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Abstract
Atomic blocks allow programmers to delimit sections of code as
‘atomic’, leaving the language’s implementation to enforce atomic-
ity. Existing work has shown how to implement atomic blocks over
word-based transactional memory that provides scalable multi-
processor performance without requiring changes to the basic
structure of objects in the heap. However, these implementations
perform poorly because they interpose on all accesses to shared
memory in the atomic block, redirecting updates to a thread-private
log which must be searched by reads in the block and later recon-
ciled with the heap when leaving the block.

This paper takes a four-pronged approach to improving perfor-
mance: (1) we introduce a new ‘direct access’ implementation that
avoids searching thread-private logs, (2) we develop compiler op-
timizations to reduce the amount of logging (e.g. when a thread
accesses the same data repeatedly in an atomic block), (3) we use
runtime filtering to detect duplicate log entries that are missed stati-
cally, and (4) we present a series of GC-time techniques to compact
the logs generated by long-running atomic blocks.

Our implementation supports short-running scalable concurrent
benchmarks with less than 50% overhead over a non-thread-safe
baseline. We support long atomic blocks containing millions of
shared memory accesses with a 2.5-4.5x slowdown.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Concurrent program-
ming structures

General Terms Algorithms, Languages, Performance

Keywords Atomicity, Critical Regions, Transactional Memory

1. Introduction
Atomic blocks provide a promising simplification to the problem of
writing concurrent programs [12]. A code block is marked atomic
and the compiler and runtime system ensure that operations within
the block, including function calls, appear atomic. The program-
mer no longer needs to worry about manual locking, low-level race
conditions, or deadlocks. Atomic blocks can also provide exception
recovery, whereby a block’s side effects are rolled back if an excep-
tion terminates it [13]. This is valuable even in a single-threaded
application: error handling code is often difficult to write and to
test [29]. Implementations of atomic blocks scale to large multi-
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processor machines [12] because they are parallelism preserving:
atomic blocks can execute concurrently so long as a location being
updated in one block is not being accessed in any of the others. This
preserves the kind of sharing allowed in a conventional data cache.

Although they scale well, current implementations of atomic
blocks introduce substantial runtime overhead [12]. They are built
using word-based software transactional memory (STM) which
allows a series of memory accesses made via the STM library to be
performed atomically. There are three main reasons for the runtime
overhead, which we discuss in more detail in Section 2:

• STM implementations typically create private shadow copies
of memory updated in atomic blocks. This introduces lookups
on all read operations in atomic blocks and slows down write
operations when there is no contention. Furthermore, the cost of
these lookups precludes the use of atomic blocks across longer-
running sections of code.

• STM is implemented as a library. Calls to STM operations are
introduced late in compilation and are treated as opaque calls.
This misses many optimization opportunities.

• STM operations are used unnecessarily. Accesses to heap
data are blindly redirected through the STM without consid-
eration of whether or not an object is thread-local.

We address these problems with a novel STM implementation that
is more tightly integrated with the compiler and runtime system.
We make a number of contributions:

• Direct-access STM. Our STM is the first to allow objects to
be updated directly in the heap rather than working on private
shadow copies of objects, or via extra levels of indirection
between an object reference and the current object contents.
This optimizes for transactions that commit successfully.

• Decomposed STM interface. Section 3 describes how we de-
compose transactional memory operations to expose opportu-
nities for classical optimizations. For instance, a transactional
store obj.field = x is split into steps that (a) record that obj
is being updated by the current thread, (b) log the old value that
field held, and (c) store the new value x into the field. These
three steps are then handled separately by the compiler and (a)
and (b) can often be hoisted from a loop while (c) cannot.

• Compile-time optimizations. Section 4 describes additional
optimizations to reduce the number of calls to the STM inter-
face. For instance, by further decomposing the logging opera-
tions we can amortize the cost of checking for space across a
series of stores into the log.

• Integrated transactional versioning. Our STM is the first
to integrate transactional versioning with an existing object
header word. Earlier STMs, even those integrated in a man-
aged runtime environment, either used external tables of ver-
sioning records [12], additional header words [13], or made
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programmer-visible changes to the object model to add levels
of indirection between object references and current object con-
tents [16, 10, 23].

• Runtime filtering. Not all unnecessary operations can be iden-
tified statically, so we add complementary runtime filtering –
e.g. to remove updates to transaction-local objects. (Section 5).

• Garbage collection (GC) integration. Our implementation is
the first to allow the GC to reclaim objects that become unreach-
able within a still-running transaction; earlier work would hold
onto such objects until the transaction that allocated them has
committed or aborted. (Section 6).

Our work is implemented in Bartok, an optimizing ahead-of-time
research compiler and runtime system for Common Intermediate
Language (CIL) programs with performance competitive to the
Microsoft .NET Platform. The runtime system is implemented in
CIL, including the garbage collectors and the new STM.

As our results in Section 7 show, the combined effect of our
techniques is that short blocks (e.g. updates to red-black trees or
skip lists) run with less than 50% overhead compared with non-
thread-safe uniprocessor code. Furthermore, our techniques allow
blocks to scale to contain millions of memory accesses, running
between 2.5x and 4.5x slower than uniprocessor code.

As we conclude in Section 9, our work sheds light on how fu-
ture hardware can improve the performance of atomic blocks. It is
important that the problem be tackled after exploring the opportu-
nities for optimizing a purely software-based implementation and
with careful consideration of how hardware support fits with all of
the other parts of the runtime system.

1.1 Semantics

This paper focuses on the performance of atomic blocks. There
are many interesting questions about their exact semantics [11],
including the interaction of atomic blocks with locking code and
combining I/O operations with atomic blocks. These are important
questions but orthogonal to the performance questions we consider.

1.2 Design assumptions

As with any performance-based work on language design, we are
faced with a chicken-and-egg problem in terms of benchmarking.
We therefore make some assumptions about how atomic blocks
will be used.

Our key assumption is that most transactions commit success-
fully. We believe this is reasonable. First, the use of a parallelism-
preserving STM means that transactions will not abort ‘sponta-
neously’ or because of conflicts that the programmer cannot un-
derstand (in an earlier system we built, conflicts were detected
based on hash values, which could collide giving unintuitive perfor-
mance characteristics [12]). Second, the programmer already has a
strong incentive to avoid contention because of the cost of ping-
ponging data between caches. Traditional techniques such as hand-
ing high-contention operations off to work queues managed by a
single thread remain valuable.

Our second assumption is that reads significantly outnumber
updates in atomic blocks. This is borne out by observations of
current programs, and attempts to develop transactional versions
of them [5, 3]. This makes us careful to keep the overhead of
transactional reads low: reads involve merely logging the address
of the object being read and the contents of its header word.

Our final assumption is that transaction size cannot be bounded.
This lets us retain compositionality and suggests that the STM
implementation needs to scale well as the length of transactions
grows. In our design, the space overhead grows with the number of
objects that a transaction accesses and the number of words that it
updates. It does not grow with the number of accesses made.

In this paper, we distinguish informally between transactions
that are short and transactions that are long. A short transaction is
likely to run without requiring any memory allocation by our STM,
meaning that it can access up to 1024 words in our experiments.
Short transactions are also likely to be supported by traditional
hardware transactional memory designs [17]. In contrast, when we
refer to long transactions, we mean those which are likely to require
memory allocation within an STM, and which are unlikely to be
accommodated in hardware without complicated extensions [26].

2. Atomic blocks and STM
In this section we introduce the conventional interface for word-
based transactional memory. We show how atomic blocks are built
over it and highlight the problems of that approach. Much of the
discussion applies equally to object-based STMs [16, 15, 23] where
many of the same fundamental problems occur.

2.1 Word-based transactional memory

Word-based STM provides the following two sets of operations [12]:

void TMStart()
void TMAbort()
bool TMCommit()
bool TMIsValid()

word TMRead(addr a)
void TMWrite(addr a, word value)

The first set is used to manage transactions: TMStart starts a trans-
action in the current thread. TMAbort aborts the current thread’s
transaction. TMCommit attempts to commit the current thread’s
transaction. If the transaction cannot commit (because a concur-
rent transaction has updated one of the locations it accessed) then
TMCommit returns false and the current transaction is discarded.
Otherwise, TMCommit returns true and the updates are atomically
propagated to the shared heap. TMIsValid returns true iff the cur-
rent thread’s transaction could commit at the point of the call. The
second set of operations performs data accesses: TMRead returns
the current value of the specified location, or the most recent value
written by TMWrite in the current transaction.

2.2 Building atomic blocks over STM

Programming directly with STM is cumbersome because the pro-
grammer must ensure that TMRead and TMWrite are used for all
memory accesses made during a transaction. It is straightforward
to automate this process by having a compiler rewrite memory ac-
cesses in atomic blocks to use STM operations, and having it gen-
erate specialized versions of any methods called.

2.3 Problems with the STM interface

This design suffers from a number of problems which limit its ap-
plicability. Figure 1(a) shows a running example that illustrates
this. The example iterates through the elements of a linked list
between sentinel nodes this.Head and this.Tail. It sums the
Value fields of the nodes and stores the result in this.Sum. Fig-
ure 1(b) shows how Sum could be implemented using traditional
word-based STM operations. Several performance problems occur:

• Searching transaction logs will not scale to support large
transactions. TMRead must see earlier stores by the same trans-
action, so it must search the transaction log that holds tentative
updates. The performance depends on the length of the transac-
tion log and the effectiveness of auxiliary index structures.

• Opaque calls to the TM library hinder optimization – e.g. it
is no longer possible to hoist reading this.Tail from the loop.

• Monolithic TM operations cause repeated work. For in-
stance, repeated searches when accessing a field in a loop.
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public int Sum() {
Node n = this.Head;
int t = 0;
do {
t += n.Value;
if (n==this.Tail)
{
this.Sum = t;
return t;

}
n = n.Next;
}

}

public void Sum() {
Node n = TMRead(&this.Head);
int t = 0;
do {
t += TMRead(&n.Value);
if (n==TMRead(&this.Tail))
{
TMWrite(&this.Sum, t);
return t;
}
n = TMRead(&n.Next);

}
}

public int Sum() {
tm_mgr tx = DTMGetTMMgr();
DTMOpenForRead(tx, this);
Node n = this.Head;
int t = 0;
do {
DTMOpenForRead(tx, n);
t += n.Value;
DTMOpenForRead(tx, this);
if (n==this.Tail) {
DTMOpenForUpdate(tx, this);
DTMLogFieldStore(tx, this,

offsetof(List.Sum));
this.Sum = t;
return t;

}
DTMOpenForRead(tx, n);
n = n.Next;
}

}

public int Sum() {
tm_mgr tx = DTMGetTMMgr();
DTMOpenForUpdate(tx, this);
Node n = this.Head;
int t = 0;
do {
DTMOpenForRead(tx, n);
t += n.Value;
if (n==this.Tail) {

DTMLogFieldStore(tx, this,
offsetof(List.Sum));

this.Sum = t;
return t;

}
n = n.Next;

}
}

(a) Original code. (b) Monolithic operations. (c) Decomposed operations. (d) Optimized operations.

Figure 1. Running example with explicit STM calls (in reality, these are added during compilation, not as a source-to-source transformation).

3. Decomposed direct-access STM
This section introduces a new interface that lets us solve the prob-
lems with the monolithic word-based STM.

The first problem is solved by designing the system so that a
transaction can perform read and write operations directly to the
heap, letting a read naturally see a preceding transactional store
without any searching. Of course, logs are still needed for rolling
back a transaction that aborts and to detect conflicts at commit time.
However, for short transactions, these logs are append-only, and
searching is never required for any transaction size.

The second problem is solved by introducing TM operations
early during compilation and extending the subsequent analysis and
optimization phases to be aware of their semantics.

Finally, the third problem is solved by decomposing the mono-
lithic TM operations into separate steps so that repeated work can
be avoided. For instance, we separate the management of the trans-
action logs from the actual data accesses, often allowing log man-
agement to be hoisted from loops.

The result is a new form of STM interface which can be seen
as a hybrid that combines ideas from pure word-based and object-
based designs. As with object-based STM, objects must be opened
by a transaction before they can be accessed. However, as with a
word-based STM, subsequent accesses are performed with refer-
ence to an ordinary memory address rather than with reference to
a handle returned when the object was opened. Avoiding the use
of handles reduces the number of live variables at most points in a
transaction’s execution.

The new interface decomposes the transactional memory oper-
ations into four sets:

tm mgr DTMGetTMMgr()

void DTMStart(tm mgr tx)
void DTMAbort(tm mgr tx)
bool DTMCommit(tm mgr tx)
bool DTMIsValid(tm mgr tx)

void DTMOpenForRead(tm mgr tx, object obj)
void DTMOpenForUpdate(tm mgr tx, object obj)
object DTMAddrToSurrogate(tm mgr tx, addr a)

void DTMLogFieldStore(tm mgr tx, object obj, int offset)
void DTMLogAddrStore(tm mgr tx, addr a)

The first two sets are straightforward, providing DTMGetTMMgr to
get the current thread’s transaction manager and the usual transac-

tion management operations. Each thread has its own transaction
manager that survives for the lifetime of the thread. Making the
transaction manager an explicit parameter of the DTM* operations
allows us to reduce the number of accesses to per-thread storage.

The third set provides contention detection. Most field accesses
are performed with respect to an object reference. These cases are
handled directly by DTMOpenForRead and DTMOpenForUpdate
which indicate that the specified object will be accessed in read-
only mode or that it may subsequently be updated. Update access
subsumes read access so it is sufficient to open an object for update
before a series of reads and writes to its fields. Static field accesses
and indirect field accesses do not ordinarily involve an object ref-
erence: these cases are handled by DTMAddrToSurrogate which
maps an address to a surrogate object that is used for contention
detection on behalf of the address1.

The final set of operations maintains an undo log, needed to roll
back updates on abort. DTMLogFieldStore deals with stores to
objects and DTMLogAddrStore deals with stores to any address.

Calls to these operations must be correctly sequenced to provide
atomicity. There are three rules: (a) a location must be open for
read (or for update) when it is read, (b) a location must be open for
update when it is updated or a store logged for it, (c) a location’s old
value must have been logged before it is updated. In practice this
means that a call to TMRead could be rewritten as DTMGetTMMgr,
DTMAddrToSurrogate and then DTMOpenForRead. TMWrite is
DTMGetTMMgr, DTMAddrToSurrogate, DTMOpenForUpdate and
then DTMLogAddrStore.

Figure 1(c) shows how our running example can be written
using this decomposed interface and Figure 1(d) illustrates the
optimization opportunities that are available.

3.1 Runtime system

In this section we describe the implementation of the decomposed
direct-access STM. In overview, a transaction uses strict two-phase
locking for updates, and it records version numbers for objects that
it reads from so it can detect conflicting updates. A roll-back log is
used for recovery upon conflict or deadlock.

The use of pessimistic update locking is motivated by our work-
load assumption that conflicts are rare: locking enables the owning
thread to update objects in place. The use of optimistic concurrency
control on reads is motivated by our goal to offer scalable perfor-
mance: all of the cache lines holding read-only data can remain in

1 For an indirect field access this means converting an interior pointer into a
reference to the containing object.
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DTMStart DTMOpenForRead DTMOpenForUpdate

Start 

commit

Finish

commitClose objects in

updated-objects log

Validate read-

objects log

DTMCommit

Read objects confirmed as unchanged for this duration

Exclusive access to updated objects for this duration

Transaction appears atomic at this point

Figure 2. Ensuring atomicity: the commit operation checks that
objects read are unchanged during the upper gray arrow. Object
updated are held under exclusive access during the lower arrow.

shared mode in all of the readers’ data caches. This would not be
possible with a traditional lock because even an MRSW variant will
use atomic read-modify-write operations for synchronization.

Note that this combination of forms of concurrency control
means that update locks must be acquired on objects that a thread
allocates within a transaction: this ensures that a second thread en-
countering a reference to such an object in shared memory is aware
that the first thread has exclusive update access to it. However, as
we discuss in Sections 4.2 and 5.1, we can streamline the way that
log entries are managed for this kind of transactionally-allocated
object.

Figure 2 illustrates the operations performed by a simple trans-
action: it calls DTMStart, then opens objects for reading and for
update, and it concludes by calling DTMCommit to attempt to per-
form those accesses atomically. Each call to DTMOpenForRead
records a version number for the object in question. Each call to
DTMOpenForUpdate acquires an update lock on the object.

Internally, the commit operation begins by attempting to val-
idate the objects that have been opened for reading by checking
that the recorded version numbers are still current. This ensures
that no updates have been made to them by other transactions since
they were opened. If validation fails then a conflict has been de-
tected: the transaction’s updates are rolled back and the objects it
opened for update are closed, whereupon they can be opened by
other transactions. If validation succeeds then the transaction has
executed without conflicts: the objects that it opened for update are
closed, retaining the updates.

Validation checks that there were no conflicting updates to the
objects that the transaction read during the timespan indicated by
the upper gray arrow on Figure 2. Holding locks on objects open
for update prevents conflicts during the timespan of the lower gray
arrow. Consequently, there was no conflicting access to any of
the objects opened during the intersection of these timespans; the
transaction appears to take place atomically in this interval. This
linearizability [18] argument is common in transactional memory
systems [10].

We present the details of this implementation in three sections.
We show how we extend the objects’ structure to support the
version numbers and locks used by our STM. We then show how
we implement the DTMOpen* and DTMLog* operations. Finally, we
present the DTMCommit operation.

3.1.1 Object structure

We now turn to the structures used to support the validation of read-
only objects and the open and close operations on objects that are
updated. The STM requires two abstract entities on each object:
an STM word, used to coordinate which transaction has the object
open for update, and an STM snapshot, used in fast-path code to
detect conflicting updates to objects the transaction has read:

00STM word

0000

10Hashcode01Lock word

11

Lock word

Hashcode

00STM word

2. First kind of use is 

held in header word

3. Second kind of use 

triggers inflation

1. Initially header 

word is zero

Figure 3. Multi-use word states: the STM word is held explicitly
where shaded and is implicitly 0 in objects that have not yet been
opened for update in a transaction.

word GetSTMWord(Object o)
bool OpenSTMWord(Object o, word prev, word next)
void CloseSTMWord(Object o, word next)

snapshot GetSTMSnapshot(Object o)
word SnapshotToWord(snapshot s)

An object’s STM word has two fields. The first, a single bit, indi-
cates whether or not the object is currently open for update by any
transaction. If set then the remainder of the word identifies the own-
ing transaction. Otherwise the remainder of the word holds a ver-
sion number. OpenSTMWord attempts an atomic compare-and-swap
on the STM word (from prev to next). CloseSTMWord updates
the word to a specified value.

An object’s STM snapshot provides a hint about the object’s
transactional state. The implementation must guarantee that the
snapshot changes whenever CloseSTMWord is called on the object
– that is, whenever a thread releases update-access to the object. As
we shall see, this provides sufficient information to detect conflicts.

The Bartok runtime associates a single multi-use header word
with each object, using this to associate locks and hashcodes with
objects. As Figure 3 shows, we extend this design with an addi-
tional state to hold the STM word of objects that have ever been
opened for update in a transaction. If the multi-use word is needed
for more than one of these purposes then it is inflated and an ex-
ternal structure holds the object’s lock word, hashcode, and STM
word.

The STM snapshot is simply the value of the object’s multi-
use word. Note that this will naturally change when the STM word
is stored directly in the multi-use word. If the multi-use word has
been inflated then CloseSTMWord creates a new inflated structure
and copies the contents of the previous structure to it.

The idea of inflating a header word has been widely used to
associate locks or hash values with objects [4, 1, 8]. The key
novelty of our work is to extend the design to include an STM
word while avoiding the need to interrogate the inflated structure
in DTMOpenForRead.

3.1.2 Transaction log structure

Each thread has a separate transaction manager with three logs. The
read-object log and updated-object log track objects that the trans-
action has open for read or for update. The undo log tracks updates
that must be undone on abort. All logs are written sequentially and
never searched. We use separate logs because the entries in them
have different formats and because, during commit, we need to it-
erate over entries of different kinds in turn. Each log is organized
into a list of arrays of entries, so they can grow without copying.

We illustrate the structure of the logs using the running list
example. Figure 4(a) shows the initial state of a list holding a single
node with value 10. We assume that the multi-use header words of
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the objects are both being used to hold STM words – in this case
the objects are at versions 90 and 100.

The first operation from Figure 1(d) opens this for update,
using OpenSTMWord to atomically replace the version number with
a pointer to a new entry in the updated-object log. Figure 5(a)
defines this in pseudo-code and Figure 4(b) shows the result2.

The list-summing example proceeds to open each list node for
read. DTM makes this straightforward: for each object we log the
object reference and its current STM snapshot. Figure 5(b) shows
this in pseudo-code and Figure 4(c) shows the log entry it creates.

We do not attempt to detect conflicts when opening an object for
reading. This follows the design assumption that contention is rare,
so the benefits of discovering it early are outweighed by the cost
of checking. One could also imagine attempting to avoid writing
duplicate log entries at this point, either by searching the log (as
we did in previous work [12]), or by updating the object to record
that we have already opened it for reading (as in several object-
based transactional memories that use visible reads [16, 23]). We
do neither of these. Searching the log is practical only for short
transactions, and updating the object prevents it being cached at
multiple processors.

After reading the list nodes, the final step is to update the Sum
field. DTMLogFieldStore records the overwritten value with an
entry in the undo log as shown in Figure 4(d). We omit the pseudo-
code for this — the particular record we use is influenced by the GC
support in Bartok, and other designs will be appropriate in other
systems. The undo log entry records the address of the overwritten
value as an (object, offset) pair. This avoids using interior pointers,
which are expensive to process in some garbage collectors. The
entry also distinguishes between scalar or reference-typed stores.
This type information is also useful to the GC. Finally, it records
the overwritten value. In principle, a shorter two-word log entry
could be used that holds just an address and the overwritten word,
at the cost of more work during garbage collection.

3.1.3 Commit

There are two phases to DTMCommit: the first checks for conflict-
ing updates to the objects opened for reading and the second closes
the objects that were opened for update. There is no need to explic-
itly close objects opened for reading because that fact is recorded
only in thread-private transaction logs.

Figure 5(c) shows the structure of ValidateReadObject.
There are a large number of cases in the code, but the overall
design is clearer if you consider them in terms of the operations on
the DTM interface:

V1 The object was not open for update at any point in the transac-
tion’s duration.

V2 The object was open for update by us for the whole duration.

V3 The object was originally not open for update, and we were the
next transaction to open it for update.

V4 The object was open for update by another transaction for the
whole duration.

V5 The object was originally not open for update, and another
transaction was the next to open it for update.

These cases are marked in the pseudo-code. Some occur multiple
times because we must distinguish between occasions where the
test made on the STM snapshot fails because of an actual conflict,
and where it fails without conflict (e.g. because the STM snapshot
changed when the object’s multi-use-word became inflated).

2 The ‘offset in log chunk’ field is used during GC as a fast way to map an
interior pointer into the log (such as that from the List node in the figure) to
a reference to the array of log entries holding it.

Value = 10

Next = null

Node VTable

00v100 0

Head

Tail

List VTable

00v90 0

Sum = 42

List: Node1:

(a) Before the transaction begins. The List object has version number v90
and the single node in the list (Node1) has version v100.

Transaction manager

Offset in log chunk

00v90 0

Value = 10

Next = null

Node VTable

00v100 0

Head

Tail

List VTable

001

Sum = 42

List:

Updated-object 

log entry:

Node1:

(b) The List object is opened for update. A new entry is added to the
updated-object log and the object’s STM word is set to point to that entry.
The entry includes the object’s previous STM word (version v90), and a

pointer to the transaction manager to identify the thread involved.

Read-object 
log entries:

Node1

00v100 0

(c) The List and Node1 objects are opened for reading, adding two entries
to the transaction manager’s read-object log. Each entry refers to the object

that’s been opened and contains a copy of the object’s STM snapshot.

Offset = 3

Prev = 42

List

SCALAR_FIELD

Undo log 
entries:

(d) Before the List.Sum field is updated, the old value is written to the undo
log in case of roll-back. The log entry identifies the object holding the

field, whether the field is a reference or a scalar, the offset of the field, and
the value overwritten in it.

Value = 10

Next = null

Node VTable

00v100 0

Head

Tail

List VTable

00v91 0

Sum = 10

List: Node1:

(e) After committing the transaction the list is as in (a), but with the
version number incremented in the updated objects.

Figure 4. Transaction log structure for our running example.

Figure 5(d) shows the CloseUpdatedObject operation used
to close an object that was open for update. Figure 4(e) shows the
resulting update to the list structure, with the new version number
91 placed in the list object’s header.

In the pseudo-code we have not considered the fact that version
numbers may overflow and that, with 29 bits available, we are
limited to around 500M distinct versions. Notice that, in our design,
it is safe for version numbers to overflow: what is problematic is
not the actual overflow, but rather the re-use of a version number in
the same object while a running transaction has the object open for
read. This A-B-A problem [20] can allow a reading transaction to
commit successfully without detecting there may have been some
500M updates to the number.

For correctness, we prevent this by (a) performing a GC at
least once every 500M transactions, and (b) validating running
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void DTMOpenForUpdate(tm_mgr tx, object obj) {
word stm_word = GetSTMWord(obj);

if (!IsOwnedSTMWord(stm_word)) {
entry -> obj = obj;
entry -> stm_word = stm_word;
entry -> tx = tx;

word new_stm_word = MakeOwnedSTMWord(entry);
if (OpenSTMWord(obj, stm_word, new_stm_word)) {

// Open succeeded: advance our log pointer
entry ++;

} else {
// Open failed: make the transaction invalid
// (and/or invoke contention manager)
BecomeInvalid(tx);

}
} else if (GetOwnerFromSTMWord(stm_word) == tx) {

// The object is already open for update by the
// current transaction: nothing more to do

} else {
// The object is already open for update by another
// transaction: abort our transaction (and/or invoke
// contention manager)
BecomeInvalid(tx);

}
}

(a) Pseudo-code to open objects for update.

void DTMOpenForRead(tm_mgr tx, object obj) {
snapshot stm_snapshot = GetSTMSnapshot(obj);
entry -> obj = obj;
entry -> stm_snapshot = stm_snapshot;
entry ++;

}

(b) Pseudo-code to open objects for read.

void CloseUpdatedObject(tm_mgr tx,
object obj,
update_entry *entry) {

word old_stm_word = entry -> stm_word;
word new_stm_word = GetNextVersion(old_stm_word);
CloseSTMWord(obj, new_word);

}

(d) Pseudo-code to close objects opened for update.

void ValidateReadObject(tm_mgr tx, object obj, read_entry *entry) {
snapshot old_snapshot = entry -> stm_snapshot;
snapshot cur_snapshot = GetSTMSnapshot(obj);
word cur_stm_word = SnapshotToWord(cur_snapshot);

if (old_snapshot == cur_snapshot) {
// Snapshot match: no-one has closed the object

if (!IsOwnedSTMWord(cur_stm_word)) {
// V1: Snapshot unchanged, no conflict

} else if (GetOwnerFromSTMWord(cur_stm_word) == tx) {
// V2: Opened by us for update before read

} else {
// V4: Opened for update by another tx
BecomeInvalid(tx);

}
} else {

// Snapshots mismatch: slow-path test on STM word

word old_stm_word = SnapshotToWord(old_snapshot);
if (!IsOwnedSTMWord(old_stm_word)) {

if (old_stm_word == cur_stm_word) {
// V1: OK: STM word inflated during the transaction

} else if (!IsOwnedSTMWord(cur_stm_word)) {
// V5: Conflicting update by another tx
BecomeInvalid(tx);

} else if (GetOwnerFromSTMWord(cur_stm_word) == tx) {
// We opened the object for update...
update_entry *update_entry = GetEntryFromSTMWord(cur_stm_word);
if (update_entry -> stm_word != SnapshotToWord(old_snapshot)) {

// V5: ...but another tx opened and closed the
// object for update before we opened it
BecomeInvalid(tx);

} else {
// V3: No intervening access by another tx

}
} else {

// V5: The object was opened by another transaction
BecomeInvalid(tx);

}
} else if (GetOwnerFromSTMWord(cur_stm_was) == tx) {

// V2: Opened by us for update before read
} else {

// V4: STM word unchanged, but previously open for
// update by another transaction
BecomeInvalid(tx);

}
}

} (c) Pseudo-code to validate objects opened for read.

Figure 5. Pseudo-code for opening objects, for validating objects during commit, and for closing objects at the end of commit. For brevity,
the DTMOpen* operations assume entry refers to the next log entry.

transactions at every GC. An entry in the read-object log is only
valid if the logged version number matches the current one: the
result is that each GC ‘resets the clock’ of 500M transactions
without needing to visit each object.

4. Compiler optimizations
This section describes the static analyses that we have developed to
try to improve the placement of DTM* operations.

4.1 Extending existing code-motion optimizations

We have extended existing compiler optimizations to the new op-
erations on the decomposed STM interface. The DTMGetTMMgr
operation is constant and can be subject to common subexpres-
sion elimination (CSE) or code motion. The DTMOpenForRead,
DTMOpenForUpdate, and DTMLog* operations are idempotent
within a transaction. They are also eligible for CSE or code motion,
with their availability being killed at transaction boundaries. We ex-
tend CSE so that an available DTMOpenForUpdate operation can
replace a corresponding DTMOpenForRead because update access
subsumes read access.

The sequencing rules from Section 3 between DTMOpen*,
DTMLog* and subsequent data accesses are expressed as data de-
pendences. We introduce extra output values for earlier operations
that are used as extra input values by later operations.

The DTMGetTMMgr operation is implemented by fetching the
current transaction manager for a thread from a per-thread Thread
object (and creating the transaction manager if necessary). The Bar-
tok compiler also treats GetCurrentThread as a constant opera-
tion subject to code motion.

4.2 Avoiding log operations on newly allocated objects

We use a simple flow-sensitive interprocedural analysis to identify
variables that are always bound to objects that were allocated since
the start of a transaction. We remove the DTMLog* operations for
assignments to fields and array elements through those variables.

The analysis works as follows. For each basic block, there is
a map from object-typed variables to lattice elements. The map
represents the kinds of values that may be assigned to a variable
at any point in the block. The lattice has three elements in it: Top
(may not be newly allocated), New (must be newly allocated), and
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Bottom (absence of information). Allocation operations generate
New for the variables to which they are assigned. Assignments
and casts propagate their abstract value. Calls propagate abstract
values to the call formals and from the return value. All other
operations generate Top for the variable to which they are assigned.
Transaction start operations generate Top values for all variables.

The analysis initializes all maps to Bottom. It then propagates
information forward and iterates until a fixed point is reached. At
a block that is a join point, the maps from predecessor blocks
are point-wise combined with the existing map for the block. The
beginning of a function is considered a join point from all of its call
sites.

4.3 Treating DTM operations as calls

There are several points at which we can replace the abstract DTM
operations with calls to the methods that implement them. We ex-
plore how two options affect performance. By default, we introduce
calls when lowering Bartok’s medium-level intermediate represen-
tation (IR) to target machine instructions. Alternatively, we can in-
troduce calls earlier, while still working in a higher-level IR. This
exposes the calls to inlining.

4.4 Mapping statics to surrogates at compile time

When accessing static fields, we can perform DTMAddrToSurrogate
at compile time. This avoids a runtime address-to-surrogate map-
ping and exposes further CSE opportunities for operations on dif-
ferent addresses but the same surrogate.

4.5 Moving logging to callers

We observe that many methods begin by performing DTMOpen*
operations on parameters that may have already been opened by
the caller. To reduce this kind of redundant logging we (a) identify
any DTMOpen* operations on parameters that postdominate the
method’s entry point on non-exception paths, (b) create a cloned
version of the method without these operations, (c) replace any
non-virtual (or devirtualized) calls to the original method with the
removed DTMOpen* operations and a call to the replacement.

To some extent this is reminiscent of work such as Diniz and
Rinard’s on computation lock coarsening [9]: unsurprisingly, a
DTMOpenForUpdate operation can be moved from a method out
to its caller in much the same way as a lock acquire-release pair.
However, there are a number of differences. First, the STM infras-
tructure provides for deadlock recovery rather than restricting us to
transformations that avoid deadlock. Second, our DTM* operations
are idempotent, letting us remove many operations if they are guar-
anteed to be preceded by an equivalent operation, rather than re-
quiring us to re-arrange earlier operations to ensure a lock remains
held.

4.6 Avoiding read-to-update upgrades

A remaining case where unnecessary logging occurs is when a
DTMOpenForRead operation is followed by a DTMOpenForUpdate
operation. This arises from fragments like this.count++ which
first open this for reading and then open it for updating.

We handle the specific case of read-to-update upgrades within
a basic block by a straightforward dataflow analysis, upgrading
DTMOpenForRead operations if followed by a DTMOpenForUpdate.

We handle the general case by inserting DTMOpenForUpdate
operations at the beginning of all basic blocks from which all non-
exception paths perform the same DTMOpenForUpdate (without
intervening stores to the variables involved). CSE then attempts to
eliminate the extra DTMOpenForUpdate operations as well as any
subsequent DTMOpenForRead operations on the same object. If an
exception occurs at runtime, then more objects may be opened for
update than otherwise – but this will not affect correctness.

4.7 Decomposing log management

We can reduce the cost of log management further by decom-
posing log operations. This allows the amortization of the cost
of log-management work across multiple operations. In particular,
DTMOpen* and DTMLog* operations start with a check that there is
space in the current array. For DTMOpenForRead, this is the only
check that must be performed in the fast-path version of the code.

To amortize the cost of these checks, we introduce a new op-
eration, EnsureLogMemory, taking an integer that indicates how
many slots to reserve in a given log3. Specialized versions of the
DTMOpen* and DTMLog* operations can assume that space exists.

To reduce runtime bookkeeping, EnsureLogMemory operations
are not additive: two successive operations reserve the maximum
requested, not the total. For simplicity, we do not place the special-
ized operations where we would require reserved space after a call
or back edge. In one version of the optimization, we simply com-
bine reservations for all operations between calls within each basic
block. In another version we use a backwards analysis to eagerly
reserve space as early as possible, being forced to stop at all calls
and loop headers. This has the advantage of combining more reser-
vations but may introduce reservation operations on paths that do
not require them.

5. Runtime log filtering
In this section we describe runtime techniques to filter duplicates.
There are three techniques: in Section 5.1 we describe how we track
objects allocated in the current transaction. Updates to such objects
do not need to be logged because, since the object is guaranteed
to be dead on abort, there is no need to roll back updates to it. In
Section 5.2 we describe a probabilistic hashing scheme to filter du-
plicates from the read-object log and the undo log. Finally, in Sec-
tion 5.3, we describe a bitmap-based scheme to deterministically
filter duplicates from the undo log.

5.1 Track transaction-local objects

If we can dynamically identify objects allocated by the current
transaction, then we can filter out any undo-log entries for them
that the static analysis in Section 4.2 is unable to avoid. This is safe
because the objects will be dead if the current transaction aborts.

We do this by (a) adding a version of DTMOpenForUpdate that
is specialised to work on newly allocated objects, (b) having this
operation write a designated STM word value to mark the object as
transactionally allocated.

Figure 6 depicts the structures used at runtime. In the example,
objects List and Node1 have been allocated in the current trans-
action. Each has an updated-object log entry as usual: these are
needed so that the objects can be closed when the transaction com-
mits. However, the STM words refer to a single transaction-local
log entry (TLLE) instead of entries in the updated-object log.

From the point of view of the current transaction, this lets
DTMLogFieldStore perform a cheap test of whether or not a
prospective store is to a transactionally allocated object: a single
comparison is needed against the current transaction’s TLLE. From
the point of view of other transactions, the List and Node1 objects
look like ordinary objects that are currently locked for update.

5.2 Hashing

The hashing scheme probabilistically detects duplicate logging re-
quests to the read-object log and the undo-log. We use per-thread
tables that map a hash of an address to details of the most recent

3 As our results show, reservation sizes are vastly smaller than the arrays
from which the log is built: reservations that leave unused space at the end
of an array do not yield noticeable fragmentation.
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Figure 6. Tracking transaction-local objects: until the transaction
that allocated them commits, their STM words refer to a special
per-transaction log entry. The example here supposes that the list
and node objects were allocated earlier in the current transaction.
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Figure 7. Hashing scheme to detect duplicate logging.

logging operation relating to addresses with that hash. Stores to the
read-object log use the address of the object’s header word; stores
to the undo log use the address of the word being logged. These
sets of addresses are disjoint so a single table serves both purposes.

Hashing schemes have been used before to remove duplicates
in an undo log; not least in our earlier work [29, 12]. However,
previous work requires the table to be cleared once per transaction.
This is inefficient when the table is large enough to be an effective
filter.

Figure 7 shows our new design. The word-aligned address on
which duplicate-detection is performed is split into a hash index
and a tag. Instead of storing the full address in the table, we
combine a portion of a thread-local transaction sequence number
with the hash index. The hash index is identical for all values
stored in the table entry. Thus, an entry from another transaction
will not be confused with an entry from the current transaction.
We only need to clear the table when the bits for the sequence
number overflow. Because the count of sequence numbers between
overflows is the same as the number of table entries, on average we
clear only one table entry per transaction.

We use exclusive-or to form the modified value that is stored
in the hash table. This is faster than replacing the bits occupied by
hash.

5.3 Updated-word bitmaps

The final runtime scheme we use is to add per-object bitmaps to
detect all duplicate stores to the undo log. This is a deterministic
scheme that can be compared against hashing. Similar schemes
have been used in DBMSs to remove all but the most recently
logged write from a log of updates [21]. Conceptually our scheme
can be seen as an analogue that removes all but the first write
from an undo log. Of course, the implementation of this idea is
much different because it has to be performed online by concurrent
threads and the bitmaps must be managed without introducing
conflicts between otherwise-unrelated transactions.
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To support bitmaps we extend entries in the updated-object log
by four words when compared with the structure in Figure 4(b).
The first three words provide flags that indicate if the transaction
has written an undo log entry for each of the first 3∗32 = 96 words
within the object. The fourth word is a pointer to an external bitmap
with one bit for each word in the full object.

Why do we use these particular sizes? The three bits reserved
at the low end of STM words (Figure 5(a)) mean that entries in the
updated-object log are 8-byte aligned, and so extra words must be
added to log entries in pairs. We chose to add four words based
on the sizes of objects in our benchmarks in Section 7. Of course,
alternative implementations are possible.

6. GC-time log compaction
In this section, we turn to the final technique we use: GC-time com-
paction of the logs. Previous STMs have had limited integration
with the GC: either all transactions are aborted when the GC is in-
voked [12], or the GC considers object references in the transaction
logs as roots [13, 16]. The first option cannot support long-running
transactions. The second option can retain objects unnecessarily.

We avoid these problems by making the GC aware of the struc-
ture of the transaction logs and which references from them need
to be treated as strong and which as weak. Furthermore, we use
GC time as an opportunity to compact the logs, removing duplicate
entries, or entries that are now superfluous. This work scales with
the number of entries in the transaction logs (as it must if the GC
is to visit all the log entries). We do not perform operations which
must visit objects not currently involved in transactions – doing so
is incompatible with generational collection.

We remove entries in the read-object log in three cases:

1. If the object was allocated after the transaction began and is
now unreachable. It will be lost whether or not the transaction
commits. We detect this by simply treating the reference as
weak and visiting the log after visiting the undo log, because
the undo log entries ensure all objects predating the transaction
remain strongly reachable.

2. If the object is open for update by the same transaction and there
were no intervening conflicting updates. We use a specialized
version of ValidateReadObject from Section 3.1.2 in which
cases V2 and V3 cause the log entry to be dropped.

3. If there are duplicate entries. We set a bit in the object’s header
the first time we find an entry for a given object. We then
remove log entries relating to objects with this bit set. We use a
second pass over the read-object log to clear the bits.
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Test Read-object Updated-object Undo Description

tree original 235 601 949 5 778 625 5 465 513 5 000 000 red-black tree operations from SXM [15]. 6:1:1 mix of
lookup:insert:delete uniformly distributed on a 0..65535 key space.static 88 573 474 3 456 692 3 592 242

dynamic 85 458 480 2 380 391 3 154 563

skip original 181 062 984 17 785 320 32 218 292 1 000 000 skip-list operations from SXM [15]. Maximum node
height 32. Same operation workload as trees.static 114 925 456 1 724 370 883 056

dynamic 37 143 730 1 503 507 566 808

go original 39 697 435 5 790 969 5 688 272 Playing on a 10x10 board, computing each move in a separate
atomic block. 69 blocks executed.static 12 016 600 3 410 033 5 502 127

dynamic 37 996 112 669 244 300

sort original 357 596 090 107 483 100 107 483 040 Merge sort an array of 256∗210 integers 0..65535, ten repetitions,
each in a separate atomic block.static 114 481 920 54 362 230 107 483 010

dynamic 50 70 262 175

xlisp original 96 347 281 31 890 055 30 516 996 Lisp interpreter running au and ctak lisp benchmarks, each in a
separate atomic block.static 47 616 579 19 581 233 29 233 487

dynamic 3 506 713 1 378 265 65 732

Figure 9. Log entries written without any optimization (‘original’), with static optimization but no dynamic filtering (‘static’) and with
dynamic filtering to remove duplicates (‘dynamic’). Workloads were sized so that they could be completed without optimizations (hence the
small board size in go and the lisp scripts chosen).

The log entries written by DTMOpenForUpdate are straightfor-
ward: only the first case applies because the function itself avoids
duplication via the atomic compare-and-swap on the STM word.

Similarly, for the undo log, we can remove updates logged for
objects which are dead whether or not the transaction commits.

7. Results
We use three sets of benchmarks. First, we look at concurrent
data structures which provide a comparison with results from other
STMs. Second, we use longer running tests derived from C# imple-
mentations of the 099.go, 129.compress and 130.li programs
from the SPEC CINT95 suite and an in-memory sequential merge
sort. These, of course, are not concurrent algorithms, but they serve
to assess the effectiveness of the compile-time optimizations on
longer code sequences which run without contention (as we assume
is true of many sections of a well-designed concurrent workload).
Of course, as we discussed in Section 1.2, atomic blocks are useful
in single-threaded applications for exception recovery. Finally, we
look at the use of atomic blocks within the ASP.NET Cassini Web
Server running on the Singularity Research OS [19].

We split our evaluation into two section: Section 7.1 looks at
the multi-processor performance of the underlying STM, while
Section 7.2 looks at the effect of the compiler optimizations and
runtime integration.

7.1 STM performance

It is difficult to directly compare the performance of our new de-
composed direct-access STM with that of previous designs: the in-
terface is different, and only our new interface is integrated in the
Bartok compiler. This means that we cannot simply ‘plug in’ the
new STM in an existing test infrastructure, nor can we readily in-
clude an alternative STM in the Bartok compiler’s runtime.

In order to get a fair assessment of the performance of the new
STM we based this part of our evaluation on a re-implementation
of the new STM in C. We used the STM implementations and red-
black tree test harness from Fraser’s thesis work which provides re-
laxed per-node locking based on Hanke’s design [14], WSTM [12],
OSTM [10], and DSTM4 [16].

4 DSTM is configured to use a ‘polite’ contention manager that uses expo-
nential backoff. However, little contention is seen in the test workload.

Specialized versions of the test harness are used to optimize the
performance of each STM: the WSTM variant uses local variables
to avoid repeated reads from the heap, while the OSTM and DSTM
variants attempt to avoid opening objects more than once. Follow-
ing this approach, the harness for decomposed direct-access STM
mirrors the optimizations made by Bartok. Consequently, the re-
sults indicate the possible performance that could be achieved by a
compiler with knowledge of the semantics of each particular STM.

The red-black tree workload performs a 6:1:1 ratio of lookup :
insert : delete operations uniformly on a 0..65535 key space. We use
a 4*2-core Opteron machine and record the CPU-time required per
operation. Figure 8 shows the results: a scalable implementation is
indicated by a flat line, while a fast implementation is indicated by
a line close to the x-axis.

The performance of relaxed locking, OSTM and DSTM agrees
with Fraser’s results [10]. WSTM’s scalability is similar under low
contention but, as one would expect, it is not as fast: it incurs per-
word costs that are comparable with the per-object costs of OSTM,
and most operations on red-black trees access at least two words in
each object. In comparison, the direct-access STM scales well but
incurs much lower per-object costs when compared with OSTM.

The graph also shows the performance of a similar red-black
tree harness implemented in C# and compiled using Bartok with all
our optimizations enabled. As expected the performance tracks that
of the C version in which we have manually incorporated the results
of the optimizations. The C# implementation does not currently
scale beyond the 8 hardware threads available because of a spin-
lock used elsewhere in the runtime system.

7.2 Optimizations and runtime integration

Results in this section use a 3GHz Pentium 4 CPU with sufficient
physical memory to avoid any disk activity. Results are normalized
against the single-threaded run time of the benchmarks without
any concurrency control in the benchmark itself, so a result of 2.0
means that a run took twice as long. Results are the best of five runs
to reduce perturbations from background processes.

The GC is a two-generation copying collector with a 4MB
nursery. A full collection occurs every 8 nursery collections. When
using STM, transaction logs are allocated in the same heap as the
application state and each chunk in the log holds 1024 entries.
When using hashing (Section 5.2), the table holds 2048 entries.
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Figure 10. The effect of optimizations on the number of log entries
written. Results are normalized against the unoptimized case.

We tested the sensitivity of results to these settings: Our short-
running tests generate little garbage and perform essentially un-
changed with nursery sizes from 128MB down to 1MB, the size of
the L2 data cache. Little log space is used, so performance is flat
with log chunk sizes beyond 256 entries. For long-running tests,
settings below a 4MB nursery, 1024-entry log chunk and 1024-
entry hashtable give poor performance because of memory pressure
from log chunks, frequent chunk overflows and hash collisions.

All results here have GC-time log compaction enabled. The cost
of this scales with the volume of the transaction logs at the points
where GC occurs; it never adds more than 12% to the total GC
time (on the longest benchmarks with no optimizations or filtering
to reduce the volume of the log).

Figure 9 shows the number of logging operations produced by
our test programs: in some cases millions of operations per block.
The ‘original’ lines indicate the baseline performance without any
attempt to remove logging work. The ‘static’ lines show the impact
of the optimisations in Section 4. The ‘dynamic’ lines also perform
runtime filtering to remove duplicates.

We first investigate the effect of each of our optimizations in
contributing to the reduction from ‘original’ to ‘static’. Figure 10
shows the cumulative reduction in the log entries written as op-

timizations are enabled. Each cluster of bars deals with a single
benchmark and successive optimizations are enabled left-to-right.

The most significant reductions in logging work occur in tree,
go, sort and xlisp – primarily by exposing decomposed STM
operations to CSE. In tree the code for traversing down the tree
is identical to careful manual placement of logging operations;
runtime filtering culls further duplicate log entries written during
rotations.

Although we statically eliminate around half of sort’s logging,
almost all of the remaining entries are duplicates: our current intra-
procedural CSE-based techniques are ineffective for merge-sort’s
recursive structure. Looking at the three logs individually shows
that the analysis to identify newly allocated objects is very effective
in the skip test where temporary objects are used as a mechanism
for returning multiple values.

Figure 11(a) shows how this translates to wall-clock execution
times when the optimizations are used without runtime filtering.
sort and xlisp perform extremely poorly, even with all of the
optimizations enabled. This is no surprise: without filtering there is
a vast number of duplicate entries in the read-object log, triggering
frequent GCs. Although duplicates can be removed at GC time, the
volume of logging means that over 77% of sort’s execution time
and 90% of xlisp’s is spent in GC.

We were surprised that further decomposition of log opera-
tions did not give noticeable performance improvements (Sec-
tion 4.7). The analysis identifies several opportunities for decompo-
sition: in tree almost all DTMOpenForRead operations are decom-
posed, with one EnsureLogMemory per 5.8 logging operations.
The same is true in go and xlisp for stores to the undo log (one
EnsureLogMemory per 1.9 operations and 2.3 operations respec-
tively). We suspect that performance is limited by the memory traf-
fic of the stores to the log and that, on the superscalar Pentium 4,
no benefit is achieved by avoiding the comparisons and predictable
branch involved in checking for log space.

Figure 11(b) shows the impact of runtime filtering alongside
compile-time optimization. The leftmost bar in each cluster shows
the performance with the full set of compile-time optimizations en-
abled for that benchmark. Note that hashing alone is ineffective for
sort and xlisp (this remains the case if we vary the table size: an
impractically large table is needed to avoid collisions). Although
the hashing and bitmap schemes slightly degrade the performance
of the shortest benchmarks, they are necessary for practical perfor-
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mance from the longer running benchmarks. Runtime adaptation
may give some benefit here.

As well as the techniques from Section 5, we also studied the
impact of visibly opening objects for read. This guarantees that
there are no duplicate entries in the read-object log and reflects
another popular design choice in STMs [16]. However, because
it requires two atomic compare-and-swap operations per object
logged, it vastly reduces performance on the short benchmarks with
little change to the performance of the longer ones when compared
with our hash-based filtering.

With runtime filtering enabled, GC occurs only during xlisp.
Log compaction eliminates almost all of the entries in the read-
object log: 7.34M related to objects that were subsequently opened
for update, and 19K were duplicate entries that, due to hash col-
lisions, had not been removed by filtering. Similarly, almost all of
the entries in the updated-object log (1.6M of 1.8M) were removed
because they were related to dead objects; in this case temporaries
created during the evaluation of expressions in the LISP programs.
We saw similar trends when forcing GCs in other benchmarks.

Given the benefits seen from runtime filtering, we investigated
if the compile-time optimizations were necessary at all. They are:
starting from the best performing combination of filtering tech-
niques in Figure 11(b), running without optimization degrades per-
formance by 17%, 16%, 50%, 72% and 25% respectively on the six
benchmarks. This is roughly due in equal portions to optimizations
that can make individual STM operations faster and optimizations
that reduce the number of STM operations executed. We investi-
gated where time is spent within the longer benchmarks. go shows a
15%:85% split between time in ‘real’ STM work (writing to the log
and performing DTMCommit) and time spent filtering. sort shows
a 27%:73% split, and xlisp a 56%:44% split.

Finally, we performed a whole-system test using atomic blocks
in the Cassini web server running on the Singularity Research
OS. We modified Cassini with an atomic block around its request
parsing code: around 150 lines of C# spread over four methods
making heavy use of object-oriented string parsing routines. If a
request’s headers are malformed then the atomic block performs
automatic roll-back before returning an error to the client. We load
the web server using a SpecWeb99-derived test harness configured
to use up to 10 parallel connections, and measure the time taken
to execute the request parsing code for both the original server and
our modified version. After warm-up, the baseline parses requests
in 53± 1μs, and the new version in 154± 3μs when using all our
optimizations. Of course, since the server is ultimately I/O bound,
this extra work does not effect the overall throughput.

8. Related work
A number of early languages included support for features like
atomic blocks without building them on transactional mem-
ory. These are either safe only for uniprocessors or they are ex-
tremely pessimistic and serialize non-conflicting atomic blocks.
distributed applications based on strict two-phase locking of atomic
objects [22].

Early work on STM has focused on libraries, such as Herlihy et
al.’s [16] and Fraser’s [10]. Aside from our own work on language
integration, Welc et al. [30] showed how STM-like techniques
can increase the concurrency available in systems based on Java’s
synchronized blocks and Ringenburg and Grossman showed how
atomic blocks could be added to OCaml [27].

Although this paper has focused on word-based transactional
memory, many of the techniques would apply to object-based de-
signs [16, 10, 23]. There is one notable change in the operations ex-
posed in the compiler’s intermediate representation: object-based
designs return handles when an object is opened and updates are
made relative to these handles rather than to the original object ref-

erence. This allows writers to be provided with thread-local copies
of the object and so it is not necessary to record a separate undo-
log (and therefore it is not necessary to filter duplicates from it).
Of course, the runtime structures used to represent an object-based
STM would differ substantially from those in Section 3.1: existing
object-based STMs add at least one level of indirection between an
object reference and the object’s current contents.

The evolving designs for the Fortress [2], Chapel [7] and
X10 [6] languages for high-performance computing all specify
forms of atomic block. The optimizations and runtime techniques
we have developed will be applicable to these new languages.

The System.Transactions namespace in the .NET Frame-
work 2.0 provides resource managers for transacted access to
databases, file systems and the configuration registry. Unlike
atomic blocks, memory accesses within transactions are per-
formed directly. A combination of this work with atomic blocks
would address many of the questions about how I/O operations
should be integrated with memory transactions [11].

Hardware transactional memory was originally proposed by
Herlihy and Moss [17]. Early designs buffered a processor’s trans-
actional accesses in a local cache and used slight extensions to
MESI cache management protocols to detect conflict between
transactions. This approach inevitably exposes hardware limits:
transactions must be aborted on context switches, and all of the
transactional accesses must fit within the capacity and associativity
limits of the cache in which they are buffered.

Researchers have only recently turned to the question of how to
allow transactions of unbounded size while still being able to enjoy
hardware support. Hardware-based speculative lock elision uses a
TM-like mechanism to speculatively run lock-based code without
actually taking a lock [24, 25]. If hardware limits are reached then
execution can fall back to ordinary locking.

Rajwar et al.’s virtualizing transactional memory splits transac-
tion state between buffers in fast per-processor memory and over-
flow buffers held in an application’s virtual address space [26].
Common-case operations (short transactions that commit success-
fully) run without using the overflow buffers.

Ananian and Rinard showed how hardware and software trans-
actional memory could be combined by using special ‘flag’ values
to identify where transactions may be operating [3].

9. Conclusion
This paper has taken a four-pronged approach to speeding up
word-based transactional memory: direct-access memory to avoid
searching logs, compile-time decomposition and optimization to
reduce the use of logging operations, fast runtime filtering of du-
plicate logging requests, and GC-time compaction of logs to de-
terministically remove dead objects and any duplicates that were
missed.

The overall results vary between programs: in micro-benchmarks,
where the optimizations approach the quality of hand-placed calls
to an STM, execution takes around 1.5x that of the same code with-
out any concurrency control. At the other extreme, on long-running
transactions with millions of transactional accesses, execution takes
around 2.5-4.5x that of single-threaded versions.

For short blocks, these results are promising and suggest that
software-only approaches may be sufficient for some applications.
For longer blocks, acceptable speed may require additional hard-
ware support to complement the techniques we have developed,
although there may be applications where the software engineering
benefits of atomic blocks or their parallelism-preserving perfor-
mance make current performance acceptable.

We remarked in Section 4 that our techniques build on earlier
work for optimising the placement of lock/unlock operations. It
would be interesting to explore this relationship further: can we
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perform the analogue of data lock coarsening [9] to vary the gran-
ularity with which STM meta-data is associated with objects? One
can imagine cases where a single STM word could be used to man-
age an aggregate object or, conversely, where separate STM words
might be used on independent fields of a single object.

Our final conclusion is about how hardware can support atomic
blocks. Previous research has suggested ‘fall back to software’
models in which short blocks execute entirely in hardware and
longer ones are implemented using STM. Our results suggest that
hardware support for short running blocks needs to be considered in
the context of an optimized software implementation. Furthermore,
it may be worthwhile to investigate hardware support for long run-
ning blocks. It is in these cases that duplicate log removal at run-
time and GC-time is necessary, and so an effective implementation
of long-running transactions could benefit from hardware support
for log filtering as well as simply multi-word concurrent updates.
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