Congestion Control

Tom Anderson

Bandwidth Allocation

How do we efficiently share network resources
among billions of hosts?

- Congestion control

« Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> ...

« Don’t send faster than network can accept
- Fairness

« How do we allocate bandwidth among different users?
« Each user should (?) get fair share of bandwidth

Congestion

Router |:| |:| |:| -
LT 1.5-Mbps T1 link

Packets dropped here

Buffer absorbs bursts when input rate > output
If sending rate is persistently > drain rate, queue builds
Dropped packets represent wasted work

Chapter 6, Figure 1

Fairness

Router

Destinatio
2

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link ... depends on paths
and other traffic

Chapter 6, Figure 2

The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

- Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times

- Synchronized behavior: network oscillates between
loaded and unloaded

TCP Delivery

Application process

Application process

] []
[write [] Read
. bytes - bytes
v]
TCP TCP
Send buffer Receive buffer
Transmit segments 1
Segment| | Segment|---| Segment
/
IP | x.html IP| TCP |get inde

TCP Sliding Window

Per-byte, not per-packet (why?)

- send packet says “here are bytes j-k”

- ack says “received up to byte k”
Send buffer >= send window

- can buffer writes in kernel before sending

- writer blocks if try to write past send buffer
Receive buffer >= receive window

- buffer acked data in kernel, wait for reads
- reader blocks if try to read past acked data

Sender and Receiver Buffering

Sending application Receiving application

TCP TCP
LastByteWritten LastByteRead
} } } !
L astByteAcked LastByteSent NextByteExpected LastByteRcvd

. = available buffer = buffer in use

Avoiding burstiness: ack pacing

bottleneck

packets

Sender Receiver

acks

Window size = round trip delay * bit rate

The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

- Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times

- Synchronized behavior: network oscillates between
loaded and unloaded

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth

- Robust RTT estimation

- Additive increase/multiplicative decrease
« oscillate around bottleneck capacity

- Slow start
« quickly identify bottleneck capacity

- Fast retransmit
- Fast recovery

How do we determine timeouts?

If timeout too small, useless retransmits
- can lead to congestion collapse (and did in 86)

- as load increases, longer delays, more timeouts, more
retransmissions, more load, longer delays, more
timeouts ...

- Dynamic instability!
If timeout too big, inefficient
- wait too long to send missing packet

Timeout should be based on actual round trip time
(RTT)

- varies with destination subnet, routing changes,
congestion, ...

Estimating RTTs

Idea: Adapt based on recent past measurements

For each packet, note time sent and time ack received

Compute RTT samples and average recent samples for
timeout

EstimatedRTT = a x EstimatedRTT + (1 - a) x
SampleRTT

This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
o = 0.8 t0 0.9.

Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

B
g "'ﬂ"
JIII I'l)
/- [I!-
g1)
2N A \ e
_ ~ E | p
e/ VATV i
Los - i-l |
1 B T
| J .
: F
1 . ..|

Jacobson/Karels Algorithm

Problem:
- Variance in RTTSs gets large as network gets loaded

- Average RTT isn’t a good predictor when we need it
most

Solution: Track variance too.
- Difference = SampleRTT — EstimatedRTT
- EstimatedRTT = EstimatedRTT + (& x Difference)
- Deviation = Deviation + &(|Difference|- Deviation)
- Timeout = p x EstimatedRTT + ¢ x Deviation
- In practice, 8 =1/8,u=1and ¢ =4

Estimate with Mean + Variance

o — —_— — — CTm— —— —
A

in I 1

. I\ Ir

FIT peni
e
-
-
-
L
- -
(
3
=
—

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT

Multiplicative decrease

- Timeout => dropped packet => cut window size in
half

« and therefore cut sending rate in half
Additive increase

- Ack arrives => no drop => increase window size by

one packet/window
 and therefore increase sending rate a little

TCP “Sawtooth”

Oscillates around bottleneck bandwidth
- adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease
18 -

16 -
14 -
12 A
window 10 -
(in segs) 8 -
6 -
4 -
2 -
o+
NG N OO A
round-trip times

Slow start

How do we find bottleneck bandwidth?

- Start by sending a single packet
o start slow to avoid overwhelming network

- Multiplicative increase until get packet loss
« quickly find bottleneck

- Remember previous max window size

« shift into linear increase/multiplicative decrease when get
close to previous max ~ bottleneck rate

« called “congestion avoidance”

Slow Start
Quickly find the bottleneck bandwidth

Slow Start
300 -

250 -

200

\?rmdow 150 -
(in segs)

100 -

50 4

0

round-trip times

Source

TCP Mechanics Illustrated

Router

0.9 ms latency o latency

Dest

21

Slow Start Problems

Bursty traffic source
- will fill up router queues, causing losses for other flows
- solution: ack pacing

Slow start usually overshoots bottleneck

- will lose many packets in window
- solution: remember previous threshold

Short tlows

- Can spend entire time in slow start!
- solution: persistent connections?

Avoiding burstiness: ack pacing

bottleneck

packets

Sender Receiver

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing
- slow start/additive increase are
designed to cause packet loss
After loss, use slow start to regain
ack pacing
- switch to linear increase at last
successful rate
- “congestion avoidance”

™~

1meout

T

/

%
7

Putting It All Together

Slow Start + Congestion Avoidance
18 -

16 -
14 -

12 1

window 10 1
(in segs) g -

6 -

4
2 _
0

D A T A I S
round-trip times

Timeouts dominate performance!

o b
TPV 979 T 1T 1T IeeyryrTrvyr Tt

Fast Retransmit

Can we detect packet loss without a
timeout?

- Receiver will reply to each packet with
an ack for last byte received in order

Duplicate acks imply either
- packet reordering (route change)
- packet loss

TCP Tahoe

- resend if sender gets three duplicate
acks, without waiting for timeout

Fast Retransmit Caveats

Assumes in order packet delivery

- Recent proposal: measure rate of out of order
delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)
- what if window size <=3

Doesn’t work if many packets are lost

- example: at peak of slow start, might lose many
packets

Fast Retransmit

Slow Start + Congestion Avoidance + Fast
Retransmit

18 1
16
14 4

12 4

window 10 A
(in segs) / /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
round-trip times

Regaining ack pacing limits performance

Fast Recovery

Use duplicate acks to maintain ack 72
pacing ‘

- duplicate ack => packet left network '0:
- after loss, send packet after every "
other acknowledgement 1
Doesn’t work if lose many packets in a

row 2

~_ fall back on timeout and slow start to
reestablish ack pacing

window
(in segs)

18 -

16 1

14 4

12 4

10 4

8 i

6 i

4 4

Fast Recovery

Slow Start + Congestion Avoidance + Fast
Retransmit + Fast Recovery

|/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
round-trip times

What if two TCPs share link?

Reach equilibrium independent of initial bw
- assuming equal RTTs, “fair” drops at the router

16 -
14
12

10 -

window

(in segs) 8-

6
4

2 -

0 IIIIIIIIIIIIIIIIIIII

0O 1 2 3 45 6 7 8 9 1011 1213141516 17 18 19
round-trip times

Equilibrium Proof

1 Fair Allocation
<
—
S
9
av]
a4
bR
i=
=

K3 Link Bandwidth

Sending Rate for B

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

18 -

16 - r—O—Q—O—O—O—O—O—O—O—Q—O—O—O—O—O—O—O—Q

14 -

12 -
window 10 1 —+—UDP
(insegs) o | TCP

6 -

4

2

0 -

© 1 X © 9% O O O L W»
round-trip times

What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!
- Many TCP “accelerators”
- Easy to improve perf at expense of network

One solution: enforce good behavior at router

What if TCP connection 1is short?

Slow start dominates performance
- What if network is unloaded?
- Burstiness causes extra drops

Packet losses unreliable indicator
- can lose connection setup packet
- can get drop when connection near done
- signal unrelated to sending rate

In limit, have to signal every connection
- 50% loss rate as increase # of connections

Example: 10KB document
10Mb/s wifi,7oms RTT, 536 MSS

Ethernet ~ 10 Mb/s

64KB window, 7oms RTT ~ 7.5 Mb/s
can only use 10KB window ~ 1.2 Mb/s
5% drop rate ~ 275 Kb/s (steady state)
model timeouts ~ 228 Kb/s

slow start, no losses ~ 140 Kb/s

slow start, with 5% drop ~ 75 Kb/s

Other Issues

TCP over wireless
- High loss rate => ?

TCP in the data center
~ Slow start => ?

TCP over 10 Gbps links

- Packetloss => ?

TCP and router buffer sizes
- Buffer = bw*delay; what happens to latency?

TCP and real-time delivery

- Competing flows drive system to overload

37

TCP Known to be Suboptimal

Small to moderate sized connections
Intranets with low to moderate utilization
Wireless transmission loss

High bandwidth; high delay

Interactive applications

Applications needing predictability or QoS

= loss

@) loss

@] loss

< loss

; S i I C_: h ; I

Wasted capacity anne
Capacity
>

Time
38

Observation

Trivial to be optimal with help from the network; e.g., ATM
rate control
- Hosts send bandwidth request into network
- Network replies with safe rate (min across links in path)

Can endpoint congestion control be near optimal with no
change to the network?
- Assume: cooperating endpoints
- Router support only for isolation, not congestion control

PCP approach: directly emulate optimal router behavior!

39

Congestion Control Approaches

Endpoint Router Support
TCP, Vegas,

Iry targetrate | pAp FastTCP, | DecBit, ECN,

for full RTT; if
too fast, backoff Scalable TCP, RED, AQM

HighSpeed TCP
Request rate

from network; PCP é\g\d ’ }é%%

send at that rate Q,

40

PCP Goals

. Minimize transfer time

.. Negligible packet loss, low queueing
s Work conserving

.. Stability under extreme load

. Eventual fairness

TCP achieves 3-5 (mostly)
PCP achieves all five (in the common case)

41

Rate

Probe Control Protocol (PCP)

Probe for bandwidth using short burst of packets

- If bw available, send at the desired uniform rate
(paced)

- If not, try again at a slower rate
Probe is a request

Successful probe sets the sending rate
A - Send at this rate to signal others not to send

Probe

Channel

Probes

Send packet train spaced to mimic desired rate
Check packet dispersion at receiver

Successful probe:

Bottleneck Link
Sender]:l:[]]]:] I I Receiver

Failed probe:

Sender]:l:[-] | [Rece.ver

Dlspersmn

Cross trafflc

43

Probabilistic Accept

Randomly generate a slope consistent with the
observed data

- same mean, variance as least squares fit
Accept if slope is not positive
Robust to small variations in packet scheduling

delay |

/‘ . . 5 -

time 44

Rate Compensation

Queues can still increase:
- Failed probes, even if short, can add to queueing
- Simultaneous probes could allocate the same bw

- Probabilistic accept may decide probe was successful,
without sufficient underlying available bandwidth

PCP solution

- Detect increasing queues by measuring packet latency
and inter-packet delay

- Each sender decreases their rate proportionately, to
eliminate queues within a single round trip

- Emulates AIMD, and thus provides eventual fairness

45

Binary Search

Base protocol: binary search for channel capacity
- Start with a baseline rate: One MSS packet per round-
trip
- If probe succeeds, double the requested bandwidth
- If probe fails, halve the requested bandwidth

A
« Below baseline rate, issue probes less frequently, up to a limit

Probe

Rate

Probe

History

Haven’t we just reinvented TCP slow start?
- Still uses O(log n) steps to determine the bandwidth
- Does prevent losses, keeps queues small

Host keeps track of previous rate for each path

- Because probes are short, ok to probe using this
history
- Currently: first try 1/3™ of previous rate

« If prediction is inaccurate/accurate, we halve/double the
initial probe rate

TCP Compatibility

TCP increases its rate regardless of queue size
- Should PCP keep reducing its rate to compensate?

Solution: PCP becomes more aggressive in
presence of non-responsive flows

- If rate compensation is ineffective, reduce speed of
rate compensation: “tit for tat”

- When queues drain, revert to normal rate
compensation

Otherwise compatible at protocol level

- Future work: PCP sender (receiver) induces TCP
receiver (sender) to use PCP

Performance

User-level implementation
- 250KB transfers between every pair of RON nodes
- PCP vs. TCP vs. four concurrent PCP transmissions

IN
o
1

Percentage of flows

N
o
1

o

0 1 2 3 4 5 6

Transfer Time

49

Transfer time (ms)

Is PCP Cheating?

Flow size (KB)

800

1000

— TCP w/4-PCP
——TCP
—4-PCP

PCP

50

Transfer time (ms)

Simulation: Vary Offered Load

900 - 900 4
L »
€ £
600 - = = 600 -
L 3
" A
c -
300 - © T 300 -
=
0 T T T 0 — T
0 5 10 15 20 0 5 10 15
New flows per sec
New flows per sec
40 16
GN) 30 A g 1.2 4
7 2
g 20 E 0.8 A
g (%))
O 10 4 8 0.4 +
-
0 I T T o -
0 5 10 15 20 0 5 10 15 20

New flows per sec New flows per sec

—4—TCP —#-PCP —— Fair Queueing

Simulation: Self-Similar Traffic

)
S
S

’U? 2500
é “n 2000
4 L o -1
900 27
£ ~ 7 1500 -
=600 3z
2 L 0O 100 |
2300 - & =
500 4
e
|_ 0 1 1 1 O T r .
0 5 0 3 20 0 5 0 5 20
New flows per sec New flows per sec
50 3
q’j) 40 - g
0 34 o 2
> 5
0 20 ” N
2 %)
o »- S
0 : : .
0 > D b 20 0 5 10 15 20
New flows per sec New flows per sec

—4— TCP —#-PCP —4— Fair Queueing

Simulation: Transmission Loss

2500 2500
» ~
é 2000 O wn 2000 -
o £ E
£ 15001 ~ < 1500
— HG_,) 0
c .
500 2 50+
O L T T O
0.001 0.01 0.1 1 10
0.001 001 01 1 10
Loss rate (%)
| nce rata (04
30 0.5
o) 25; - 0.4
v 5§
Q) *(7') 2 0.3 -
5 A D
2 = & 0.2
> 0] S
o .| 0.1 -
o At e 0
0.001 0.01 04 1 0 0.001 0.01 0.1 1 10
Loss rate (%) Loss rate (20)

—4— TCP —#-PCP —4— Fair Queueing

1600

Simulation: Fair-Queued Routers

1600

(ms)
[
N
o
(@)

Transfer time

800 A

400 -

u_u_w'——'//

~ 1200 4

ms

~ 800 -

1400

Transfer time
Std. Dev

0 5 10 15

New flows per sec

0 -

20 0

60

40 -

20 H

Queue size

5 10 15
New flows per sec

20

Loss rate (%)

5 10 15
New flows per sec

20 0

——TCP -8 PCP

5 10 15

New flows per sec

Related Work

Short circuit TCP’s slow-start: TCP Swift Start, Fast Start
Rate pacing: TCP Vegas, FastTCP, RAP

History: TCP Fast Start, MIT Congestion Manager
Delay-based congestion control: TCP Vegas, FastTCP
Available bandwidth: Pathload, Pathneck, IGI, Spruce

Separate efficiency & fairness: XCP

Summary

PCP: near optimal endpoint congestion control

- Emulates centralized control with no special support
from network

Better than TCP for today’s common case

- Most paths are idle and have predictable
performance

- Most tlows are short-lived

User-level and kernel implementation available:
http://www.cs.washington.edu/homes/arvind/pcp

http://www.cs.washington.edu/homes/arvind/pcp

