
Atomic Commit
CSE550

Goal

Maintain consistent state for distributed
transactions

Why is this hard?
Common knowledge (i.e., shared memory) is useful
– and often assumed

Example – Dots on foreheads
Goal: Determine if I have a dot

Sees a dot on (2) Sees a dot on (1)

(1) (2)

Local vs common knowledge

Someone announces – “there is at least one
dot”

Local vs common knowledge

In distributed systems, we can’t assume
simultaneous (i.e., common) knowledge

(1) (2) Outcome
Dot No dot (1) immediately declares

“dot!”No dot Dot (2) immediatley declares
“dot!”Dot Dot After the other person

doesn’t say dot, both

Two Generals Problem

Barbarians kill messengers

Goal: Agree to
attack at dawn

(Communicate by
messenger)

Two Generals Problem
Claim: There is no protocol that always guarantees
generals will attack simultaneously

Two Generals Problem
Claim: There is no protocol that always guarantees
generals will attack simultaneously

Proof: By contradiction, consider a protocol that solves the Two
Generals problem using the least number of messages.

Let that number be n. Consider the n-th message mlast

The state of sender of mlast cannot depend on mlast receipt.
The state of receiver of mlast cannot depend on mlast receipt

So both sender and receiver would come to the same conclusion
even without sending mlast

We now have a new solution requiring only n-1 messages

Goal

Each transaction has a coordinator and
participating nodes

Each node has reliable storage

Otherwise, anything can fail

Maintain consistent state for distributed
transactions

The setup

Each process has an input value :
 Yes, No

Each process has output value :
 Commit, Abort

votei

decisioni

decisioni ∈ { }

pi

pi

votei ∈ { }

AC Specification
AC-1: All processes that reach a decision reach the
same one.

AC-2: A process cannot reverse its decision after it has
reached one.

AC-3: The Commit decision can only be reached if all
processes vote Yes.

AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit.

AC-5: If all failures are repaired and there are no
more failures, then all processes will eventually decide.

Comments
AC1:

We do not require all processes to
reach a decision
We do not even require all correct
processes to reach a decision
(impossible to accomplish if links fail)

AC4:
Avoids triviality
Allows Abort even if all processes
have voted yes

NOTE:
A process that does not vote Yes
can unilaterally abort

AC-1: All processes that reach a
decision reach the same one.

AC-2: A process cannot reverse its
decision after it has reached one

AC-3: The Commit decision can only
be reached if all processes vote
Yes

AC-4: If there are no failures and
all processes vote Yes, then the
decision will be Commit

AC-5: If all failures are repaired
and there are no more failures,
then all processes will eventually
decide

Liveness & Uncertainty

A process is uncertain when

It has already voted Yes

But it does not yet have sufficient information
to know the global decision

While uncertain, a process cannot decide
unilaterally

Uncertainty + communication failures = blocking!

Liveness &
Independent Recovery

Suppose process fails while running AC.

If, during recovery, can reach a decision
without communicating with other processes,
we say that can independently recover

Total failure (i.e. all processes fail) -
independent recovery = blocking

p

p

p

A few character-building
facts

Proposition 1

If communication failures or total failures are
possible, then every AC protocol may cause
processes to become blocked

Proposition 2

No AC protocol can guarantee independent
recovery of failed processes

2-Phase Commit
cCoordinator

I. sends VOTE-REQ to all participants

piParticipant

II. sends to Coordinator
! if = NO then

! := ABORT
halt

2-Phase Commit

votei

decidei

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then
 := COMMIT

send COMMIT to all
else

 := ABORT
send ABORT to all who voted YES

halt

II. sends to Coordinator
! if = NO then

! := ABORT
halt

2-Phase Commit

votei

decidei

decidec

decidec

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. if (all votes YES) then
 := COMMIT

send COMMIT to all
else

 := ABORT
send ABORT to all who voted YES

halt

II. sends to Coordinator
! if = NO then

! := ABORT
halt

2-Phase Commit

votei

decidei

pi

decidec

decidec

decidei

decidei

cCoordinator Participant

I. sends VOTE-REQ to all participants

votei

IV. if received COMMIT then
:= COMMIT

else
:= ABORT !

halt

Notes on 2PC

Satisfies AC-1 to AC-4

But not AC-5 (at least “as is”)
i. A process may be waiting for a message that

may never arrive
Use Timeout Actions

ii. No guarantee that a recovered process will
reach a decision consistent with that of
other processes

Processes save protocol state in DT-Log

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

pi

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

Since it has not cast its vote yet,
can decide ABORT and halt.

pi

pi

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

Since it has not cast its vote yet,
can decide ABORT and halt.

pi

pi

Coordinator can decide ABORT,
send ABORT to all participants

which voted YES, and halt.

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 ! Coordinator is waiting
for vote from participants

Since it has not cast its vote yet,
can decide ABORT and halt.

pi

pi

Coordinator can decide ABORT,
send ABORT to all participants

which voted YES, and halt.

Step 4 ! (who voted YES) is waiting
for COMMIT or ABORT

pi

 cannot decide: it must run a
termination protocol

pi

Termination protocols

I. Wait for coordinator to recover
It always works, since the coordinator is
never uncertain

may block recovering process unnecessarily

II. Ask other participants

Cooperative Termination

 appends list of participants to VOTE-REQ

when an uncertain process times out, it
sends a DECISION-REQ message to every
other participant

if has decided, then it sends its decision
value to , which decides accordingly

if has not yet voted, then it decides
ABORT, and sends ABORT to

What if is uncertain? Then cannot help p

c

p

q

q

p

q

p

q

Logging actions
1. When sends VOTE-REQ, it writes START-2PC to its DT

Log

2. When is ready to vote YES,
i. writes YES to DT Log
ii. sends YES to (writes also list of participants)

3. When is ready to vote NO, it writes ABORT to DT Log

4. When is ready to decide COMMIT, it writes COMMIT
to DT Log before sending COMMIT to participants

5. When is ready to decide ABORT, it writes ABORT to DT
Log

6. After receives decision value, it writes it to DT Log

pi

c

c pi

pi

pi

pi

pi

c

c

 recovers p

1. When coordinator sends VOTE-REQ,
 it writes START-2PC to its DT Log

2. When participant is ready to vote
 Yes, writes Yes to DT Log before
 sending yes to coordinator (writes
 also list of participants)
 When participant is ready to vote No,
 it writes ABORT to DT Log

3. When coordinator is ready to decide
 COMMIT, it writes COMMIT to DT Log
 before sending COMMIT to participants
 When coordinator is ready to decide
 ABORT, it writes ABORT to DT Log

4. After participant receives decision
 value, it writes it to DT Log

 recovers

if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly
else decide ABORT

p

p = c

1. When coordinator sends VOTE-REQ,
 it writes START-2PC to its DT Log

2. When participant is ready to vote
 Yes, writes Yes to DT Log before
 sending yes to coordinator (writes
 also list of participants)
 When participant is ready to vote No,
 it writes ABORT to DT Log

3. When coordinator is ready to decide
 COMMIT, it writes COMMIT to DT Log
 before sending COMMIT to participants
 When coordinator is ready to decide
 ABORT, it writes ABORT to DT Log

4. After participant receives decision
 value, it writes it to DT Log

 recovers

if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly
else decide ABORT

otherwise, is a participant:
if DT Log contains a decision
value, then decide accordingly
else if it does not contain a
Yes vote, decide ABORT
else (Yes but no decision)
run a termination protocol

p

p = c

p

1. When coordinator sends VOTE-REQ,
 it writes START-2PC to its DT Log

2. When participant is ready to vote
 Yes, writes Yes to DT Log before
 sending yes to coordinator (writes
 also list of participants)
 When participant is ready to vote No,
 it writes ABORT to DT Log

3. When coordinator is ready to decide
 COMMIT, it writes COMMIT to DT Log
 before sending COMMIT to participants
 When coordinator is ready to decide
 ABORT, it writes ABORT to DT Log

4. After participant receives decision
 value, it writes it to DT Log

2PC and blocking

Blocking occurs whenever the progress of a
process depends on the repairing of failures

No AC protocol is non blocking in the presence
of communication or total failures

