , (a) = dF~(a)/da be its density function; and 2 denote
its mean:

P ~o

:~ = J0 af=(c~) da. (2)

These interreference intervals x are useful for expressing
working set properties.

~o(t ~)

0

FIO. 3. Behavior of w(t, r)

---" 3 "

P2. Prediction. We expect intuitively tha t the im-
mediate past page reference behavior of a program con-
stitutes a good prediction of its immediate future page
reference behavior: for small time separations a, the set
W(t, T) is a good predictor for the set W(t + a, r). To
see this more clearly, suppose a < r. Then

W(t + a, r) = W(t + o~, a) U W(t, r - ,~). (6)

Because references to the same page tend to cluster in
time, the probability

Pr [W(t + a, a) f'l W(t , r) = ~o]

tends to be small. Therefore some pages of W(t, r) will
still be in use after time t (i.e. pages in W(t + a, a) ; since

326 Communica t ions of the ACM Volume 11 / Number 5 / May, 1968

~ t l s ()

pv(t, ¢ - ~) _~ t;v(~, ¢) N ~,~(t + ~, ¢), (7)

W(t, r) is a good predietor for W(t + ~, r) . On the other
hand, for large time separations ~ (say, o~ >> r) control
will have passed tkrough a great many program modules
during the interval (t, t ÷ c~), and IV(t, ~) is not a good
predictor for W(t + c~, r).

P3. Reentry Rate. As r is reduced, co(t, r) decreases,
so the probability tha t useful pages are not in W(t, r)
increases; correspondingly the rate at which pages are
recalled to W(t, r) increases. We define two func-
tions: a process-time reentry rate X(r) defined so that the
mean process time between the instants at which a given
page reenters W(t, r) is 1/X(r) , arid a real-time reentry
rate e (r) defined so that the mean real-time between the
instants at which a given page reenters W(t, r) is 1 /~(r) .

Let {t,~},,.ao he a sequence of instants in process time at
which successive references to a given page occur. The n th
interreferenee interval is x~ = t~ - t,~q; but we are
assuming the interreferenee intervNs {Xn},~¢1 are inde-
pendent, identically distributed random variables, so
that for all n ->_ 1,];~(a) = f , (a) . A reentry point is a
reference instant which finds the page not in W(t, r) :
at such an instant the page reenters W(t, r). The refer-
ence instant t~ is a reentry point if x~ > r, independently
of other reference instants. Suppose to is a reentry point;
we are interested in 7r,,, the probability tha t t~ is the first
reentry point after to. The probabilities {7r.}~¢1 are dis-
t r ibuted geometrically:

~r~ = Pr [t., first reentry after to] = ~'"-l(1 -- ~'), (8)

where ~- = l?r [x =< r] = F , (r) . Tha t is, t,~is the first
reentry after to if all the instants {h, " . . , &_~} are not
reentry instants, and t~ is a reentry. The expected num-
ber ~ of reference instants until the first reentry is

= nrr~ - . (9)
r * = l 1 - - ~"

Each reference interval is of expected length 2 [eq. (2)],
so the mean time re(r) between reentries is re(r) =
~2. Therefore

re(r) -
1 - - Fx(r)"

We define the reentry rate X(r) to be

X(r) - 1 _ 1 - F,(r) (10)
m (~) .~ '

whm~ X(r) is the average process-time rate at which one
page is I,~entering W(t, r) .

Assuming that storage management mechanisms retain
in main memory only the pages of W(t, r), every page
reentering W(t, r) must be recalled from auxiliary mem-
ory and contributes to page traffic; we here estimate this
contribution. In an interval A of process time, the ex-

peered number of times a single page reenters W(t, r)
is A t (r) ; each reentry causes the process to enter a
"page-wait" state for one traverse time T, a total of
(AX(r)T) seeonds spent in page wait. Therefore the total
real-time spent to recall a page AX(r) times is (A +
AX(r)T) . Tile return tra~c rate ~(r) is

~ (r) - A t (r)
A + Ax(~)T'

that. is,

~(~) = X (r)
1 + X(r)T ' (11)

where ~(r) estimates the average reM-time rate at which
one page is reentering W(t, r). That is, the mean real-
time between reentries is 1 / e (r) .

Later in the paper we define "memory balance," a
condition in which the collection of working sets residing in
main memory at any time just consumes some predeter-
mined portion ¢~ of the available M pages of main memory.
That is, on the average,

oo(t, r) = ¢~M. (12)
w 0 r k i ng s e t s

i n m a i n m e m o r y

In this ease, the average nulnber of pages in memory be-
longing to working sets is ~M; we define the total return
trafic rate q~(r) to be the total reentry rate in real-time to
main memory, when the worldng sets contained therein
are not interrupted except for page waits:

• (r) = 5Me(r) - BMX(r)
1 + X (r) T ' (13)

where ~ (r) estimates the average number of pages per
unit real-time returning to main memory from auxiliary
memory. Since "memory balance" is an equilibrium con-
dition, there must also be a flow of pages ~ (r) from main
to auxiliary memory. Therefore 2 ¢ (r) m e a s u r e s the
capacity required of the channel bridging the two memory
levels.

I t must be emphasized that the reentry rate functions
X(r), ~'(r), and ~I,(r) are estimates. The important point
is: starting from the probability density fnnction f,(c~) for
the page interreference intervals x, it is possible to esti-
mate the page trafiqc which results from the use of working
sets for memory allocation.

P4. r-Sensitivity. I t is useful to define a sensitivity
function ~r(r) tha t measures how sensitive is the reentry
rate X(r) to changes in r. We define the r-sensitivity of a
worldng set W(t, r) to be

d X(r) .L(~) (14)
~ (r) = - -d-~ -

That is, if r is decreased by dr, X(r) increases by o-(r) dr.
I t is obvious that z (r) => 0; reducing r can never result
in a decrease in the reentry rate X(r).

CHOICE OF r. The value ultimately selected for r w i l l
reflect the working set properties and etfieiency requite-

Volume]1 / Number 5 / May, 1968 Communications of the ACM 327

ments and will be influenced by system parameters such
as core memory size and memory traverse time. Should ~-
be too small, pages may be removed from main men,cry
while still useful, resulting in a high traffic of returning
pages. The return traffic functions X(r), ~ (r) , and 4'(r) ,
and the r-sensitivity z (r) , play roles in determining when
r is " too small." Should r be too large, pages may renmJn
in main memory long after they were used, resulting in
wasted main memory. The desired nmnber of working sets
simultaneously to occupy a core memory of given size
plays a role in determining when r is "too large." Thus the
value selected for r will have to represent a compromise
between too rnueh page traffic and too much wasted
memory space.

The following consideration leads us to recommend for r
a value comparable to the memory traverse time T.
Define the residency of a page to be the fraction of time it
is potentially available in core memory. Assuming that
memory allocation procedures bMk at removing from main
memory any page in a working set. once a page has en-
tered W(t, r) it will remain in main memory for at least
r seconds. Letting x be the interreference interval to a
given page, we have:

(1) If x N r, the page will reside in main memory t00 per-
cent of the time.

(2) I I r < z =< (r + T), the page will reside in main
memory r / (r + 2T) of the time: it resides in main memory
for an interval of r seconds, after Which it is dispatched to
auxiliary memory; while in transit it is rerefereneed, so it
nmst begin a return trip as soon as it reaches auxiliary
memory, a total of two traverse times for the round trip.
Therefore the page reappears in main memory (r -I- 27')
seconds after the previous reference.

(3) If x > (r + T), the page will reside in main
memory r / (x ÷ T) of the time: it residesin main memory
for an interval of r seconds, after which it is dispatched to
auxiliary memory; sometime after having reached auxiliary
memory it is rereferenced, requiring T seconds for the
return trip. Therefore the page reappears in main memory
(x + T) seconds after the previous reference.

Residency

I00%

T

~'+2T

328

Figure 4 shows the residency as a funeti(m of x. ti~ the
i~terest of efi icieney, it is desirable that the drop from
100 percent to r / (r - F 2T) a t z = r is not too severe;
thus, for example, should we wish to limit the drop to
50 percent, we should have to choose r :~ 27'.

D~r~:cm~N(~ W(t, r). According to our definition,
W(t, r) is the set of its pages a process has referenced
within the last r seconds of its execution. This suggests
tha t memory management can be controlled with hard-
ware mechanisms, by associating with each page of main
memory a timer. Each time a page is referenced, its timer
is set to r and begins to run down; if the timer succeeds in
running down, a flag is set to mark the page for removal
whenever the space is needed. In the Appendix we describe
a hardware memory management meehanism that could
be housed within the memory boxes. I t has two interesting
features:

(1) i t operates asynehronously attd independently of
the supervisor, whose only responsibility in memory
management is handling page faults. Quite literally,
memory manages itself.

(2) Analog devices such as eapacitative timers could be
used to measure intervals.

Unfortunately it is not practical to add hardware to
existing systems. We seek a method of handling memory
management within the software. The procedure we pro-
pose here samples the page table entries of pages in core
memory at process-time intervals of z seconds (or is called
the "sampling interval") where z = r /K, K an integer
constant chosen to make the sampling intervals as "fine
grain" as desired. On the basis of page references during
each of the last K sampling intervals, the working set
W(t, K~r) can be determined.

As indicated by Figure 5, each page table ent ry eontains
an "in-core" bit M, where M = 1 if and only if the page is
present in main memory. It. also contains a string of use
bits Uo, u , , . . . , UK. Each time a page reference occurs
l -~ u0. At the end of eaeh sampling interval or, the bit

r r+T
FIG. 4. Residency

Communica t ions of t he ACM

I I . I ! in-core use bits pointer
l to page

!°° I°, I... I , V/////A
TYPICAL PAGE TABLE ENTRY

T

l] i I
-. M . . . ~ V -~

SHIFT AT END OF SAMPLING INTERVAL
FIG. 5. ['age table entries for detecting W(t, IQ)

V o l u m e 11 / Number 5 / May, 196g

pattern c(mtained i~ uo, u~,
ti(m, ~c 0 c~ters U0, and UK iS disc,q,rded :

• -- , UK is shifted (me posi-

(15)
"~gO ~ ~1

0 --4. %~0 •

Then the logical sum U of the use bits is computed:

U = u0 + ul q- . . . + u~, (16)

so that U = 1 if and only if the page has been referenced
during the last K sampling intervals; of all the pages
associated with a process, those with U = 1 constitute its
working set W(t, K~r). If U = 0 when M = 1, the page is
no longer in a working set and may be removed from main
memory.

ME~aOaY ALLOCaTmN. The basic assumption in mem-
ory allocation is that a program will not be run unless there
is space in memory for its working set.

In our discussion so far we have seen two alternative
quantities of possible use in memory allocation: the work-
ing set W(t, r) and the working set size co(t, r) . Use of
co(t, r) is sufficient.

Complete knowledge of W(t, r) , page for page, would be
needed if look-ahead were contemplated. We have already
discussed why past paging policies have eschewed look-
ahead: the strong possibility that preloading could be
futile. A program organization likely to be typical of
interactive, modular programs, shown in Figure 6, fortifies
our previous argument against look-aheM. The user sends
requests to the interface procedure A ; having interpreted
the request, A calls on one of the procedures B , , -. • , B~
to perform an operation on the data D. The called B-
procedure then retunis to A for the next user request.

~ Each time the process of this program blocks, the working
set W(t, r) is likely to change radically--sometimes only
A may be in W(t, r) , at other times one of the B-pro-
cedures and D may be in W(t, r). The pages of W(t, r)

USER

FIG. 6. Organization of a program

Volume I1 / Number 5 / May, 1968

1

i

i
I

D I

I
i

are likely to be different. Thus, that a process blocks for an
interaetiort (not page faults) can be a strong indication of
an imminent change in W(t, r). Therefore the look-ahead,
which is most often used just after a process unblocks,
would probably load pages not likely to be used.

Knowledge of only co(t, r) with demand paging suffices
to manage memory well. Before running a process we
insure that there are enough pages of memory free to con-
tain its working set W(t, r), whose pages fill free slots
upon demand. By implication, enough free storage has
been reserved so that no page of a working set of another
program is displaced by a page of W(t, r) , as can be the
case with other page-turning policies, co(t, r) is a good
measure of memory demand.

4. S c h e d u l i n g

The previous discussion has indicated a skeleton for
implementing memory management using working sets.
Now we fill in the flesh.

If the working set ideas are to contribute to good service,
an implementation should at least have these properties:

(1) Since there is such an intimate relation between a
process and its working set, memory management and
process scheduling must be closely related activities. One
cannot take place independently of the other.

(2) Efficiency should be of prime importance. When
sampling of page tables is done, it should be only on pages
in currently changing working sets, and it should be done
as infrequently as possible.

(3) The mechanism ought to be capable of providing
measurements of current working set sizes and processor
time consumptions for each process.

Figure 7 displays an implementation having these
properties. Each solid box represents a delay. The solid
arrows indicate the paths that may be followed by a
process identifier while it traverses the network of queues.
The dashed boxes and arrows show when operations am to
be performed on the time-used variable t~ associated with
process i; processor time used by process i since it was last
blocked (page faults excluded) is recorded in t~. Let us
trace a single process through this system:

(1) When process i is created, an identifier for it is
placed in the rea@ list, which lists all the processes in the
ready state. Processes are selected from the ready list
according to the prevailing priority rule.

(2) Once selected front the ready list, process i is
assigned a quantum q~, which.upper-bounds its time in
the running list. This list is a cyclic queue; process i cycles
through repeatedly, receiving bursts cr of processor time
until it blocks or exceeds its quantum q~. Note that the
processor burst ~ is also the sampling interval.

(3) If process i blocks, its identifier is placed in the
blocked list, where it remains until the process unblocks;
it is then re-entered in the ready list.

Perennially present in the running list is a special proc-
ess, the checker. The checker perfotzns core management
functions. I t samples the page tables of each process that

C o m m u n i c a t i o n s o f t h e ACM 329

has received service since the last, time it (the checker)
was run, removing pages according to the algorithm dis-
cussed at eqs. (15) and (16). i t should be clear that if th(~
length of the running list is l and thePe are N processors,
sampling of page tables occurs about every Ic~/N seconds.
not every ~r seconds.

Associated with process i is a counter w; giving fl~e cur-
rent size of its working set. Each time a page fault occurs
a new page enters W / t , r), and so w~ must be increased
by one. Each time a page is removed from IVy(t, r) by the
checker, w; must be decreased by one.

Having completed its management duties, the checker
replenishes vacancies in the running list by selecting jobs
from the ready list according to the prevailing priority
rule. This is diseussed in more detail below.

5. Shar ing

Sharing finds its place naturally.
When pages are shared, working sets will overlap. If

Arden's [7] suggestion concerning program structure 4 is
followed, sharing of data can be accomplished without
modification of the regime of Figure 7. I f a page is in at
least one working set, the "use bits" in the page table
entry will be ON and the page will not be removed. To
prevent anomalies, the checker must not be permitted to
examine the same page table more than once during one of

ti ~ qi ti ~ qi
~[t~ [quantum runout]

urst over]

R u n on a processor
for burst 0"

,~-- - - 1.~,.2 or--'- t,]

page faul~

' pagelwalt
(r seconds)

[q ,tl

¢ ¢ ¢
t l

Fssign quantum q i T l / ~

unblocked]

rs -,.-t3,
I._2__!2

[run process i]

~.0 ~....~. t~L- "*.t [begin ~

It 'iG, 7, Implementa t ion of schedul ing

its samples. Allocation poll(des should {ol~(l to rtm tw0
I)Poce~s~ tog(~ther in tim(, ~xhe~ever they nre sharing
information (8ymptomiz{'d by overt:It) of their working
sets), i~ order to a.v{)id tmnecessry Pelo:~.{ti~g (}[' the s:mle
inl'oPnm.lion, l tow processes should be chaPged fop memory
fist/go whorl their working sets overlap is still ata ()pen clues-
rich, and is under investigation.

6. R e s o u r c e Al loca t ion : A B a l a n c i n g P r o b l e m

We have already pointed ou{; {ha{. a comi)ut;ation places
demands jointly on the processor tHld InollloFy re so ln ' eos

of a eompui;er system. A eomputation's processor demand
manifests itself as a process; its memory demand manifests
itself as a working set.. i n this section we show how notions
of ' :demand" can be made precise and how resource
allocation can be formulated as a problem of balancing
processor and memory demands against available equip-
ment.

DES, rAND. Our purpose here is to define "memory
demand" and "processor demand," then eombi.ne these
into the single notion "system demand."

We define the memory demand m.; of computat ion i to be

), m£ = rain \ M ' 1 0 -< m~ ~ 1, (17)

where M is the number of pages of main memory, and
w~ = oo~(t, ~-) is the working set count, such as maintained
by the scheduler of Figure 7. If a working set eontMns
more than M pages (it is bigger than main memory) , we
regard its demand to be rn = 1. Presumably M is large
enough so that the probability (over the ensemble of all
processes) Pr[m = 1] is very smM1.

"Processor demand" is more difficult to define. Just as
m e m o r y demand is in some sense g prediction of memory
requirements in the immediate future, so processor d,~inand
should be a prediction of processor requirements for the

f (x)

I

J

- - L ~" X
T

FIG. 8. P robab i l i t y densi ty function for q

4 If a segment is shared, there will be an en t ry for i t in the segment
tables of each par t i c ipa t ing process; however, each e n t r y points
to the same page table. Each physical segment has exact ly one
page tab le descr ibing it, bu t a name for the segment mt~y appear
in m a n y segment gables.

33{} C o m m u n i c a t i o n s o f t h e ACN! V o l u m e]1 / N u m b e r 5 / May , 1968

near future. There are many ways in which processor
delna:nd could be defined. The method we have chosen,
described below, defines a eomputation's processor demand
to be the fraction of a standard interval a process is ex-
pected to use before it blocks.

Let q be the random variable of processor time used by
a process between interactions. (A process " interacts" when
it communicates with something outside its name space,
e.g. with a user, or with another process.) In general
character, fq(z), the probability density function for q, is
hyper-exponential (for a complete discussion, see Fife
[16]) :

0 < a < b ,
fq(z) = cae-a~ + (1 - b , - c)be , (18)

O < c < l ,

where f~(z) is diagrammed in Figure 8; most of the proba-
bility is concentrated toward small q (i.e. frequently
interacting processes), but fq(z) has a long exponential
tail.

Given that it has been y seconds (process time) since
the last interaction, the conditional density function for
the time beyond ~, until the next interaction is

+
- - oo P

J~ fq(y) dy (19)

cae -a¢~+~) -t- (1 -- c)be -b(~+~)
= cce-'~ + (1 -- c)e-*~ ' z >=0,

which is just tha t portion of f , (z) for q => ~ with its area
normalized to unity. The conditional expectation of q,
given % is

P ao

Q(~)
= 1o dz

(20)
(c/a)e - ~ + [(1 -- c)/b]e -b~

ce-'~ + (1 -- c)e-b~

The conditional expectation function Q(.y) is shown in
Figure 9. I t starts at Q(0) = c/a + [(1 - c)/b] and rises
toward a constant maximum of Q(oo) = 1/a. Note that,
for large enough % the conditional expectation becomes
independent of v.

The conditional expectation Q@) is a useful prediction
function--if 7 seconds of processor time have been con-
sumed by a process since its last interaction, we may
expect Q(~) seconds of process time to elapse before its
next interaction. I t should be clear tha t the conditional
expectation function Q(~) can be determined and updated
automatically by the operating system.

In order to make a definition of processor demand
"reasonable," it is useful to establish symmetry between
space and time. Just as we are unwilling to allocate more
than M pages of memory, so we may be unwilling to
allocate processor time for more than a standard interval
A into the future. A can be chosen to reflect the maximum
tolerable response time to a user: for if processor time is
allocated to some set of processes such that their expected

times till interactions total A, no process in tha t set expects
to wait more than A time units before its own interaction.

We define the processor demand p~ of computation i to be

P~ Q(ti) Q(0) < P~ < Q (~)
- N A ' N A = = N A " (21)

where N is the number of processors and ti is the time-used
quanti ty for process i, such as maintained by the scheduler
of Figure 7.

The (system) demand D~ of computation i is a pair

Di = (p i , mi), (22)

where p~ is its processor demand [eq. (2 !)] and ml its
memory demand [eq. (17)].

That the processor demand is p~ tells us to expect com-
putation i to use p~ of the processors for the next A units of
execution time, before its next interaction. 5 That the
memory demand is m~ tells us to expect computation i to
use (miM) pages of memory during the immediate future.

BAT_~e~, Let constants a and ~ be given. The computer
system is said to be balanced if simultaneously

p = a, 0 < ~_~ 1; (23)
p r o c e s s e s i n
r u n n i n g l i s t

and

m = f l , 0</3_<_ 1, (24)
p r o ~ s s e 8 i n
r u n n i n g l i s t

where p is a processor demand, m a memory demand, and
a, fl are constants chosen to cause any desired fraction of
resource to constitute balance. I f the system is balanced,
the total demand presented by running processes just
consumes the available fractions of processor and memory
resources. Equation (23) defines "processor balance" and
eq. (24) defines "memory balance," We can write eqs.
(23) and (24) in the more compact form

s = D = (p , m) , (25)
p r o c e s s e s i n
running l i s t

so that balance exists whenever eq. (25) holds; that is,
whenever S = (a, f~).

Q(T)

Q(®)

O(O)

T

FIG. 9. Conditional expectation function for q

' A reasonable choice for the quantum q~ (Fig. 7) granted to com-
putation i might be qi = kQ(t~), for some suitable constant k ~ 1.

Volume 11 / Number 5 / May, 1968 Communicat ions of the ACM 331

Whenever the system is balanced, it means that (~M)
pages of memory have been committed to running com-
putations, and that (aNA) units of processor time have
been committed to running computations.

Dynamic maintenance of S = ~ D is straightforward.
Whenever a process of demand (p, m) is admitted to the
running list, S -4- (p, m) --~ S. Whenever a process of
demand (p, m) exits the running list (except for page
faults), S - (p, m) ~ S. Therefore S always measures
the current total running list demand.

BALANCE POLICIES. A "balance policy" is a resource
allocation policy whose objective is to keep the computer
system in balance. Expressed as a minimization problem
it is:

{minimize (S - (a, ~))}. (26)

Instead of a priority in the ready list, a process has asso-
ciated its demand D. In the event of imbalance, the next
job (or set of jobs) to leave the ready list should be that
whose demand comes closest to restoring balance. [2~eans
of formulating this type of policy are currently under in-
vestigation as part of doctoral research into the whole
problem of resource allocation.]

We do not wish to venture further here into the alluring
problems of Mloeation policies; our aim is primarily to
stimulate new thinking by sowing seeds of ideas. There
are, however, three points we want to stress about policy
(26):

(1) I t is quite clear that system performance is particu-
larly sensitive to overcommitment of memory: when too
many working sets occupy main memory, each is displac-
ing another's pages in an attempt to have its own pages
present. This phenomenon, known as "thrashing," can
easily result in a large number of programs stalled in the
page-walt state, implying sticky congestion on the channel
to attxiliary memory and serious degradation of service.
It is, therefore, highly desirable first to balance memory,
then to balance processor. That is, in the event of im-
balance, the next job selected from the ready list should be
the one that comes closest to restoring memory balance;
if there are several jobs available to accomplish this pur-
pose, the tie can be broken by selecting the one that comes
closest to restoring processor balance.

(2) The balance criterion is basically an equipment
utilization criterion. I t is well known that equipment
utilization and good response to users are not mutually-
aiding criteria. As it stands, policy (26) will tend to favor
jobs of small demand and discriminate against jobs of large
demand; but with modifications and the methods sug-
gested by Figure 7, together with proper adjustment of the
"balance constants" a and ~, it is possible to maintain
"almost-balance" along with good service to users.

(3) Even with intuitively simple strategies such as
balance, the allocation problem is far from trivial--
interactions such as those between process and worldng
set, and between balance and good service, are not yet
fully understood.

7. Conclusions

Starting from the observation that "process" and "work-
ing set" are two manifestations of a computation, we have
shown that it is possible to define precise notions of
"processor demand," of "memory demand," and of "sys-
tem demand." Resource allocation is then the problem of
"balancing" memory and processor demands against
equipment. A "balance policy" strives to maintain balance
by judiciously selecting jobs to run. The notions "demand"
and "bMance" can play important roles in understanding
the complex interactions among computer system com-
ponents. I t is quite clear that even with these intuitively
simple notions, interactions are exceedingly complex.

In order to arrive at notions of memory demand, we had
to define a model for program behavior. The working set
model affords a convenient way to determine which in-
formation is in use by a computation and which is not; it
enables simple determination of memory demands.

I t is interesting that Oppenheimer and Weizer [17] have
used notions related to "working set" and "memory
balance" in their simulations of the RCA Spectra 70/46
Time-Sharing Operating System; their evidence indicates
that system performance can be improved markedly
through these techniques.

Regarding this paper from a slightly different point of
view, we have seeu four major contenders for page-turning
policies for use in memory management: random, first-in/
first-out (FIFO), least recently used (LRU), and working
set. Each of these policies pages in on demand, believing
that paging out is the heart of the problem, for if pages
least likely to be reused in the near future are removed
from main memory, the traffic of returning pages is mini-
mized. Random brings on the highest page traffic, working
set the lowest. Although Random and FIFO are the easiest
to implement, the added cost of working set is more than
offset by its accuracy and compatibility with generalized
allocation strategies.

Acknowledgment. I thank Jack B. Dennis and Donald
R. Slutz for many helpful criticisms.

A P P E N D I X . H a r d w a r e I m p l e m e n t a t i o n o f N I e m o r y
M a n a g e m e n t

Just as hardware is used to streamline the address-
mapping mechanism, so hardware can be used to stream-
line memory management. The hardware described here
associates a timer with each physical page of main storage
to measure multiples of the working set parameter r.

Each process, upon creation, is assigned an identification
number, i, which is used to index the process table. The ith
entry in the process table contains information about the
ith process, including its current demand (p~, rod. Be-
cause this demand information is stored in a coInmon
place, the memory hardware can update the memory
demand m~ without calling the supervisor. Whenever a
page fault occurs, the new page is located in auxiliary
memory and transferred to main memory; then a signal
is sent to the management hardware to free a page of main

332 Communications of the ACM Volume 1.1 / Number 5 / May, 1968

f

memory in readiness for the next page fault. The hardware
selects a page not in any working set and dispatches it
directly to auxiliary memory, without troubling the super-
visor. This hardware modifies the page table entry point-
ing to the newly deleted page, turning the "in-core" bit
OFF, and leaving a pointer to help loeate the page in
auxiliary memory.

Figure A indicates tha t with each page of memory there
is associated a page register, having three fields:

(1) st-field. ~r is a pointer to the memory location of the
page table ent ry pointing to this page. A page table
cannot be moved or removed without modifying ~r.

(2) t-field, t is a t imer to measure off the interval r.
The value to be used for r is found in the t-register.
The supervisor modifies the contents of the t-reg-
ister as diseussed below.

(3) A-field. A is an " a l a rm " bit, set to 1 if the t imer
t runs out. Operation proceeds as follows:

(1) When a page is loaded into main memory, 7r is set
to point to the memory location of the correct page table
entry. The "in-core" bit of tha t entry is turned ON.

(2) Each t ime a reference to some location within a
page occurs, its page register is modified: r ~ t and 0 --~ A.
The t imer t begins to run down (in real-time), taking r
seconds to do so.

(3) I f t runs down, 1 --~ A. Whenever a fresh page of
memory is needed, the supervisor sends a signal to addi-
tional memory hardware (not shown) which scans pages
looking for a page with A = 1. Such a page is dispatched
directly to auxiliary memory. 7r is used to find the page
table entry, turn the "in-core" bit OFF, and leave in-
formation there to permit future retrieval of the page from
anxiliary memory . Note tha t a page need not be removed
when A = 1; it is only subject to removal. This means a
page m a y leave and later reenter a working set with-
out actually leaving main memory.

The t imers t are running down in real time. The value in

f - register

. _ |

PAGES

rq--rq

I l
page table alarm

entry poin ter

TYPICAL PAGE REGISTER

PAGE REGISTERS

~AIN MEMORY

FzG. A. Memory management hardware

Volume 11 / Number 5 / May, 1968

the t-register must be modifiable by the supervisor for the
following reason. As in Figure 7, the running list is cyclic,
except now we suppose tha t each process is given a burst
¢~ of processor t ime (¢~ need not be related to the sampling
interval ~), and continues to receive bursts ¢~ until its
running-list quantum is exhausted. If on a partieular
cycle there are n entries in the list and N processors in
service, a given process will be unable to reference any of
its pages for about nl~/N seconds, the time to complete a
cycle through the queue. T h a t is, one unit of process t ime
elapses for a program about each n units of real-time. So
the supervisor should be able to set the contents of the
t-register to some multiple of nr, for otherwise manage-
ment hardware will begin removing pages of working sets
of running processes. However the t-register contents
should never be less than some multiple of the traverse
t ime T, for otherwise when a process interrupts for a page
fault its working set may disappear from core memory.

REFERENCES

I. DENNIS, J . B., ANn VAN HORN, E . C . Programming semantics
for multiprogrammed computations. Comm. ACM 9 (Mar.
1966), 143-155.

2. RAMAMOORTHr, C.V. The analytic design of a dynamic look
ahead and program segmenting system for multiprogrammed
computers. Proc. ACM 21st Nat. Conf. 1966. Thompson Book
Co., Washington, D.C., pp. 229-239.

3. FANO, R. M., AND DAVID, E.E. On the social implieations of
accessible computing. Proc. AFIPS 1965 Fall Joint Comput.
Conf., Vol. 27, Part 2. Thompson Book Co., Washington,
D.C., pp. 243-247.

4. SELWrN, L.L. The information utility. Indust. Man. Rev. 7,
2 (spring, I966).

5. FAREHILL, D. The Challenge of thv Computer Utility. Addison-
Wesley, Reading, Mass., 1966.

6. DENNIS, J. B. Segmentation and the design of multipro-
grammed computer systems. J. A CM 12, 4 (Oct. 1965), 589-602.

7. ARDEN, B. W., ET AL. Program and address structure in a time-
sharing environment. J. ACM IS, 1 (Jan. 1966), 1-16.

8. SALTZER, J. H. Traffic control in a multiplexed computer
system. M.I.T. Project MAC Tech. Rep. MAC-TR-30,
M.I.T., Cambridge, Mass., July 1966.

9. DENNIS, J.B. Program structure in a multi-access computer.
Project MAC Tech. Rep. MAC-TR-I1, M.I.T., Cambridge,
Mass.

1O. FINE, G. H., MCISAAC, P. V., AND JACKSON, C.W. Dynamic
program behavior under paging. Proc. ACM 21st Nat. Conf.
1966. Thompson Book Co., Washington, D.C., pp. 223-228.

11. VARIAN, L., AND COFFMAN, E. An empirical study of the be-
havior of programs in a paging environment. Proe. ACMM
Syrup. on Operating Principles, Gatlinburg, Tenn., Oct. 1967.

12. K_IImUEN, T., ET AL. One-level storage system. IRE Trans.
EC-11, 2 (Apr. 1962).

13. BELADY, L. A. A study of replacement algorithms for a
virtual storage computer. IBM Systems J. 5, 2 (1966), 78-101.

14. Progress Report III , M.I.T. Project MAC, 1965--66, pp. 63-66.
15. DENNING, P. J. Memory allocation in multiprogrammed

computers. Project MAC Computation Structures Group
Memo 24, M.I.T., Cambridge; Mass., Mar. 1966.

16. FIFE, D.W. An optimization model for time-sharing. Proc.
AFIPS 1966 Spring Joint Comput. Conf., Vol. 28. Spartan
Books, New York, pp. 97-104.

17. OPPENHEIMER, G., AND WEIZER, N. Resource management
for a medium scale time-sharing operating system. Comm.
ACM 11, 5 (May 1968), 313-322.

Communica t ions of the ACM 333

