
Congestion Control

Tom Anderson

Bandwidth Allocation

How do we efficiently share network resources
among billions of hosts?

− Congestion control

• Sending too fast causes packet loss inside network ->
retransmissions -> more load -> more packet losses -> …

• Don’t send faster than network can accept

− Fairness

• How do we allocate bandwidth among different users?

• Each user should (?) get fair share of bandwidth

Chapter 6, Figure 1

Buffer absorbs bursts when input rate > output

If sending rate is persistently > drain rate, queue builds

Dropped packets represent wasted work

Destination
1.5-Mbps T1 link

Router

Source
2

Congestion

Packets dropped here

Chapter 6, Figure 2

Router

Source
2

Source
1

Source
3

Router

Router

Destination
2

Destination
1

Fairness

Each flow from a source to a destination should (?) get an
equal share of the bottleneck link … depends on paths
and other traffic

The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

− Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times

− Synchronized behavior: network oscillates between
loaded and unloaded

TCP Delivery

Application process

Write

bytes

TCP

Send buffer

Segment Segment Segment

Transmit segments

Application process

Read

bytes

TCP

Receive buffer

…

… …

IP x.html IP TCP get inde

TCP Sliding Window

Per-byte, not per-packet (why?)
− send packet says “here are bytes j-k”

− ack says “received up to byte k”

Send buffer >= send window
− can buffer writes in kernel before sending

− writer blocks if try to write past send buffer

Receive buffer >= receive window
− buffer acked data in kernel, wait for reads

− reader blocks if try to read past acked data

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

Sender and Receiver Buffering

= available buffer = buffer in use

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

The Problem

Original TCP sent full window of data

When links become loaded, queues fill up, and this
can lead to:

− Congestion collapse: when round-trip time exceeds
retransmit interval -- every packet is retransmitted
many times

− Synchronized behavior: network oscillates between
loaded and unloaded

TCP Congestion Control

Goal: efficiently and fairly allocate network
bandwidth

− Robust RTT estimation

− Additive increase/multiplicative decrease

• oscillate around bottleneck capacity

− Slow start

• quickly identify bottleneck capacity

− Fast retransmit

− Fast recovery

How do we determine timeouts?

If timeout too small, useless retransmits
− can lead to congestion collapse (and did in 86)

− as load increases, longer delays, more timeouts, more
retransmissions, more load, longer delays, more
timeouts …

− Dynamic instability!

If timeout too big, inefficient
− wait too long to send missing packet

Timeout should be based on actual round trip time
(RTT)

− varies with destination subnet, routing changes,
congestion, …

Estimating RTTs

Idea: Adapt based on recent past measurements
− For each packet, note time sent and time ack received

− Compute RTT samples and average recent samples for
timeout

− EstimatedRTT =  x EstimatedRTT + (1 - ) x
SampleRTT

− This is an exponentially-weighted moving average (low
pass filter) that smoothes the samples. Typically,
 = 0.8 to 0.9.

− Set timeout to small multiple (2) of the estimate

Estimated Retransmit Timer

Jacobson/Karels Algorithm

Problem:
− Variance in RTTs gets large as network gets loaded

− Average RTT isn’t a good predictor when we need it
most

Solution: Track variance too.
− Difference = SampleRTT – EstimatedRTT

− EstimatedRTT = EstimatedRTT + ( x Difference)

− Deviation = Deviation + (|Difference|- Deviation)

− Timeout =  x EstimatedRTT +  x Deviation

− In practice,  = 1/8,  = 1 and  = 4

Estimate with Mean + Variance

Tracking the Bottleneck Bandwidth

Sending rate = window size/RTT

Multiplicative decrease
− Timeout => dropped packet => cut window size in

half
• and therefore cut sending rate in half

Additive increase
− Ack arrives => no drop => increase window size by

one packet/window
• and therefore increase sending rate a little

TCP “Sawtooth”

Oscillates around bottleneck bandwidth

− adjusts to changes in competing traffic

Slow start

How do we find bottleneck bandwidth?
− Start by sending a single packet

• start slow to avoid overwhelming network

− Multiplicative increase until get packet loss
• quickly find bottleneck

− Remember previous max window size
• shift into linear increase/multiplicative decrease when get

close to previous max ~ bottleneck rate

• called “congestion avoidance”

Slow Start

Quickly find the bottleneck bandwidth

TCP Mechanics Illustrated

21

Source DestRouter

100 Mbps

0.9 ms latency

10 Mbps

0 latency

Slow Start Problems

Bursty traffic source
− will fill up router queues, causing losses for other flows

− solution: ack pacing

Slow start usually overshoots bottleneck
− will lose many packets in window

− solution: remember previous threshold

Short flows
− Can spend entire time in slow start!

− solution: persistent connections?

Avoiding burstiness: ack pacing

Sender Receiver

bottleneck

packets

acks

Window size = round trip delay * bit rate

Ack Pacing After Timeout

Packet loss causes timeout,
disrupts ack pacing

− slow start/additive increase are
designed to cause packet loss

After loss, use slow start to regain
ack pacing

− switch to linear increase at last
successful rate

− “congestion avoidance”

1

2
3

4
5

1

1

1

1

1

2

5
T

im
e

o
u

t

Putting It All Together

Timeouts dominate performance!

Fast Retransmit

Can we detect packet loss without a
timeout?

− Receiver will reply to each packet with
an ack for last byte received in order

Duplicate acks imply either
− packet reordering (route change)

− packet loss

TCP Tahoe
− resend if sender gets three duplicate

acks, without waiting for timeout

1

2
3

4
5

1

1

1

1

1

2

5

Fast Retransmit Caveats

Assumes in order packet delivery

− Recent proposal: measure rate of out of order
delivery; dynamically adjust number of dup acks
needed for retransmit

Doesn’t work with small windows (e.g. modems)

− what if window size <= 3

Doesn’t work if many packets are lost

− example: at peak of slow start, might lose many
packets

Fast Retransmit

Regaining ack pacing limits performance

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

window

(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast

Retransmit

Fast Recovery

Use duplicate acks to maintain ack
pacing

− duplicate ack => packet left network

− after loss, send packet after every
other acknowledgement

Doesn’t work if lose many packets in a
row

− fall back on timeout and slow start to
reestablish ack pacing

1

2
3

4
5

1

1

1

1

1

2

3

Fast Recovery

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

window

(in segs)

round-trip times

Slow Start + Congestion Avoidance + Fast

Retransmit + Fast Recovery

What if two TCPs share link?

Reach equilibrium independent of initial bw

− assuming equal RTTs, “fair” drops at the router

Equilibrium Proof

Sending Rate for B

Link Bandwidth

Fair Allocation

x

What if TCP and UDP share link?

Independent of initial rates, UDP will get priority!
TCP will take what’s left.

What if two different TCP
implementations share link?

If cut back more slowly after drops => will grab
bigger share

If add more quickly after acks => will grab bigger
share

Incentive to cause congestion collapse!

− Many TCP “accelerators”

− Easy to improve perf at expense of network

One solution: enforce good behavior at router

What if TCP connection is short?

Slow start dominates performance
− What if network is unloaded?

− Burstiness causes extra drops

Packet losses unreliable indicator
− can lose connection setup packet

− can get drop when connection near done

− signal unrelated to sending rate

In limit, have to signal every connection
− 50% loss rate as increase # of connections

Example: 10KB document
10Mb/s wifi,70ms RTT, 536 MSS

Ethernet ~ 10 Mb/s

64KB window, 70ms RTT ~ 7.5 Mb/s

can only use 10KB window ~ 1.2 Mb/s

5% drop rate ~ 275 Kb/s (steady state)

model timeouts ~ 228 Kb/s

slow start, no losses ~ 140 Kb/s

slow start, with 5% drop ~ 75 Kb/s

Other Issues

TCP over wireless

− High loss rate => ?

TCP in the data center

− Slow start => ?

TCP over 10 Gbps links

− Packet loss => ?

TCP and router buffer sizes

− Buffer = bw*delay; what happens to latency?

TCP and real-time delivery

− Competing flows drive system to overload

37

38

TCP Known to be Suboptimal

Small to moderate sized connections

Intranets with low to moderate utilization

Wireless transmission loss

High bandwidth; high delay

Interactive applications

Applications needing predictability or QoS

Channel
Capacity

Time

loss

W
in

d
o

w

Wasted capacity

loss
loss

loss

39

Observation

Trivial to be optimal with help from the network; e.g., ATM
rate control

− Hosts send bandwidth request into network

− Network replies with safe rate (min across links in path)

Can endpoint congestion control be near optimal with no
change to the network?

− Assume: cooperating endpoints

− Router support only for isolation, not congestion control

PCP approach: directly emulate optimal router behavior!

40

Congestion Control Approaches

Endpoint Router Support

Try target rate
for full RTT; if

too fast, backoff

TCP, Vegas,
RAP, FastTCP,
Scalable TCP,

HighSpeed TCP

DecBit, ECN,
RED, AQM

Request rate
from network;

send at that rate
PCP

ATM, XCP,
WFQ, RCP

41

PCP Goals

1. Minimize transfer time

2. Negligible packet loss, low queueing

3. Work conserving

4. Stability under extreme load

5. Eventual fairness

TCP achieves 3-5 (mostly)

PCP achieves all five (in the common case)

42

Probe Control Protocol (PCP)

Probe for bandwidth using short burst of packets

− If bw available, send at the desired uniform rate
(paced)

− If not, try again at a slower rate

Probe is a request

Successful probe sets the sending rate

− Send at this rate to signal others not to send

Time

R
a

te

Probe

Probe

Channel
Capacity

43

Probes

Send packet train spaced to mimic desired rate

Check packet dispersion at receiver

Bottleneck Link

Sender Receiver

Successful probe:

Dispersion

} }

Cross traffic

Sender Receiver

Failed probe:

44

Probabilistic Accept

Randomly generate a slope consistent with the
observed data

− same mean, variance as least squares fit

Accept if slope is not positive

Robust to small variations in packet scheduling

time

delay

45

Rate Compensation

Queues can still increase:

− Failed probes, even if short, can add to queueing

− Simultaneous probes could allocate the same bw

− Probabilistic accept may decide probe was successful,
without sufficient underlying available bandwidth

PCP solution

− Detect increasing queues by measuring packet latency
and inter-packet delay

− Each sender decreases their rate proportionately, to
eliminate queues within a single round trip

− Emulates AIMD, and thus provides eventual fairness

Binary Search

Base protocol: binary search for channel capacity

− Start with a baseline rate: One MSS packet per round-
trip

− If probe succeeds, double the requested bandwidth

− If probe fails, halve the requested bandwidth

• Below baseline rate, issue probes less frequently, up to a limit

R
a

te

Probe

Probe

Channel

Capacity

History

Haven’t we just reinvented TCP slow start?

− Still uses O(log n) steps to determine the bandwidth

− Does prevent losses, keeps queues small

Host keeps track of previous rate for each path

− Because probes are short, ok to probe using this
history

− Currently: first try 1/3rd of previous rate

• If prediction is inaccurate/accurate, we halve/double the
initial probe rate

TCP Compatibility

TCP increases its rate regardless of queue size

− Should PCP keep reducing its rate to compensate?

Solution: PCP becomes more aggressive in
presence of non-responsive flows

− If rate compensation is ineffective, reduce speed of
rate compensation: “tit for tat”

− When queues drain, revert to normal rate
compensation

Otherwise compatible at protocol level

− Future work: PCP sender (receiver) induces TCP
receiver (sender) to use PCP

49

Performance

User-level implementation

− 250KB transfers between every pair of RON nodes

− PCP vs. TCP vs. four concurrent PCP transmissions

0

20

40

60

80

100

0 1 2 3 4 5 6

Transfer Time

P
e

rc
e

n
ta

g
e

 o
f

fl
o

w
s

PCP

4-PCP

TCP

50

Is PCP Cheating?

0

500

1000

1500

2000

0 200 400 600 800 1000

Flow size (KB)

T
ra

n
s
fe

r
ti

m
e
 (

m
s
)

TCP w/4-PCP

TCP

4-PCP

PCP

Simulation: Vary Offered Load

0

300

600

900

0 5 10 15 20

New flows per sec

T
ra

n
sf

er
 t

im
e

S
td

. D
ev

. (
m

s)

0

10

20

30

40

0 5 10 15 20

New flows per sec

Q
u

e
u

e
 S

iz
e

TCP PCP Fair Queueing

0

0.4

0.8

1.2

1.6

0 5 10 15 20

New flows per sec

L
o

s
s

 r
a

te
 (

%
)

0

300

600

900

0 5 10 15 20

New flows per sec

T
ra

n
s

fe
r

ti
m

e
 (

m
s

)

Simulation: Self-Similar Traffic

0

300

600

900

1200

0 5 10 15 20

New flows per sec

T
r
a

n
s

fe
r
 t

im
e

 (
m

s
)

0

500

1000

1500

2000

2500

0 5 10 15 20

New flows per sec

T
ra

n
s

fe
r

ti
m

e

S
td

. D
e

v
. (

m
s

)

0

10

20

30

40

50

0 5 10 15 20

New flows per sec

Q
u

e
u

e
 s

iz
e

0

1

2

3

0 5 10 15 20

New flows per sec

L
o

s
s

 r
a

te
 (

%
)

TCP PCP Fair Queueing

Simulation: Transmission Loss

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10

Loss rate (%)

T
ra

n
s
fe

r
ti

m
e

S
td

.
D

e
v
.

(m
s
)

0

5

10

15

20

25

30

0.001 0.01 0.1 1 10

Loss rate (%)

Q
u

e
u

e
 s

iz
e

0

0.1

0.2

0.3

0.4

0.5

0.001 0.01 0.1 1 10

Loss rate (%)

C
on

ge
st

io
n

lo
ss

 ra
te

 (%
)

TCP PCP Fair Queueing

0

500

1000

1500

2000

2500

0.001 0.01 0.1 1 10

Loss rate (%)

T
ra

n
s

fe
r

ti
m

e
 (

m
s

)

0

1

2

3

4

0 5 10 15 20

New flows per sec

L
o

ss
 r

at
e

(%
)

Simulation: Fair-Queued Routers

0

400

800

1200

1600

0 5 10 15 20

New flows per sec

T
ra

n
s
fe

r
ti

m
e
 (

m
s
)

0

400

800

1200

1600

0 5 10 15 20

New flows per sec

T
ra

n
s
fe

r
ti

m
e

S
td

.
D

e
v
.
(m

s
)

0

20

40

60

0 5 10 15 20

New flows per sec

Q
u

e
u

e
 s

iz
e

TCP PCP

Related Work

Short circuit TCP’s slow-start: TCP Swift Start, Fast Start

Rate pacing: TCP Vegas, FastTCP, RAP

History: TCP Fast Start, MIT Congestion Manager

Delay-based congestion control: TCP Vegas, FastTCP

Available bandwidth: Pathload, Pathneck, IGI, Spruce

Separate efficiency & fairness: XCP

Summary

PCP: near optimal endpoint congestion control
− Emulates centralized control with no special support

from network

Better than TCP for today’s common case
− Most paths are idle and have predictable

performance
− Most flows are short-lived

User-level and kernel implementation available:
http://www.cs.washington.edu/homes/arvind/pcp

http://www.cs.washington.edu/homes/arvind/pcp

