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Bandwidth Allocation

How do we efficiently share network resources
among billions of hosts?

- Congestion control

« Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> ...

« Don’t send faster than network can accept
- Fairness

« How do we allocate bandwidth among different users?
« Each user should (?) get fair share of bandwidth



Congestion

Router |:| |:| |:| -
LT 1.5-Mbps T1 link

Packets dropped here

Buffer absorbs bursts when input rate > output
If sending rate is persistently > drain rate, queue builds
Dropped packets represent wasted work

Chapter 6, Figure 1



Fairness

Router

Destinatio
2

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link ... depends on paths
and other traffic

Chapter 6, Figure 2



The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

- Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times

- Synchronized behavior: network oscillates between
loaded and unloaded



TCP Delivery
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TCP Sliding Window

Per-byte, not per-packet (why?)

- send packet says “here are bytes j-k”

- ack says “received up to byte k”
Send buffer >= send window

- can buffer writes in kernel before sending

- writer blocks if try to write past send buffer
Receive buffer >= receive window

- buffer acked data in kernel, wait for reads
- reader blocks if try to read past acked data



Sender and Receiver Buffering

Sending application Receiving application

TCP TCP
LastByteWritten LastByteRead
} } } !
L astByteAcked LastByteSent NextByteExpected LastByteRcvd

. = available buffer = buffer in use




Avoiding burstiness: ack pacing

bottleneck

packets

Sender Receiver

acks

Window size = round trip delay * bit rate



The Problem

Original TCP sent full window of data
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- Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times
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TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth

- Robust RTT estimation

- Additive increase/multiplicative decrease
« oscillate around bottleneck capacity

- Slow start
« quickly identify bottleneck capacity

- Fast retransmit
- Fast recovery



How do we determine timeouts?

If timeout too small, useless retransmits
- can lead to congestion collapse (and did in 86)

- as load increases, longer delays, more timeouts, more
retransmissions, more load, longer delays, more
timeouts ...

- Dynamic instability!
If timeout too big, inefficient
- wait too long to send missing packet

Timeout should be based on actual round trip time
(RTT)

- varies with destination subnet, routing changes,
congestion, ...



Estimating RTTs

Idea: Adapt based on recent past measurements

For each packet, note time sent and time ack received

Compute RTT samples and average recent samples for
timeout

EstimatedRTT = a x EstimatedRTT + (1 - a) x
SampleRTT

This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
o = 0.8 t0 0.9.

Set timeout to small multiple (2) of the estimate



Estimated Retransmit Timer
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Jacobson/Karels Algorithm

Problem:
- Variance in RTTSs gets large as network gets loaded

- Average RTT isn’t a good predictor when we need it
most

Solution: Track variance too.
- Difference = SampleRTT — EstimatedRTT
- EstimatedRTT = EstimatedRTT + (& x Difference)
- Deviation = Deviation + &(|Difference|- Deviation)
- Timeout = p x EstimatedRTT + ¢ x Deviation
- In practice, 8 =1/8,u=1and ¢ =4



Estimate with Mean + Variance
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Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT

Multiplicative decrease

- Timeout => dropped packet => cut window size in
half

« and therefore cut sending rate in half
Additive increase

- Ack arrives => no drop => increase window size by

one packet/window
 and therefore increase sending rate a little



TCP “Sawtooth”

Oscillates around bottleneck bandwidth
- adjusts to changes in competing traffic

Additive Increase/Multiplicative Decrease
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Slow start

How do we find bottleneck bandwidth?

- Start by sending a single packet
o start slow to avoid overwhelming network

- Multiplicative increase until get packet loss
« quickly find bottleneck

- Remember previous max window size

« shift into linear increase/multiplicative decrease when get
close to previous max ~ bottleneck rate

« called “congestion avoidance”



Slow Start
Quickly find the bottleneck bandwidth
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Source

TCP Mechanics Illustrated

Router

0.9 ms latency o latency

Dest
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Slow Start Problems

Bursty traffic source
- will fill up router queues, causing losses for other flows
- solution: ack pacing

Slow start usually overshoots bottleneck

- will lose many packets in window
- solution: remember previous threshold

Short tlows

- Can spend entire time in slow start!
- solution: persistent connections?




Avoiding burstiness: ack pacing

bottleneck

packets

Sender Receiver

acks

Window size = round trip delay * bit rate



Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing
- slow start/additive increase are
designed to cause packet loss
After loss, use slow start to regain
ack pacing
- switch to linear increase at last
successful rate
- “congestion avoidance”
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Putting It All Together

Slow Start + Congestion Avoidance
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Fast Retransmit

Can we detect packet loss without a
timeout?

- Receiver will reply to each packet with
an ack for last byte received in order

Duplicate acks imply either
- packet reordering (route change)
- packet loss

TCP Tahoe

- resend if sender gets three duplicate
acks, without waiting for timeout




Fast Retransmit Caveats

Assumes in order packet delivery

- Recent proposal: measure rate of out of order
delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)
- what if window size <=3

Doesn’t work if many packets are lost

- example: at peak of slow start, might lose many
packets



Fast Retransmit

Slow Start + Congestion Avoidance + Fast
Retransmit
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Regaining ack pacing limits performance



Fast Recovery

Use duplicate acks to maintain ack 72
pacing ‘

- duplicate ack => packet left network '0:
- after loss, send packet after every "
other acknowledgement 1
Doesn’t work if lose many packets in a

row 2

~_ fall back on timeout and slow start to
reestablish ack pacing
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Slow Start + Congestion Avoidance + Fast
Retransmit + Fast Recovery
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What if two TCPs share link?

Reach equilibrium independent of initial bw
- assuming equal RTTs, “fair” drops at the router
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Equilibrium Proof
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What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

18 -

16 - r—O—Q—O—O—O—O—O—O—O—Q—O—O—O—O—O—O—O—Q

14 -

12 -
window 10 1 —+—UDP
(insegs) o | TCP

6 -

4

2

0 -

© 1 X © 9% O O O L W»
round-trip times



What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!
- Many TCP “accelerators”
- Easy to improve perf at expense of network

One solution: enforce good behavior at router



What if TCP connection 1is short?

Slow start dominates performance
- What if network is unloaded?
- Burstiness causes extra drops

Packet losses unreliable indicator
- can lose connection setup packet
- can get drop when connection near done
- signal unrelated to sending rate

In limit, have to signal every connection
- 50% loss rate as increase # of connections



Example: 10KB document
10Mb/s wifi,7oms RTT, 536 MSS

Ethernet ~ 10 Mb/s

64KB window, 7oms RTT ~ 7.5 Mb/s
can only use 10KB window ~ 1.2 Mb/s
5% drop rate ~ 275 Kb/s (steady state)
model timeouts ~ 228 Kb/s

slow start, no losses ~ 140 Kb/s

slow start, with 5% drop ~ 75 Kb/s



Other Issues

TCP over wireless
- High loss rate => ?

TCP in the data center
~ Slow start => ?

TCP over 10 Gbps links

- Packetloss => ?

TCP and router buffer sizes
- Buffer = bw*delay; what happens to latency?

TCP and real-time delivery

- Competing flows drive system to overload

37



TCP Known to be Suboptimal

Small to moderate sized connections
Intranets with low to moderate utilization
Wireless transmission loss

High bandwidth; high delay

Interactive applications

Applications needing predictability or QoS

= loss

@) loss
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< loss
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Wasted capacity anne
Capacity
>
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Observation

Trivial to be optimal with help from the network; e.g., ATM
rate control
- Hosts send bandwidth request into network
- Network replies with safe rate (min across links in path)

Can endpoint congestion control be near optimal with no
change to the network?
- Assume: cooperating endpoints
- Router support only for isolation, not congestion control

PCP approach: directly emulate optimal router behavior!

39



Congestion Control Approaches

Endpoint Router Support
TCP, Vegas,

Iry targetrate | pAp FastTCP, | DecBit, ECN,

for full RTT; if
too fast, backoff Scalable TCP, RED, AQM

HighSpeed TCP
Request rate

from network; PCP é\g\d ’ }é%%

send at that rate Q,

40



PCP Goals

. Minimize transfer time

.. Negligible packet loss, low queueing
s Work conserving

.. Stability under extreme load

. Eventual fairness

TCP achieves 3-5 (mostly)
PCP achieves all five (in the common case)

41



Rate

Probe Control Protocol (PCP)

Probe for bandwidth using short burst of packets

- If bw available, send at the desired uniform rate
(paced)

- If not, try again at a slower rate
Probe is a request

Successful probe sets the sending rate
A - Send at this rate to signal others not to send

Probe

Channel



Probes

Send packet train spaced to mimic desired rate
Check packet dispersion at receiver

Successful probe:

Bottleneck Link
Sender]:l:[ ]]]:] I I Receiver

Failed probe:

Sender]:l:[ - ] | [Rece.ver

Dlspersmn

Cross trafflc
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Probabilistic Accept

Randomly generate a slope consistent with the
observed data

- same mean, variance as least squares fit
Accept if slope is not positive
Robust to small variations in packet scheduling

delay |

/‘ . . 5 -

time 44



Rate Compensation

Queues can still increase:
- Failed probes, even if short, can add to queueing
- Simultaneous probes could allocate the same bw

- Probabilistic accept may decide probe was successful,
without sufficient underlying available bandwidth

PCP solution

- Detect increasing queues by measuring packet latency
and inter-packet delay

- Each sender decreases their rate proportionately, to
eliminate queues within a single round trip

- Emulates AIMD, and thus provides eventual fairness
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Binary Search

Base protocol: binary search for channel capacity
- Start with a baseline rate: One MSS packet per round-
trip
- If probe succeeds, double the requested bandwidth
- If probe fails, halve the requested bandwidth

A . . ..
« Below baseline rate, issue probes less frequently, up to a limit

Probe

Rate

Probe




History

Haven’t we just reinvented TCP slow start?
- Still uses O(log n) steps to determine the bandwidth
- Does prevent losses, keeps queues small

Host keeps track of previous rate for each path

- Because probes are short, ok to probe using this
history
- Currently: first try 1/3™ of previous rate

« If prediction is inaccurate/accurate, we halve/double the
initial probe rate



TCP Compatibility

TCP increases its rate regardless of queue size
- Should PCP keep reducing its rate to compensate?

Solution: PCP becomes more aggressive in
presence of non-responsive flows

- If rate compensation is ineffective, reduce speed of
rate compensation: “tit for tat”

- When queues drain, revert to normal rate
compensation

Otherwise compatible at protocol level

- Future work: PCP sender (receiver) induces TCP
receiver (sender) to use PCP



Performance

User-level implementation
- 250KB transfers between every pair of RON nodes
- PCP vs. TCP vs. four concurrent PCP transmissions
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Transfer time (ms)

Is PCP Cheating?

Flow size (KB)
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Transfer time (ms)

Simulation: Vary Offered Load
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Simulation: Self-Similar Traffic
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Simulation: Transmission Loss
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Simulation: Fair-Queued Routers
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Related Work

Short circuit TCP’s slow-start: TCP Swift Start, Fast Start
Rate pacing: TCP Vegas, FastTCP, RAP

History: TCP Fast Start, MIT Congestion Manager
Delay-based congestion control: TCP Vegas, FastTCP
Available bandwidth: Pathload, Pathneck, IGI, Spruce

Separate efficiency & fairness: XCP



Summary

PCP: near optimal endpoint congestion control

- Emulates centralized control with no special support
from network

Better than TCP for today’s common case

- Most paths are idle and have predictable
performance

- Most tlows are short-lived

User-level and kernel implementation available:
http://www.cs.washington.edu/homes/arvind/pcp



http://www.cs.washington.edu/homes/arvind/pcp

