
A Brief Primer on TCP/IP

Tom Anderson

A brief Internet history...

1970 1975 1980 1985 1990 1995

1969

ARPANET

created

1972

TELNET
RFC 318

1973

FTP
RFC 454

1982

TCP & IP
RFC 793 & 791

1977

MAIL
RFC 733

1984

DNS
RFC 883

1986

NNTP
RFC 977

1990

ARPANET

dissolved

1991

WWW/HTTP

1992

MBONE

1995

Multi-backbone

Internet

Limits of a single wire LAN

One wire can limit us in terms of:
− Distance

− Number of nodes

− Performance

How do we scale to a larger, faster network?

3

Switch

or Hub
nodes

wire

Scaling beyond one wire

Intra-network:
• Hubs, switches

Inter-network:
• Routers

Key tasks:
• Routing, forwarding, addressing

Key challenges:
• Scale, heterogeneity, robustness

4

Forwarding vs. routing

Forwarding: the process that each router goes
through for every packet to send it on its way

− Involves local decisions

Routing: the process that all routers go through to
calculate the routing tables

− Involves non-local decisions

5

Three ways to forward

Source routing

• The source embeds path information in packets

• E.g., Driving directions

Datagram forwarding

• The source embeds destination address in the packet

• E.g., Postal service

Virtual circuits

• Pre-computed connections: static or dynamic

• Embed connection IDs in packets

• E.g., Airline travel

6

Routing goals

Compute best path
− Defining “best” is slippery

Scale to billions of hosts
− Minimize control messages and routing table size

Quickly adapt to failures or changes
− Node and link failures, plus message loss

7

Routing alternatives

Spanning Tree (Ethernet)

− Convert graph into a tree; route only along tree

Distance vector (RIP)

− exchange routing tables with neighbors

− no one knows complete topology

Link state (OSPF, IS-IS)

− send everyone your neighbors

− everyone computes shortest path

8

Distance vector routing

Each router periodically exchanges messages with
neighbors

− best known distance to each destination (“distance vector”)

Initially, can get to self with zero cost

On receipt of update from neighbor, for each destination

− switch forwarding tables to neighbor if it has cheaper route

− update best known distance

− tell neighbors of any changes

Absent topology changes, will converge to shortest path

9

DV Example: Initial Table at A

Dest Cost Next

A 0 here

B -

C -

D -

E -

F -

G -

D

G

A

F

E

B

C

10

DV Example: Table at A, step 1

Dest Cost Next

A 0 here

B 1 B

C 1 C

D -

E 1 E

F 1 F

G -

D

G

A

F

E

B

C

11

DV Example: Final Table at A

Dest Cost Next

A 0 here

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 2 F

D

G

A

F

E

B

C

Reached in two iterations

=> simple example

12

What if there are changes?

Suppose link between F and G fails
1. F notices failure, sets its cost to G to

infinity and tells A

2. A sets its cost to G to infinity too,
since it can’t use F

3. A learns route from C with cost 2 and
adopts it

a

D

G

A

F

E

B

C

XXXXX

Dest Cost Next

A 0 here

B 1 B

C 1 C

D 2 C

E 1 E

F 1 F

G 3 F

13

Simple example

− Costs in nodes are to reach Internet

Now link between B and Internet fails …

Count To Infinity Problem

InternetA/2 B/1

14

Count To Infinity Problem

B hears of a route to the Internet via A with cost 2

So B switches to the “better” (but wrong!) route

update

InternetA/2 B/3 XXX

15

Count To Infinity Problem

A hears from B and increases its cost

update

InternetA/4 B/3 XXX

16

Count To Infinity Problem

B hears from A and (surprise) increases its cost

Cycle continues and we “count to infinity”

Packets caught in a loop between A and B

update

InternetA/4 B/5 XXX

17

Solutions to count to infinity

Lower infinity

Split horizon
− Do not advertises the destination back to its next hop

– that’s where it learned it from!

− Solves trivial count-to-infinity problem

Poisoned reverse (RIP)
− Go farther: advertise infinity back to next hop

18

Link state routing

Every router learns complete topology and then
runs shortest-path

Two phases:

− Topology dissemination -- each node gets complete
topology via reliable flooding

− Shortest-path calculation (Dijkstra’s algorithm)

As long as every router uses the same information,
will reach consistent tables

19

Topology flooding

Each router identifies direct neighbors; put in
numbered link state packets (LSPs) and
periodically send to neighbors

− LSPs contain [router, neighbors, costs]

If get a link state packet from neighbor Q

− drop if seen before

− else add to database and forward everywhere but Q

Each LSP will travel over the same link at most
once in each direction

20

Dijkstra Example – Step 1

10

2 3

5

2

1

4 6

7

9
0

21

Dijkstra Example – Step 2

10

2 3

5

2

1

4 6

7

9
0

5

10

22

Dijkstra Example – Step 3

8

2 3

5

2

1

4 6

7

9
0

5 7

14

23

Dijkstra Example – Step 4

8

2 3

5

2

1

4 6

7

9
0

5 7

13

24

Dijkstra Example – Step 5

8

2 3

5

2

1

4 6

7

9
0

5 7

9

25

Dijkstra Example – Done

8

2 3

5

2

1

4 6

7

9
0

5 7

9

26

Question

Does link state algorithm guarantee routing tables
are loop free?

One proposed solution: failure carrying packets

27

Internet today

28

Key goals for Internet routing

Scalability

Support arbitrary policies

• Finding “optimal” paths was less important

(Supporting arbitrary topologies)

29

Internet routing overview

Two-level hierarchy for scalability

• Intra-domain: within an ISP (OSPF, MPLS)

• Inter-domain: across ISPs (BGP)

Path vector protocol between ASes

• Can support many policies

• Fewer messages in response to small changes

• Only impacted routers are informed

30

Path vector routing

Similar to distance vector routing info includes
entire paths

31

192.4.23, [7]

192.4.23, [3, 7]

Policy knobs

1. Selecting one of the multiple offered paths

2. Deciding who to offer paths

32

AS 1

AS 2

AS 3

192.168.1.3/24, [2, 4]

AS 4

192.168.1.3/24, [3, 4]

AS 1

AS 2

AS 3 192.168.1.3/24, [4, 1]

AS 4

192.168.1.3/24, [4, 1]

Typical routing policies
Driven by business considerations

Two common types of relationships between ASes

• Customer-provider: customer pays provider

• Peering: no monetary exchange

When selecting routes: customer > peer > provider

When exporting routes: do not export provider or peer
routes to other
providers and peers

Prefer routes with shorter AS paths

33

Peer or
provider

Peer or
provider

X

CustomerCustomer

BGP at router level

34

Path quality with BGP

Combination of local policies may not be globally
good

• Longer paths, asymmetric paths

• Shorter “detours” are often available

Example:
hot potato routing

35

B

A

BGP convergence

Temporary loops during path exploration

Can occur after failures, or after policy changes

36

1

0

2

D 3

BGP Convergence

Why not link state routing in BGP?

Proposed solution: consensus routing

37

BGP security

Extreme vulnerability to attacks and misconfigurations

• An AS can announce reachability to any prefix

• An AS can announce connectivity to other Ases

Many known incidents

• AS7007 brought down the whole internet in 1997

• 75% of new route adverts are due to misconfigs [SIGCOMM 2002]

• Commonly used for spamming

Technical solutions exist but none even close to deployment

• Incentives and deployability

38

Transport Challenge

IP: routers can be arbitrarily bad

− packets can be lost, reordered, duplicated, have
limited size & can be fragmented

TCP: applications need something better

− reliable delivery, in order delivery, no duplicates,
arbitrarily long streams of data, match
sender/receiver speed, process-to-process

Reliable Transmission

How do we send packets reliably?

Two mechanisms

− Acknowledgements

− Timeouts

Simplest reliable protocol: Stop and Wait

Stop and Wait

Time

T
im

eo
u
t

 Send a packet, wait until ack arrives

 retransmit if no ack within timeout

 Receiver acks each packet as it arrives

Sender Receiver

Recovering from error

T
im

eo
u
t

T
im

eo
u
t

T
im

eo
u
t

T
im

eo
u
t

Time

T
im

eo
u
t

T
im

eo
u
t

ACK lost Packet lost Early timeout

What if packets can be delayed?

Solutions?

− Never reuse an ID?

− Change IP layer to eliminate
packet reordering?

− Prevent very late delivery?

• IP routers keep hop count per pkt,
discard if exceeded

• ID’s not reused within delay bound

− TCP won’t work without some
bound on how late packets can
arrive!

Accept!

Reject!

How do we keep the pipe full?

Unless the bandwidth*delay product
is small, stop and wait can’t fill pipe

Solution: Send multiple packets
without waiting for first to be acked

Reliable, unordered delivery:
− Send new packet after each ack

− Sender keeps list of unack’ed packets;
resends after timeout

− Receiver same as stop&wait

How easy is it to write apps that
handle out of order delivery?

− How easy is it to test those apps?

Sliding Window: Reliable, ordered
delivery

Two constraints:
− Receiver can’t deliver packet to application until all

prior packets have arrived

− Sender must prevent buffer overflow at receiver

Solution: sliding window
− circular buffer at sender and receiver

• packets in transit <= buffer size

• advance when sender and receiver agree packets at beginning
have been received

− How big should the window be?
• bandwidth * round trip delay

Sender/Receiver State

sender

− packets sent and acked (LAR = last ack recvd)

− packets sent but not yet acked

− packets not yet sent (LFS = last frame sent)

receiver

− packets received and acked (NFE = next frame
expected)

− packets received out of order

− packets not yet received (LFA = last frame ok)

Sliding Window

LAR LFS

Send Window

sent

acked

0 1 2

x x

x

x xx x x

3 4 5 6

NFE LFA

Receive Window

recvd

acked

0 1 2

x x

x

xx x x

3 4 5 6

x

What if we lose a packet?

Go back N (original TCP)

− receiver acks “got up through k” (“cumulative ack”)

− ok for receiver to buffer out of order packets

− on timeout, sender restarts from k+1

Selective retransmission (RFC 2018)

− receiver sends ack for each pkt in window

− on timeout, resend only missing packet

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Transport: Practice

Protocols

− IP -- Internet protocol

− UDP -- user datagram protocol

− TCP -- transmission control protocol

− RPC -- remote procedure call

− HTTP -- hypertext transfer protocol

− And a bunch more…

How do we connect processes?

IP provides host to host packet delivery

− header has source, destination IP address

For applications to communicate, need to demux
packets sent to host to target app

− Web browser (HTTP), Email servers (SMTP),
hostname translation (DNS), RealAudio player
(RTSP), etc.

− Process id is OS-specific and transient

Ports

Port is a mailbox that processes “rent”
− Uniquely identify communication endpoint as

(IP address, protocol, port)

How do we pick port #’s?
− Client needs to know port # to send server a request

− Servers bind to “well-known” port numbers
• Ex: HTTP 80, SMTP 25, DNS 53, …

• Ports below 1024 reserved for “well-known” services

− Clients use OS-assigned temporary (ephemeral)
ports

• Above 1024, recycled by OS when client finished

Sockets

OS abstraction representing communication
endpoint

− Layer on top of TCP, UDP, local pipes

server (passive open)
− bind -- socket to specific local port

− listen -- wait for client to connect

client (active open)
− connect -- to specific remote port

User Datagram Protocol (UDP)

Provides application – application delivery

Header has source & dest port #’s

− IP header provides source, dest IP addresses

Deliver to destination port on dest machine

Reply returns to source port on source machine

No retransmissions, no sequence #s

=> stateless

Application
process

Application
process

Application
process

Packets arrive

Ports

Message

Queues

DeMux

UDP Delivery

Kernel

boundary

TCP: This is your life...

1975 1980 1985 1990

1982

TCP & IP
RFC 793 & 791

1974

TCP described by

Vint Cerf and Bob Kahn

In IEEE Trans Comm

1983

BSD Unix 4.2

supports TCP/IP

1984

Nagel’s algorithm

to reduce overhead

of small packets;

predicts congestion

collapse

1987

Karn’s algorithm

to better estimate

round-trip time

1986

Congestion

collapse

observed

1988

Van Jacobson’s

algorithms

congestion avoidance

and congestion control

(most implemented in

4.3BSD Tahoe)

1990

4.3BSD Reno

fast retransmit

delayed ACK’s

1975

Three-way handshake

Raymond Tomlinson

In SIGCOMM 75

TCP: After 1990

1993 1994 1996

1994

ECN

(Floyd)

Explicit

Congestion

Notification

1993

TCP Vegas

(Brakmo et al)

real congestion

avoidance

1994

T/TCP

(Braden)

Transaction

TCP

1996

SACK TCP

(Floyd et al)

Selective

Acknowledgement

1996

Hoe

Improving TCP

startup

1996

FACK TCP

(Mathis et al)

extension to SACK

2006

PCP

Transmission Control Protocol (TCP)

Reliable bi-directional byte stream
− No message boundaries

− Ports as application endpoints

Sliding window, go back N/SACK, RTT est, …
− Highly tuned congestion control algorithm

Flow control
− prevent sender from overrunning receiver buffers

Connection setup
− negotiate buffer sizes and initial seq #s

− Needs to work between all types of computers
(supercomputer -> 8086)

TCP Delivery

Application process

Write

bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read

bytes

TCP

Receive buffer

…

… …

IP x.html IP TCP get inde

TCP Sliding Window

Per-byte, not per-packet (why?)
− send packet says “here are bytes j-k”

− ack says “received up to byte k”

Send buffer >= send window
− can buffer writes in kernel before sending

− writer blocks if try to write past send buffer

Receive buffer >= receive window
− buffer acked data in kernel, wait for reads

− reader blocks if try to read past acked data

Visualizing the window

4 5 6 7 8 91 2 3 10 11 12

offered window

(advertised by receiver)

usable window

sent and

acknowledged
sent, not ACKed

can send ASAP
can’t send until

window moves

Left side of window advances when data is acknowledged.

Right side controlled by size of window advertisement

Flow Control

What if sender process is faster than receiver
process?

− Data builds up in receive window

− if data is acked, sender will send more!

− If data is not acked, sender will retransmit!

Sender must transmit data no faster than it can be
consumed by the receiver

− Receiver might be a slow machine

− App might consume data slowly

Sender sliding window <= free receiver buffer
− Advertised window = # of free bytes; if zero, stop

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

Sender and Receiver Buffering

= available buffer = buffer in use

Example – Exchange of Packets

Receiver has buffer of

size 4 and application

doesn’t read

Stall due to

flow control

here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised

Three-Way Handshake

Opens both directions for transfer

Active participant
(client)

Passive participant
(server)

+data

TCP Handshake in an
Uncooperative Internet

TCP Hijacking
− if seq # is predictable,

attacker can insert packets
into TCP stream

− many implementations of
TCP simply bumped
previous seq # by 1

− attacker can learn seq # by
setting up a connection

Solution: use random
initial sequence #’s

− weak form of
authentication

Malicious attacker

ServerClient

fake web page, y+MSS

TCP Handshake in an
Uncooperative Internet

TCP SYN flood

− server maintains state
for every open
connection

− if attacker spoofs source
addresses, can cause
server to open lots of
connections

− eventually, server runs
out of memory

Malicious attacker Server

TCP SYN cookies

Solution: SYN cookies

− Server keeps no state in
response to SYN; instead
makes client store state

− Server picks return seq # y
= © that encrypts x

− Gets © +1 from sender;
unpacks to yield x

Can data arrive before ACK?

Client Server

HTTP on TCP

How do we reduce the # of
messages?

Delayed ack: wait for 200ms for
reply or another pkt arrival

TCP RST from web server

SYN

SYN+ACK

ACK

http get

ACK

http data

ACK

FIN

ACK

FIN

ACK

Bandwidth Allocation

How do we efficiently share network resources
among billions of hosts?

− Congestion control

• Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> …

• Don’t send faster than network can accept

− Fairness

• How do we allocate bandwidth among different users?

• Each user should (?) get fair share of bandwidth

Chapter 6, Figure 1

Buffer absorbs bursts when input rate > output

If sending rate is persistently > drain rate, queue builds

Dropped packets represent wasted work

Destination
1.5-Mbps T1 link

Router

Source
2

Congestion

Packets dropped here

Chapter 6, Figure 2

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link … depends on paths
and other traffic

The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

− Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times

− Synchronized behavior: network oscillates between
loaded and unloaded

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth

− Robust RTT estimation

− Additive increase/multiplicative decrease

• oscillate around bottleneck capacity

− Slow start

• quickly identify bottleneck capacity

− Fast retransmit

− Fast recovery

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT

Multiplicative decrease
− Timeout => dropped packet => cut window size in

half
• and therefore cut sending rate in half

Additive increase
− Ack arrives => no drop => increase window size by

one packet/window
• and therefore increase sending rate a little

TCP “Sawtooth”

Oscillates around bottleneck bandwidth

− adjusts to changes in competing traffic

Slow start

How do we find bottleneck bandwidth?
− Start by sending a single packet

• start slow to avoid overwhelming network

− Multiplicative increase until get packet loss
• quickly find bottleneck

− Remember previous max window size
• shift into linear increase/multiplicative decrease when get

close to previous max ~ bottleneck rate

• called “congestion avoidance”

Slow Start

Quickly find the bottleneck bandwidth

TCP Mechanics Illustrated

80

Source DestRouter

100 Mbps
0.9 ms latency

10 Mbps
0 latency

Slow Start Problems

Bursty traffic source
− will fill up router queues, causing losses for other flows

− solution: ack pacing

Slow start usually overshoots bottleneck
− will lose many packets in window

− solution: remember previous threshold

Short flows
− Can spend entire time in slow start!

− solution: persistent connections?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing

− slow start/additive increase are
designed to cause packet loss

After loss, use slow start to regain
ack pacing

− switch to linear increase at last
successful rate

− “congestion avoidance”

1

2
3

4
5

1

1

1

1

1

2

5
T

im
e

o
u

t

Putting It All Together

Timeouts dominate performance!

Fast Retransmit

Can we detect packet loss without a
timeout?

− Receiver will reply to each packet with
an ack for last byte received in order

Duplicate acks imply either
− packet reordering (route change)

− packet loss

TCP Tahoe
− resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1

1

2

5

Fast Retransmit Caveats

Assumes in order packet delivery

− Recent proposal: measure rate of out of order
delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)

− what if window size <= 3

Doesn’t work if many packets are lost

− example: at peak of slow start, might lose many
packets

Fast Retransmit

Regaining ack pacing limits performance

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

window

(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast

Retransmit

Fast Recovery

Use duplicate acks to maintain ack
pacing

− duplicate ack => packet left network

− after loss, send packet after every
other acknowledgement

Doesn’t work if lose many packets in a
row

− fall back on timeout and slow start to
reestablish ack pacing

1

2
3

4
5

1

1

1

1

1

2

3

Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

window

(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast

Retransmit + Fast Recovery

What if two TCPs share link?

Reach equilibrium independent of initial bw

− assuming equal RTTs, “fair” drops at the router

Two users competing for
bandwidth:

Consider the sequence of moves
from AIMD, AIAD, MIMD,
MIAD.

Why AIMD?

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!

− Many TCP “accelerators”

− Easy to improve perf at expense of network

One solution: enforce good behavior at router

TCP Performance (Steady State)

Bandwidth as a function of

− RTT?

− Loss rate?

− Packet size?

− Receive window?

94

TCP over 10Gbps Pipes

What’s the problem?

How might we fix it?

95

TCP over Wireless

What’s the problem?

How might we fix it?

96

What if TCP connection is short?

Slow start dominates performance
− What if network is unloaded?

− Burstiness causes extra drops

Packet losses unreliable indicator
− can lose connection setup packet

− can get drop when connection near done

− signal unrelated to sending rate

In limit, have to signal every connection
− 50% loss rate as increase # of connections

Example: 10KB document
10Mb/s Ethernet,70ms RTT, 536 MSS

Ethernet ~ 10 Mb/s

64KB window, 70ms RTT ~ 7.5 Mb/s

can only use 10KB window ~ 1.2 Mb/s

5% drop rate ~ 275 Kb/s (steady state)

model timeouts ~ 228 Kb/s

slow start, no losses ~ 140 Kb/s

slow start, with 5% drop ~ 75 Kb/s

Short flow bandwidth

0
20
40
60
80

100
120
140

0 2.5 5 7.5 10 12.5 15

Packet loss rate (%)

B
a

n
d

w
id

th
 (

K
b

p
s

)

median

average

Flow length=10Kbytes, RTT=70ms

Improving Short Flow Performance

Start with a larger initial window
− RFC 3390: start with 3-4 packets

Persistent connections
− HTTP: reuse TCP connection for multiple objects on

same page

− Share congestion state between connections on same
host or across host

Skip slow start?

Ignore congestion signals?

TCP and Real-time Flows

What’s the problem?

How might we fix it?

101

Misbehaving TCP Receivers

On server side, little incentive to cheat TCP

− Mostly competing against other flows from same
server

On client side, high incentive to induce server to
send faster

− How?

102

Impact of Router Behavior on
Congestion Control

Behavior of routers can have a large impact on the
efficiency/fairness of congestion control

− buffer size

− queueing discipline (FIFO, round robin, priorities)

− drop policy -- Random Early Drop (RED)

− Early congestion notification (ECN)

− Weighted fair queueing

− Explicit rate control

Note that most solutions break layering
− change router to be aware of end to end transport

TCP Synchronization

Assumption for TCP equilibrium proof is that
routers drop fairly

What if router’s buffers are always full?
− anyone trying to send will experience drop

• timeout and retry at reduced rate

− when router sends a packet, triggers an ack
• causes that host to send another packet, refill buffers, causes

other hosts to experience losses

One host can capture all of the bandwidth, even
using TCP!

Router Buffer Space

What is the effect of router queue size on network
performance?

− What if there were infinite buffers at each router?
• what would happen to end to end latency?

− What if only one packet could be buffered?
• what would happen if multiple nodes wanted to share a link?

Subtle interactions between TCP feedback loop and
router configuration

− rule of thumb: buffer space at each router should be
equal to the end to end bandwidth delay product
(how?)

Congestion Avoidance

TCP causes congestion as it probes for the
available bandwidth and then recovers from it
after the fact

− Leads to loss, delay and bandwidth fluctuations
(Yuck!)

− We want congestion avoidance, not congestion
control

Congestion avoidance mechanisms

− Aim to detect incipient congestion, before loss. So
monitor queues to see that they absorb bursts, but not
build steadily

Sustained overload causes queue to build and
overflow

Queue length

Instantaneous

Av erage

Time

Incipient Congestion at a Router

MaxThreshold MinThreshold

AvgLen

Random Early Detection (RED)

Have routers monitor average queue and send
“early” signal to source when it builds by
probabilistically dropping a packet

Paradox: early loss can improve performance!

Explicit Congestion Notification (ECN)

Why drop packets to signal congestion?
− Drops are a robust signal, but there are other means …

− We need to be careful though: no extra packets

ECN signals congestion with a bit in the IP header

Receiver returns indication to the sender, who slows
− Need to signal this reliably or we risk instability

RED actually works by “marking” packets
− Mark can be a drop or ECN signal if hosts understand

ECN

− Supports congestion avoidance without loss

Difficulties with RED

Nice in theory, hasn’t caught on in practice.

Parameter issue:
− What should dropping probability (and average

interval) be?

− Consider the cases of one large flow vs N very small
flows

Incentive issue:
− Why should ISPs bother to upgrade?

• RED doesn’t increase utilization, the basis of charging

− Why should end-hosts bother to upgrade?
• The network doesn’t support RED

Fair Queuing (FQ)

FIFO is not guaranteed (or likely) to be fair

− Flows jostle each other and hosts must play by the rules

− Routers don’t discriminate traffic from different sources

Fair Queuing is an alternative scheduling algorithm

− Maintain one queue per traffic source (flow) and send
packets from each queue in turn

• Actually, not quite, since packets are different sizes

− Provides each flow with its “fair share” of the
bandwidth

Flow 1

Flow 2

Flow 3

Flow 4

Round-robin

service

Fair Queuing

WFQ implication

What should the endpoint do, if it knows router is
using WFQ?

113

Traffic shaping

At enterprise edge, shape traffic:

− Avoid packet loss

− Maximize bandwidth utilization

− Prioritize traffic

− No changes to endpoints (as with NATs)

Mechanism?

114

TCP Known to be Suboptimal

Small to moderate sized connections

Paths with low to moderate utilization

Wireless transmission loss

High bandwidth; high delay

Interactive applications

Sharing with apps needing predictability

Channel
Capacity

Time

loss

W
in

d
o

w

Wasted capacity

loss
loss

loss

Observation

Trivial to be optimal with help from the network;
e.g., ATM rate control

− Hosts send bandwidth request into network

− Network replies with safe rate (min across links in
path)

Non-trivial to change the network

Question

Can endpoint congestion control be near optimal
with no change to the network?

Assume: cooperating endpoints

− For isolation, implement fair queueing

− PCP does well both with and without fair queueing

PCP approach: directly emulate optimal router
behavior!

Probe Control Protocol (PCP)

Probe for bandwidth using short burst of packets

− If bw available, send at the desired uniform rate
(paced)

− If not, try again at a slower rate

Probe is a request

Successful probe sets the sending rate

− Sending at this rate signals others not to send

Time

R
a

te

Probe

Probe

Channel
Capacity

Probes

Send packet train spaced to mimic desired rate

Check packet dispersion at receiver

Bottleneck Link

Sender Receiver

Successful probe:

Dispersion

} }

Cross traffic

Sender Receiver

Failed probe:

Probabilistic Accept

Randomly generate a slope consistent with the
observed data

− same mean, variance as least squares fit

Accept if slope is not positive

Robust to small variations in packet scheduling

time

delay

Rate Compensation

Queues can still increase:

− Failed probes, even if short, can result in additional
queueing

− Simultaneous probes could allocate the same bandwidth

− Probabilistic accept may decide probe was successful,
without sufficient underlying available bandwidth

PCP solution

− Detect increasing queues by measuring packet latency
and inter-packet delay

− Each sender decreases their rate proportionately, to
eliminate queues within a single round trip

− Emulates AIMD, and thus provides eventual fairness

TCP Compatibility

TCP increases its rate regardless of queue size

− Should PCP keep reducing its rate to compensate?

Solution: PCP becomes more aggressive in
presence of non-responsive flows

− If rate compensation is ineffective, reduce speed of
rate compensation: “tit for tat”

− When queues drain, revert to normal rate
compensation

Otherwise compatible at protocol level

− PCP sender (receiver) induces TCP receiver (sender)
to use PCP

Performance

User-level implementation

− 250KB transfers between every pair of US RON nodes

− PCP vs. TCP vs. four concurrent PCP transmissions

0

20

40

60

80

100

0 1 2 3 4 5 6

Transfer Time

P
e

rc
e

n
ta

g
e

 o
f

fl
o

w
s

PCP

4-PCP

TCP

Is PCP Cheating?

0

500

1000

1500

2000

0 200 400 600 800 1000

Flow size (KB)

T
ra

n
s
fe

r
ti

m
e
 (

m
s
)

TCP w/4-PCP

TCP

4-PCP

PCP

Roadmap – Various Mechanisms

Classic Best Effort FIFO with Drop

Tail

Congestion

Avoidance

FIFO with RED

Per Flow Fairness Weighted Fair

Queuing

Aggregate

Guarantees

Differentiated

Services

Per Flow

Guarantees

Integrated Services

Simple to build,
Weak assurances

Complex to build,
Strong assurances

VoIP is a real-time service in the sense that the
audio must be received by a deadline to be
useful

Real-time apps need assurances from the network

Q: What assurances does VoIP require?

Microphone

Speaker

Sampler,

A D
converter

Buffer,
D A

VoIP: A real-time audio example

Variable bandwidth and delay (jitter)

Internet

Network Support for VoIP

Bandwidth

− There must be enough on average

− But we can tolerate to short term fluctuations

Delay

− Ideally it would be fixed

− But we can tolerate some variation (jitter)

Loss

− Ideally there would be none

− But we can tolerate some losses. (How?)

1

2

3

P
a

ck
et

s
(%

)

90% 97% 98% 99%

150 20010050

Delay (milliseconds)

Example: Delay and Jitter

Buffer before playout so that most late samples will have arrived

S
eq

u
en

ce
 n

u
m

b
er

Packet
generation

Network
delay

Buffer

Playback

Time

Packet
arrival

Tolerating Jitter with Buffering

1 2 3 4

1

2
Flow B

Flow A

Time (seconds)

B
a

n
d

w
id

th
 (

M
B

p
s)

Specifying Bandwidth Needs

Problem: Many applications have variable bandwidth demands

Same average, but very different needs over time. One number. So how
do we describe bandwidth to the network?

Token Buckets

Common, simple descriptor

Use tokens to send bits

Average bandwidth is R bps

Maximum burst is B bits

Fill rate R
tokens/sec

Bucket size
B tokens

Sending
drains
tokens

Supporting QOS Guarantees

1. Flowspecs. Formulate application needs

− Need descriptor, e.g. token bucket, to ask for guarantee

2. Admission Control. Decide whether to support a new
guarantee

− Network must be able to control load to provide
guarantees

3. Signaling. Reserve network resources at routers

− Analogous to connection setup/teardown, but at routers

4. Packet Scheduling. Use different scheduling and drop
mechanisms to implement the guarantees

− e.g., set up a new queue and weight with WFQ at routers

The need for admission control

Suppose we have an <r,b> token bucket flow and
we are interested in how much bandwidth the
flow receives from the network.

Consider a network with FIFO nodes. What rate
does the flow get?

Now consider a network with (W)FQ nodes. What
rate does the flow get?

Now consider a network with (W)FQ nodes where
w(i) = r(i) and ∑w(i) =W < capacity at each node.
What rate does the flow get?

Bounding Bandwidth and Delay

WFQ with admission control can bound bandwidth
and delay. Wow! (Parekh and Gallagher GPS
result)

For a single node:
− Bandwidth determined by weights: g(i) = C * w(i)/W

− E2E delay <= propagation + burst/g(i) + packet/g(i)
+ packet/C

For multiple nodes:
− Bandwidth is determined by the minimum g(i) along

the path

− E2E delay pays for burst smoothing only once, plus
further transmission and pre-emption delays

IETF Integrated Services

Fine-grained (per flow) guarantees

− Guaranteed service (bandwidth and bounded delay)

− Controlled load (bandwidth but variable delay)

RSVP used to reserve resources at routers

− Receiver-based signaling that handles failures

WFQ used to implement guarantees

− Router classifies packets into a flow as they arrive

− Packets are scheduled using the flow’s resources

Resource Reservation Protocol (RSVP)

R

R

R

R

R

Sender 1

Sender 2

PATH

PATH

RESV

(merged)
RESV

RESV

Receiv er B

Receiv er A

RSVP Issues

RSVP is receiver-based to support multicast apps

Only want to reserve resources at a router if they
are sufficient along the entire path

What if there are link failures and the route
changes?

What if there are sender/receiver failures?

IETF Differentiated Services

A more coarse-grained approach to QOS

− Packets are marked as belonging to a small set of
services, e.g, premium or best-effort, using the TOS bits
in the IP header

This marking is policed at administrative boundaries

− Your ISP marks 10Mbps (say) of your traffic as premium
depending on your service level agreement (SLAs)

− SLAs change infrequently; much less dynamic than
Intserv

Routers understand only the different service classes

− Might separate classes with WFQ, but not separate flows

Two-Tiered Architecture

Mark at Edge routers
(per flow state,
complex)

Core routers
stay simple
(no per-flow state,
few classes)

DiffServ Issues

How do ISPs provision?

− Traffic on your access link may follow different paths
inside ISP network. Can we provide an access link
guarantee efficiently?

What’s the policy?

− Which traffic is gold, which silver, etc.?

Overprovisioning, other issues

An alternative:

− Provide more capacity than load; it’s all a cost tradeoff

− Bandwidth to user limited mainly by their access capacity

− Delay through network limited mainly by propagation
delay

Deploying QOS:

− What good is it if only one ISP deploys?

− Incentives for single ISP for distributed company using
VoIP

− And incentive for inter-provider agreements

− Network QOS as an extension of single box packet
shapers

