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Preface

Chapters 1 through 8 and appendixes A through D of this book are directly derived
from the Alpha System Reference Manual and passed engineering change orders
(ECOs) that have been applied. It is an accurate representation of the described
parts of the Alpha architecture. Additions and modifications to those described parts
of the Alpha architecture include new and modified instructions, significant changes
to Chapter 5, and the addition of two tables in a new Appendix D.

New Instructions

Three extensions have been added to the Alpha architecture with sets of new
instructions. The extensions and their mnemonics are:

Extension Mnemonic

Byte/word BWX
Count CIX
Multimedia MAX

Two instructions (AMASK and IMPLVER) have been added that can determine
whether one or more extensions are supported.

Two instructions (ECB and WH64) have been added to provide greater efficiency in
data-cache operations.

The new instructions are listed in the following table.

Description Mnemonic Meaning

Byte/word extension (BWX):

LDBU Load zero-extended byte from memory to register
LDWU Load zero-extended word from memory to register
SEXTB Sign extend byte
SEXTW Sign extend word
STB Store byte
STW Store word

Count extension (CIX):

CTLZ Count leading zero
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Description Mnemonic Meaning

CTPOP Count population
CTTZ Count trailing zero
FTOIS Floating-point to integer register move, S_floating
FTOIT Floating-point to integer register move, T_floating
ITOFF Integer to floating-point register move, F_floating
ITOFS Integer to floating-point register move, S_floating
ITOFT Integer to floating-point register move, T_floating
SQRTF Square root F_floating
SQRTG Square root G_floating
SQRTS Square root S_floating
SQRTT Square root T_floating

Multimedia extension (MAX):

MAXSB8 Vector Signed Byte Maximum
MAXSW4 Vector Signed Word Maximum
MAXUB8 Vector Unsigned Byte Maximum
MAXUW4 Vector Unsigned Word Maximum
MINSB8 Vector Signed Byte Minimum
MINSW4 Vector Signed Word Minimum
MINUB8 Vector Unsigned Byte Minimum
MINUW4 Vector Unsigned Word Minimum

PERR Pixel Error

PKLB Pack longwords to bytes
PKWB Pack words to bytes

UNPKBL Unpack bytes to longwords
UNPKBW Unpack bytes to words

Test for extension support:

AMASK Architecture mask
IMPLVER Implementation version

Enhance data-cache efficiency:

ECB Evict cache block
WH64 Write hint—64 bytes
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Modified Instructions:

The following instructions have been modified:

Instruction Modification

LDx_L Semantic changes
STx_C Semantic changes
WMB Tighten the definition

Appendix D

Appendix D provides two sections. The first, Processor Type assignments, contains
descriptions for the current processors. The second, Architecture Mask and
Implementation Version Assignments, lists values for the AMASK and IMPLVER
instructions that specify support for the architecture extensions and code tuning.

For More Information

A more extensive description of the operating system and console interface ECO
changes and additions, including the new instructions and support for extended
virtual address space, is located at:

http://ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
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Chapter 1

Introduction (I)

Alpha is a 64-bit load/store RISC architecture that is designed with particular
emphasis on the three elements that most affect performance: clock speed, multiple
instruction issue, and multiple processors.

The Alpha architects examined and analyzed current and theoretical RISC
architecture design elements and developed high-performance alternatives for the
Alpha architecture. The architects adopted only those design elements that appeared
valuable for a projected 25-year design horizon. Thus, Alpha becomes the first 21st
century computer architecture.

The Alpha architecture is designed to avoid bias toward any particular operating
system or programming language. Alpha supports the OpenVMS Alpha, Digital
UNIX, and Windows NT Alpha operating systems and supports simple software
migration for applications that run on those operating systems.

This manual describes in detail how Alpha is designed to be the leadership 64-bit
architecture of the computer industry.

1.1 The Alpha Approach to RISC Architecture

Alpha Is a True 64-Bit Architecture
Alpha was designed as a 64-bit architecture. All registers are 64 bits in length and
all operations are performed between 64-bit registers. It is not a 32-bit architecture
that was later expanded to 64 bits.

Alpha Is Designed for Very High-Speed Implementations
The instructions are very simple. All instructions are 32 bits in length. Memory
operations are either loads or stores. All data manipulation is done between
registers.

The Alpha architecture facilitates pipelining multiple instances of the same
operations because there are no special registers and no condition codes.

The instructions interact with each other only by one instruction writing a register
or memory and another instruction reading from the same place. That makes it
particularly easy to build implementations that issue multiple instructions every
CPU cycle. (The first implementation issues two instructions per cycle.)

Alpha makes it easy to maintain binary compatibility across multiple
implementations and easy to maintain full speed on multiple-issue implementations.
For example, there are no implementation-specific pipeline timing hazards, no load-
delay slots, and no branch-delay slots.
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The Alpha Approach to Byte Manipulation
The Alpha architecture reads and writes bytes between registers and memory with
the LDBU and STB instructions. (Alpha also supports word read/writes with the
LDWU and STW instructions.)

Byte shifting and masking is performed with normal 64-bit register-to-register
instructions, crafted to keep instruction sequences short.

The Alpha Approach to Arithmetic Traps
Alpha lets the software implementor determine the precision of arithmetic traps.
With the Alpha architecture, arithmetic traps (such as overflow and underflow)
are imprecise—they can be delivered an arbitrary number of instructions after the
instruction that triggered the trap. Also, traps from many different instructions can
be reported at once. That makes implementations that use pipelining and multiple
issue substantially easier to build.

However, if precise arithmetic exceptions are desired, trap barrier instructions can
be explicitly inserted in the program to force traps to be delivered at specific points.

The Alpha Approach to Multiprocessor Shared Memory
As viewed from a second processor (including an I/O device), a sequence of reads and
writes issued by one processor may be arbitrarily reordered by an implementation.
This allows implementations to use multibank caches, bypassed write buffers, write
merging, pipelined writes with retry on error, and so forth. If strict ordering
between two accesses must be maintained, explicit memory barrier instructions can
be inserted in the program.

The basic multiprocessor interlocking primitive is a RISC-style load_locked, modify,
store_conditional sequence. If the sequence runs without interrupt, exception, or
an interfering write from another processor, then the conditional store succeeds.
Otherwise, the store fails and the program eventually must branch back and retry
the sequence. This style of interlocking scales well with very fast caches, and makes
Alpha an especially attractive architecture for building multiple-processor systems.

Alpha Instructions Include Hints for Achieving Higher Speed
A number of Alpha instructions include hints for implementations, all aimed at
achieving higher speed.

• Calculated jump instructions have a target hint that can allow much faster
subroutine calls and returns.

• There are prefetching hints for the memory system that can allow much higher
cache hit rates.

• There are granularity hints for the virtual-address mapping that can allow much
more effective use of translation lookaside buffers for large contiguous structures.

PALcode—Alpha’s Very Flexible Privileged Software Library
A Privileged Architecture Library (PALcode) is a set of subroutines that are
specific to a particular Alpha operating system implementation. These subroutines
provide operating-system primitives for context switching, interrupts, exceptions,
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and memory management. PALcode is similar to the BIOS libraries that are
provided in personal computers.

PALcode subroutines are invoked by implementation hardware or by software
CALL_PAL instructions.

PALcode is written in standard machine code with some implementation-specific
extensions to provide access to low-level hardware.

PALcode lets Alpha implementations run the full OpenVMS Alpha, Digital UNIX,
and Windows NT Alpha operating systems. PALcode can provide this functionality
with little overhead. For example, the OpenVMS Alpha PALcode instructions let
Alpha run OpenVMS with little more hardware than that found on a conventional
RISC machine: the PAL mode bit itself, plus 4 extra protection bits in each
translation buffer entry.

Other versions of PALcode can be developed for real-time, teaching, and other
applications.

PALcode makes Alpha an especially attractive architecture for multiple operating
systems.

Alpha and Programming Languages
Alpha is an attractive architecture for compiling a large variety of programming
languages. Alpha has been carefully designed to avoid bias toward one or two
programming languages. For example:

• Alpha does not contain a subroutine call instruction that moves a register window
by a fixed amount. Thus, Alpha is a good match for programming languages with
many parameters and programming languages with no parameters.

• Alpha does not contain a global integer overflow enable bit. Such a bit would
need to be changed at every subroutine boundary when a FORTRAN program
calls a C program.

1.2 Data Format Overview

Alpha is a load/store RISC architecture with the following data characteristics:

• All operations are done between 64-bit registers.

• Memory is accessed via 64-bit virtual byte addresses, using the little-endian or,
optionally, the big-endian byte numbering convention.

• There are 32 integer registers and 32 floating-point registers.

• Longword (32-bit) and quadword (64-bit) integers are supported.

• Five floating-point data types are supported:

— VAX F_floating (32-bit)

— VAX G_floating (64-bit)

— IEEE single (32-bit)
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— IEEE double (64-bit)

— IEEE extended (128-bit)

1.3 Instruction Format Overview

As shown in Figure 1–1, Alpha instructions are all 32 bits in length. As represented
in Figure 1–1, there are four major instruction format classes that contain 0, 1, 2,
or 3 register fields. All formats have a 6-bit opcode.

Figure 1–1: Instruction Format Overview

031 26 25 21 20 16 15 5 4

NumberOpcode

Opcode

Opcode

Opcode

Disp

Disp

Function RCRB
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RA

RA

PALcode Format

Branch Format

Memory Format

Operate Format

• PALcode instructions specify, in the function code field, one of a few dozen
complex operations to be performed.

• Conditional branch instructions test register Ra and specify a signed 21-
bit PC-relative longword target displacement. Subroutine calls put the return
address in register Ra.

• Load and store instructions move bytes, words, longwords or quadwords
between register Ra and memory, using Rb plus a signed 16-bit displacement
as the memory address.

• Operate instructions for floating-point and integer operations are both
represented in Figure 1–1 by the operate format illustration and are as follows:

— Word and byte sign-extension operators.

— Floating-point operations use Ra and Rb as source registers, and write the
result in register Rc. There is an 11-bit extended opcode in the function field.

— Integer operations use Ra and Rb or an 8-bit literal as the source operand,
and write the result in register Rc.

Integer operate instructions can use the Rb field and part of the function field
to specify an 8-bit literal. There is a 7-bit extended opcode in the function
field.
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1.4 Instruction Overview

PALcode Instructions
As described above, a Privileged Architecture Library (PALcode) is a set of
subroutines that is specific to a particular Alpha operating-system implementation.
These subroutines can be invoked by hardware or by software CALL_PAL
instructions, which use the function field to vector to the specified subroutine.

Branch Instructions
Conditional branch instructions can test a register for positive/negative or for zero
/nonzero. They can also test integer registers for even/odd.

Unconditional branch instructions can write a return address into a register.

There is also a calculated jump instruction that branches to an arbitrary 64-bit
address in a register.

Load/Store Instructions
Load and store instructions move 8-bit, 16-bit, 32-bit or 64-bit aligned quantities
from and to memory. Memory addresses are flat 64-bit virtual addresses, with no
segmentation.

The VAX floating-point load/store instructions swap words to give a consistent
register format for floating-point operations.

A 32-bit integer datum is placed in a register in a canonical form that makes 33 copies
of the high bit of the datum. A 32-bit floating-point datum is placed in a register in
a canonical form that extends the exponent by 3 bits and extends the fraction with
29 low-order zeros. The 32-bit operates preserve these canonical forms.

Compilers, as directed by user declarations, can generate any mixture of 32-bit and
64-bit operations. The Alpha architecture has no 32/64 mode bit.

Integer Operate Instructions
The integer operate instructions manipulate full 64-bit values, and include the usual
assortment of arithmetic, compare, logical, and shift instructions.

There are just three 32-bit integer operates: add, subtract, and multiply. They
differ from their 64-bit counterparts only in overflow detection and in producing
32-bit canonical results.

There is no integer divide instruction.

The Alpha architecture also supports the following additional operations:

• Scaled add/subtract instructions for quick subscript calculation

• 128-bit multiply for division by a constant, and multiprecision arithmetic

• Conditional move instructions for avoiding branch instructions

• An extensive set of in-register byte and word manipulation instructions
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Integer overflow trap enable is encoded in the function field of each instruction,
rather than kept in a global state bit. Thus, for example, both ADDQ/V and ADDQ
opcodes exist for specifying 64-bit ADD with and without overflow checking. That
makes it easier to pipeline implementations.

Floating-Point Operate Instructions
The floating-point operate instructions include four complete sets of VAX and
IEEE arithmetic instructions, plus instructions for performing conversions between
floating-point and integer quantities.

In addition to the operations found in conventional RISC architectures, Alpha
includes conditional move instructions for avoiding branches and merge sign
/exponent instructions for simple field manipulation.

The arithmetic trap enables and rounding mode are encoded in the function field
of each instruction, rather then kept in global state bits. That makes it easier to
pipeline implementations.

1.5 Instruction Set Characteristics

Alpha instruction set characteristics are as follows:

• All instructions are 32 bits long and have a regular format.

• There are 32 integer registers (R0 through R31), each 64 bits wide. R31 reads
as zero, and writes to R31 are ignored.

All integer data manipulation is between integer registers, with up to two
variable register source operands (one may be an 8-bit literal), and one register
destination operand.

Instructions can move data in an integer register file to a floating-point register
file. The instructions do not interpret bits in the register files and do not access
memory.

• There are 32 floating-point registers (F0 through F31), each 64 bits wide. F31
reads as zero, and writes to F31 are ignored.

All floating-point data manipulation is between floating-point registers, with up
to two register source operands and one register destination operand.

Instructions can move data in an floating-point register file to an integer register
file. The instructions do not interpret bits in the register files and do not access
memory.

• All memory reference instructions are of the load/store type that move data
between registers and memory.

• There are no branch condition codes. Branch instructions test an integer or
floating-point register value, which may be the result of a previous compare.

• Integer and logical instructions operate on quadwords.
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• Floating-point instructions operate on G_floating, F_floating, IEEE double, and
IEEE single operands. D_floating ‘‘format compatibility,’’ in which binary files
of D_floating numbers may be processed, but without the last 3 bits of fraction
precision, is also provided.

• A minimal number of VAX compatibility instructions are included.

1.6 Terminology and Conventions

The following sections describe the terminology and conventions used in this book.

1.6.1 Numbering

All numbers are decimal unless otherwise indicated. Where there is ambiguity,
numbers other than decimal are indicated with the name of the base in subscript
form, for example, 1016.

1.6.2 Security Holes

A security hole is an error of commission, omission, or oversight in a system that
allows protection mechanisms to be bypassed.

Security holes exist when unprivileged software (that is, software running outside
of kernel mode) can:

• Affect the operation of another process without authorization from the operating
system;

• Amplify its privilege without authorization from the operating system; or

• Communicate with another process, either overtly or covertly, without
authorization from the operating system.

The Alpha architecture has been designed to contain no architectural security holes.
Hardware (processors, buses, controllers, and so on) and software should likewise
be designed to avoid security holes.

1.6.3 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book.
Their meanings are quite different and must be carefully distinguished.

In particular, only privileged software (software running in kernel mode) can trigger
UNDEFINED operations. Unprivileged software cannot trigger UNDEFINED
operations. However, either privileged or unprivileged software can trigger
UNPREDICTABLE results or occurences.

UNPREDICTABLE results or occurences do not disrupt the basic operation of the
processor; it continues to execute instructions in its normal manner. In contrast,
UNDEFINED operation can halt the processor or cause it to lose information.

The terms UNPREDICTABLE and UNDEFINED can be further described as follows:
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UNPREDICTABLE

• Results or occurrences specified as UNPREDICTABLE may vary from moment
to moment, implementation to implementation, and instruction to instruction
within implementations. Software can never depend on results specified as
UNPREDICTABLE.

• An UNPREDICTABLE result may acquire an arbitrary value subject to a few
constraints. Such a result may be an arbitrary function of the input operands
or of any state information that is accessible to the process in its current access
mode. UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptions.

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
as are UNPREDICTABLE results and, in particular, must not constitute a
security hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
of, the contents of memory locations or registers which are inaccessible to the
current process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which the
current process in the current access mode does not have access, or

– Halt or hang the system or any of its components.

For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of
processor temporary registers left behind by some previously running process,
or on a sequence of actions of different processes.

UNDEFINED

• Operations specified as UNDEFINED may vary from moment to moment,
implementation to implementation, and instruction to instruction within
implementations. The operation may vary in effect from nothing, to stopping
system operation.

• UNDEFINED operations may halt the processor or cause it to lose information.
However, UNDEFINED operations must not cause the processor to hang, that
is, reach an unhalted state from which there is no transition to a normal state
in which the machine executes instructions.

1.6.4 Ranges and Extents

Ranges are specified by a pair of numbers separated by a ‘‘..’’ and are inclusive. For
example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.
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Extents are specified by a pair of numbers in angle brackets separated by a colon
and are inclusive. For example, bits <7:3> specify an extent of bits including bits 7,
6, 5, 4, and 3.

1.6.5 ALIGNED and UNALIGNED

In this document the terms ALIGNED and NATURALLY ALIGNED are used
interchangeably to refer to data objects that are powers of two in size. An aligned
datum of size 2**N is stored in memory at a byte address that is a multiple of 2**N,
that is, one that has N low-order zeros. Thus, an aligned 64-byte stack frame has a
memory address that is a multiple of 64.

If a datum of size 2**N is stored at a byte address that is not a multiple of 2**N, it
is called UNALIGNED.

1.6.6 Must Be Zero (MBZ)

Fields specified as Must be Zero (MBZ) must never be filled by software with a non-
zero value. These fields may be used at some future time. If the processor encounters
a non-zero value in a field specified as MBZ, an Illegal Operand exception occurs.

1.6.7 Read As Zero (RAZ)

Fields specified as Read as Zero (RAZ) return a zero when read.

1.6.8 Should Be Zero (SBZ)

Fields specified as Should be Zero (SBZ) should be filled by software with a zero
value. Non-zero values in SBZ fields produce UNPREDICTABLE results and may
produce extraneous instruction-issue delays.

1.6.9 Ignore (IGN)

Fields specified as Ignore (IGN) are ignored when written.

1.6.10 Implementation Dependent (IMP)

Fields specified as Implementation Dependent (IMP) may be used for implementation-
specific purposes. Each implementation must document fully the behavior of all
fields marked as IMP by the Alpha specification.

1.6.11 Figure Drawing Conventions

Figures that depict registers or memory follow the convention that increasing
addresses run right to left and top to bottom.

1.6.12 Macro Code Example Conventions

All instructions in macro code examples are either listed in Chapter 4 or OpenVMS
AXP Software II–A, Chapter 2, or are stylized code forms found in Appendix A.
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Chapter 2

Basic Architecture (I)

2.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. Virtual
addresses are 64 bits long. An implementation may support a smaller virtual address
space. The minimum virtual address size is 43 bits.

Virtual addresses as seen by the program are translated into physical memory
addresses by the memory management mechanism.

Although the data types in Section 2.2 are described in terms of little-endian byte
addressing, implementations may also include big-endian addressing support, as
described in Section 2.3. All current implementations have some big-endian support.

2.2 Data Types

Following are descriptions of the Alpha architecture data types.

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary. The bits are
numbered from right to left, 0 through 7, as shown in Figure 2–1.

Figure 2–1: Byte Format

7 0

:A

A byte is specified by its address A. A byte is an 8-bit value. The byte is only
supported in Alpha by the load, store, sign-extend, extract, mask, insert, and zap
instructions.
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2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary. The bits are
numbered from right to left, 0 through 15, as shown in Figure 2–2.

Figure 2–2: Word Format

015

:A

A word is specified by its address, the address of the byte containing bit 0.

A word is a 16-bit value. The word is only supported in Alpha by the load, store,
sign-extend, extract, mask, and insert instructions.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 31, as shown in Figure 2–3.

Figure 2–3: Longword Format

031

:A

A longword is specified by its address A, the address of the byte containing bit 0. A
longword is a 32-bit value.

When interpreted arithmetically, a longword is a two’s-complement integer with bits
of increasing significance from 0 through 30. Bit 31 is the sign bit. The longword
is only supported in Alpha by sign-extended load and store instructions and by
longword arithmetic instructions.

Note:

Alpha implementations will impose a significant performance penalty when
accessing longword operands that are not naturally aligned. (A naturally aligned
longword has zero as the low-order two bits of its address.)

2.2.4 Quadword

A quadword is 8 contiguous bytes starting on an arbitrary byte boundary. The bits
are numbered from right to left, 0 through 63, as shown in Figure 2–4.
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Figure 2–4: Quadword Format

63 0

:A

A quadword is specified by its address A, the address of the byte containing bit 0. A
quadword is a 64-bit value. When interpreted arithmetically, a quadword is either
a two’s-complement integer with bits of increasing significance from 0 through 62
and bit 63 as the sign bit, or an unsigned integer with bits of increasing significance
from 0 through 63.

Note:

Alpha implementations will impose a significant performance penalty when
accessing quadword operands that are not naturally aligned. (A naturally aligned
quadword has zero as the low-order three bits of its address.)

2.2.5 VAX Floating-Point Formats

VAX floating-point numbers are stored in one set of formats in memory and in a
second set of formats in registers. The floating-point load and store instructions
convert between these formats purely by rearranging bits; no rounding or range-
checking is done by the load and store instructions.

2.2.5.1 F_floating

An F_floating datum is 4 contiguous bytes in memory starting on an arbitrary
byte boundary. The bits are labeled from right to left, 0 through 31, as shown
in Figure 2–5.

Figure 2–5: F_floating Datum

S Frac. HiFraction Lo :AExp.

6 071516 1431

An F_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2–6.

Figure 2–6: F_floating Register Format

063 62

S

52 51 29 28

Exp. Fraction 0 :Fx
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The F_floating load instruction reorders bits on the way in from memory, expands the
exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This produces
in the register an equivalent G_floating number suitable for either F_floating or G_
floating operations. The mapping from 8-bit memory-format exponents to 11-bit
register-format exponents is shown in Table 2–1.

Table 2–1: F_floating Load Exponent Mapping (MAP_F)

Memory <14:7> Register <62:52>

1 1111111 1 000 1111111

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all 1’s)

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0’s)

0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values.

The F_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction.

An F_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an F_floating datum is sign magnitude with bit 15 the
sign bit, bits <14:7> an excess-128 binary exponent, and bits <6:0> and <31:16>
a normalized 24-bit fraction with the redundant most significant fraction bit not
represented. Within the fraction, bits of increasing significance are from 16 through
31 and 0 through 6. The 8-bit exponent field encodes the values 0 through 255.
An exponent value of 0, together with a sign bit of 0, is taken to indicate that the
F_floating datum has a value of 0.

If the result of a VAX floating-point format instruction has a value of zero, the
instruction always produces a datum with a sign bit of 0, an exponent of 0, and
all fraction bits of 0. Exponent values of 1..255 indicate true binary exponents of
–127..127. An exponent value of 0, together with a sign bit of 1, is taken as a
reserved operand. Floating-point instructions processing a reserved operand take
an arithmetic exception. The value of an F_floating datum is in the approximate
range 0.29*10**–38 through 1.7*10**38. The precision of an F_floating datum is
approximately one part in 2**23, typically 7 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when
accessing F_floating operands that are not naturally aligned. (A naturally
aligned F_floating datum has zero as the low-order two bits of its address.)
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2.2.5.2 G_floating

A G_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2–7.

Figure 2–7: G_floating Datum

S Exp. Frac.HiFraction Midh :A

:A+4Fraction MidlFraction Lo

4 3 01516 1431

A G_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2–8.

Figure 2–8: G_floating Format

063 62

S

32 31

Exp. Fraction Hi Fraction Lo :Fx

52 51

A G_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a G_floating datum is sign magnitude with bit 15 the sign bit, bits
<14:4> an excess-1024 binary exponent, and bits <3:0> and <63:16> a normalized 53-
bit fraction with the redundant most significant fraction bit not represented. Within
the fraction, bits of increasing significance are from 48 through 63, 32 through 47, 16
through 31, and 0 through 3. The 11-bit exponent field encodes the values 0 through
2047. An exponent value of 0, together with a sign bit of 0, is taken to indicate that
the G_floating datum has a value of 0.

If the result of a floating-point instruction has a value of zero, the instruction always
produces a datum with a sign bit of 0, an exponent of 0, and all fraction bits
of 0. Exponent values of 1..2047 indicate true binary exponents of –1023..1023.
An exponent value of 0, together with a sign bit of 1, is taken as a reserved
operand. Floating-point instructions processing a reserved operand take a user-
visible arithmetic exception. The value of a G_floating datum is in the approximate
range 0.56*10**–308 through 0.9*10**308. The precision of a G_floating datum is
approximately one part in 2**52, typically 15 decimal digits. See Section 4.7.

Note:

Alpha implementations will impose a significant performance penalty when
accessing G_floating operands that are not naturally aligned. (A naturally
aligned G_floating datum has zero as the low-order three bits of its address.)
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2.2.5.3 D_floating

A D_floating datum in memory is 8 contiguous bytes starting on an arbitrary byte
boundary. The bits are labeled from right to left, 0 through 63, as shown in
Figure 2–9.

Figure 2–9: D_floating Datum

S Exp. Frac.HiFraction Midh :A

:A+4Fraction MidlFraction Lo

6 071516 1431

A D_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2–10.

Figure 2–10: D_floating Register Format

063 62

S

48 47 32 31 16 15

Exp. Fraction Midh Fraction Midl Fraction Lo :Fx

55 54

Frac. Hi

The reordering of bits required for a D_floating load or store are identical to those
required for a G_floating load or store. The G_floating load and store instructions
are therefore used for loading or storing D_floating data.

A D_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of a D_floating datum is identical to an F_floating datum
except for 32 additional low significance fraction bits. Within the fraction, bits of
increasing significance are from 48 through 63, 32 through 47, 16 through 31, and 0
through 6. The exponent conventions and approximate range of values is the same
for D_floating as F_floating. The precision of a D_floating datum is approximately
one part in 2**55, typically 16 decimal digits.

Notes:

• D_floating is not a fully supported data type; no D_floating arithmetic operations
are provided in the architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software emulation. D_floating ‘‘format
compatibility’’ in which binary files of D_floating numbers may be processed, but
without the last 3 bits of fraction precision, can be obtained via conversions to
G_floating, G arithmetic operations, then conversion back to D_floating.

• Alpha implementations will impose a significant performance penalty on access
to D_floating operands that are not naturally aligned. (A naturally aligned D_
floating datum has zero as the low-order three bits of its address.)
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2.2.6 IEEE Floating-Point Formats

The IEEE standard for binary floating-point arithmetic, ANSI/IEEE 754-1985,
defines four floating-point formats in two groups, basic and extended, each having
two widths, single and double. The Alpha architecture supports the basic single
and double formats, with the basic double format serving as the extended single
format. The values representable within a format are specified by using three integer
parameters:

1. P—the number of fraction bits

2. Emax—the maximum exponent

3. Emin—the minimum exponent

Within each format, only the following entities are permitted:

1. Numbers of the form (–1)**S x 2**E x b(0).b(1)b(2)..b(P–1) where:

a. S = 0 or 1

b. E = any integer between Emin and Emax, inclusive

c. b(n) = 0 or 1

2. Two infinities—positive and negative

3. At least one Signaling NaN

4. At least one Quiet NaN

NaN is an acronym for Not-a-Number. A NaN is an IEEE floating-point bit
pattern that represents something other than a number. NaNs come in two forms:
Signaling NaNs and Quiet NaNs. Signaling NaNs are used to provide values
for uninitialized variables and for arithmetic enhancements. Quiet NaNs provide
retrospective diagnostic information regarding previous invalid or unavailable data
and results. Signaling NaNs signal an invalid operation when they are an operand
to an arithmetic instruction, and may generate an arithmetic exception. Quiet
NaNs propagate through almost every operation without generating an arithmetic
exception.

Arithmetic with the infinities is handled as if the operands were of arbitrarily large
magnitude. Negative infinity is less than every finite number; positive infinity is
greater than every finite number.

2.2.6.1 S_Floating

An IEEE single-precision, or S_floating, datum occupies 4 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 31, as shown in Figure 2–11.
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Figure 2–11: S_floating Datum

S Exp. Fraction :A

03031 2223

An S_floating operand occupies 64 bits in a floating register, left-justified in the
64-bit register, as shown in Figure 2–12.

Figure 2–12: S_floating Register Format

063 62

S

52 51 29 28

Exp. Fraction 0 :Fx

The S_floating load instruction reorders bits on the way in from memory, expanding
the exponent from 8 to 11 bits, and sets the low-order fraction bits to zero. This
produces in the register an equivalent T_floating number, suitable for either S_
floating or T_floating operations. The mapping from 8-bit memory-format exponents
to 11-bit register-format exponents is shown in Table 2–2.

Table 2–2: S_floating Load Exponent Mapping (MAP_S)

Memory <30:23> Register <62:52>

1 1111111 1 111 1111111

1 xxxxxxx 1 000 xxxxxxx (xxxxxxx not all 1’s)

0 xxxxxxx 0 111 xxxxxxx (xxxxxxx not all 0’s)

0 0000000 0 000 0000000

This mapping preserves both normal values and exceptional values. Note that the
mapping for all 1’s differs from that of F_floating load, since for S_floating all 1’s is
an exceptional value and for F_floating all 1’s is a normal value.

The S_floating store instruction reorders register bits on the way to memory and
does no checking of the low-order fraction bits. Register bits <61:59> and <28:0> are
ignored by the store instruction. The S_floating load instruction does no checking of
the input.

The S_floating store instruction does no checking of the data; the preceding operation
should have specified an S_floating result.

An S_floating datum is specified by its address A, the address of the byte containing
bit 0. The memory form of an S_floating datum is sign magnitude with bit 31 the sign
bit, bits <30:23> an excess-127 binary exponent, and bits <22:0> a 23-bit fraction.
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The value (V) of an S_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=255 and F<>0, then V is NaN, regardless of S.

2. If E=255 and F=0, then V = (–1)**S x Infinity.

3. If 0 < E < 255, then V = (–1)**S x 2**(E–127) x (1.F).

4. If E=0 and F<>0, then V = (–1)**S x 2**(–126) x (0.F).

5. If E=0 and F=0, then V = (–1)**S x 0 (zero).

Floating-point operations on S_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

Note:

Alpha implementations will impose a significant performance penalty when
accessing S_floating operands that are not naturally aligned. (A naturally
aligned S_floating datum has zero as the low-order two bits of its address.)

2.2.6.2 T_floating

An IEEE double-precision, or T_floating, datum occupies 8 contiguous bytes in
memory starting on an arbitrary byte boundary. The bits are labeled from right
to left, 0 through 63, as shown in Figure 2–13.

Figure 2–13: T_floating Datum

S

:A

:A+4

Fraction Lo

Fraction HiExponent

031 30 1920

A T_floating operand occupies 64 bits in a floating register, arranged as shown in
Figure 2–14.

Figure 2–14: T_floating Register Format

063 62

S

32 31

Exp. Fraction Hi Fraction Lo :Fx

52 51

The T_floating load instruction performs no bit reordering on input, nor does it
perform checking of the input data.

The T_floating store instruction performs no bit reordering on output. This
instruction does no checking of the data; the preceding operation should have
specified a T_floating result.
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A T_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of a T_floating datum is sign magnitude with bit 63 the sign bit, bits
<62:52> an excess-1023 binary exponent, and bits <51:0> a 52-bit fraction.

The value (V) of a T_floating number is inferred from its constituent sign (S),
exponent (E), and fraction (F) fields as follows:

1. If E=2047 and F<>0, then V is NaN, regardless of S.

2. If E=2047 and F=0, then V = (–1)**S x Infinity.

3. If 0 < E < 2047, then V = (–1)**S x 2**(E–1023) x (1.F).

4. If E=0 and F<>0, then V = (–1)**S x 2**(–1022) x (0.F).

5. If E=0 and F=0, then V = (–1)**S x 0 (zero).

Floating-point operations on T_floating numbers may take an arithmetic exception
for a variety of reasons, including invalid operations, overflow, underflow, division
by zero, and inexact results.

Note:

Alpha implementations will impose a significant performance penalty when
accessing T_floating operands that are not naturally aligned. (A naturally
aligned T_floating datum has zero as the low-order three bits of its address.)

2.2.6.3 X_Floating

Support for 128-bit IEEE extended-precision (X_float) floating-point is initially
provided entirely through software. This section is included to preserve the intended
consistency of implementation with other IEEE floating-point data types, should the
X_float data type be supported in future hardware.

An IEEE extended-precision, or X_floating, datum occupies 16 contiguous bytes in
memory, starting on an arbitrary byte boundary. The bits are labeled from right to
left, 0 through 127, as shown in Figure 2–15.

Figure 2–15: X_Floating Datum

0

S Exponent Fraction_high

Fraction_low

48 4763 62

:A

:A+8

An X_floating datum occupies two consecutive even/odd floating-point registers (such
as F4/F5), as shown in Figure 2–16.
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Figure 2–16: X_Floating Register Format

127 064 63

S

126 112 111

Exponent Fraction_high Fraction_low

Fn OR 1 Fn

An X_floating datum is specified by its address A, the address of the byte containing
bit 0. The form of an X_floating datum is sign magnitude with bit 127 the sign bit,
bits <126:112> an excess–16383 binary exponent, and bits <111:0> a 112-bit fraction.

The value (V) of an X_floating number is inferred from its constituent sign (S),
exponent (E) and fraction (F) fields as follows:

1. If E=32767 and F<>0, then V is a NaN, regardless of S.

2. If E=32767 and F=0, then V = (–1)**S x Infinity.

3. If 0 < E < 32767, then V = (–1)**S x 2**(E–16383) x (1.F).

4. If E=0 and F<> 0, then V = (–1)**S x 2**(–16382) x (0.F).

5. If E = 0 and F = 0, then V = (–1)**S x 0 (zero).

Note:

Alpha implementations will impose a significant performance penalty when
accessing X_floating operands that are not naturally aligned. (A naturally
aligned X_floating datum has zero as the low-order four bits of its address.)

X_Floating Big-Endian Formats
Section 2.3 describes Alpha support for big-endian data types. It is intended that
software or hardware implementation for a big-endian X_float data type comply with
that support and have the following formats.

Figure 2–17: X_Floating Big-Endian Datum

15

S Exponent Fraction_high

Fraction_low

0

A+8:

A:

Byte

Byte
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Figure 2–18: X_Floating Big-Endian Register Format

0 15

S Exponent Fraction_high Fraction_low

Fn OR 1 Fn

Byte Byte

2.2.7 Longword Integer Format in Floating-Point Unit

A longword integer operand occupies 32 bits in memory, arranged as shown in
Figure 2–19.

Figure 2–19: Longword Integer Datum

S Integer :A

03031

A longword integer operand occupies 64 bits in a floating register, arranged as shown
in Figure 2–20.

Figure 2–20: Longword Integer Floating-Register Format

063 62

S

59 58 29 28

xxx Integer 0 :Fx

61

I

There is no explicit longword load or store instruction; the S_floating load/store
instructions are used to move longword data into or out of the floating registers.
The register bits <61:59> are set by the S_floating load exponent mapping. They are
ignored by S_floating store. They are also ignored in operands of a longword integer
operate instruction, and they are set to 000 in the result of a longword operate
instruction.

The register format bit <62> ‘‘I’’ in Figure 2–20 is part of the Integer field in
Figure 2–19 and represents the high-order bit of that field.

Note:

Alpha implementations will impose a significant performance penalty when
accessing longwords that are not naturally aligned. (A naturally aligned
longword datum has zero as the low-order two bits of its address.)
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2.2.8 Quadword Integer Format in Floating-Point Unit

A quadword integer operand occupies 64 bits in memory, arranged as shown in
Figure 2–21.

Figure 2–21: Quadword Integer Datum

S

:A

:A+4

Integer Lo

Integer Hi

031 30

A quadword integer operand occupies 64 bits in a floating register, arranged as
shown in Figure 2–22.

Figure 2–22: Quadword Integer Floating-Register Format

063 62

S

32 31

Integer Hi Integer Lo :Fx

There is no explicit quadword load or store instruction; the T_floating load/store
instructions are used to move quadword data into or out of the floating registers.

The T_floating load instruction performs no bit reordering on input. The T_floating
store instruction performs no bit reordering on output. This instruction does no
checking of the data; when used to store quadwords, the preceding operation should
have specified a quadword result.

Note:

Alpha implementations will impose a significant performance penalty when
accessing quadwords that are not naturally aligned. (A naturally aligned
quadword datum has zero as the low-order three bits of its address.)

2.2.9 Data Types with No Hardware Support

The following VAX data types are not directly supported in Alpha hardware.

• Octaword

• H_floating

• D_floating (except load/store and convert to/from G_floating)

• Variable-Length Bit Field

• Character String

• Trailing Numeric String
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• Leading Separate Numeric String

• Packed Decimal String

2.3 Big-endian Addressing Support

Alpha implementations may include optional big-endian addressing support.

In a little-endian machine, the bytes within a quadword are numbered right to left:

Figure 2–23: Little-Endian Byte Addressing

5 4 3 2 167 0

In a big-endian machine, they are numbered left to right:

Figure 2–24: Big-Endian Byte Addressing

2 3 4 5 610 7

Bit numbering within bytes is not affected by the byte numbering convention (big-
endian or little-endian).

The format for the X_float big-endian data type is shown in Section 2.2.6.3.

The byte numbering convention does not matter when accessing complete aligned
quadwords in memory. However, the numbering convention does matter when
accessing smaller or unaligned quantities, or when manipulating data in registers,
as follows:

• A quadword load or store of data at location 0 moves the same eight bytes under
both numbering conventions. However, a longword load or store of data at
location 4 must move the leftmost half of a quadword under the little-endian
convention, and the rightmost half under the big-endian convention. Thus, to
support both conventions, the convention being used must be known and it must
affect longword load/store operations.

• A byte extract of byte 5 from a quadword of data into the low byte of a register
requires a right shift of 5 bytes under the little-endian convention, but a right
shift of 2 bytes under the big-endian convention.

• Manipulating data in a register is almost the same for both conventions. In
both, integer and floating-point data have their sign bits in the leftmost byte
and their least significant bit in the rightmost byte, so the same integer and
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floating-point instructions are used unchanged for both conventions. Big-endian
character strings have their most significant character on the left, while little-
endian strings have their most significant character on the right.

• The compare byte (CMPBGE) instruction is neutral about direction, doing eight
byte compares in parallel. However, following the CMPBGE instruction, the code
is different that examines the byte mask to determine which string is larger,
depending on whether the rightmost or leftmost unequal byte is used. Thus,
compilers must be instructed to generate somewhat different code sequences for
the two conventions.

Implementations that include big-endian support must supply all of the following
features:

• A means at boot time to choose the byte numbering convention. The
implementation is not required to support dynamically changing the convention
during program execution. The chosen convention applies to all code executed,
both operating-system and user.

• If the big-endian convention is chosen, the longword-length load/store
instructions (LDF, LDL, LDL_L, LDS, STF, STL, STL_C, STS) invert bit va<2>
(bit 2 of the virtual address). This has the effect of accessing the half of a
quadword other than the half that would be accessed under the little-endian
convention.

• If the big-endian convention is chosen, the byte manipulation instructions
(EXTxx, INSxx, MSKxx) invert bits Rbv<2:0>. This has the effect of changing a
shift of 5 bytes into a shift of 2 bytes, for example.

The instruction stream is always considered to be little-endian, and is independent
of the chosen byte numbering convention. Compilers, linkers, and debuggers must
be aware of this when accessing an instruction stream using data-stream load/store
instructions. Thus, the rightmost instruction in a quadword is always executed first
and always has the instruction-stream address 0 MOD 8. The same bytes accessed
by a longword load/store instruction have data-stream address 0 MOD 8 under the
little-endian convention, and 4 MOD 8 under the big-endian convention.

Using either byte numbering convention, it is sometimes necessary to access data
that originated on a machine that used the other convention. When this occurs, it
is often necessary to swap the bytes within a datum. See Appendix A, Byte Swap,
for a suggested code sequence.
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Chapter 3

Instruction Formats (I)

3.1 Alpha Registers

Each Alpha processor has a set of registers that hold the current processor state.
If an Alpha system contains multiple Alpha processors, there are multiple per-
processor sets of these registers.

3.1.1 Program Counter

The Program Counter (PC) is a special register that addresses the instruction stream.
As each instruction is decoded, the PC is advanced to the next sequential instruction.
This is referred to as the updated PC. Any instruction that uses the value of the PC
will use the updated PC. The PC includes only bits <63:2> with bits <1:0> treated as
RAZ/IGN. This quantity is a longword-aligned byte address. The PC is an implied
operand on conditional branch and subroutine jump instructions. The PC is not
accessible as an integer register.

3.1.2 Integer Registers

There are 32 integer registers (R0 through R31), each 64 bits wide.

Register R31 is assigned special meaning by the Alpha architecture. When R31 is
specified as a register source operand, a zero-valued operand is supplied.

For all cases except the Unconditional Branch and Jump instructions, results of an
instruction that specifies R31 as a destination operand are discarded. Also, it is
UNPREDICTABLE whether the other destination operands (implicit and explicit)
are changed by the instruction. It is implementation dependent to what extent the
instruction is actually executed once it has been fetched. An exception is never
signaled for a load that specifies R31 as a destination operation. For all other
operations, it is UNPREDICTABLE whether exceptions are signaled during the
execution of such an instruction. Note, however, that exceptions associated with
the instruction fetch of such an instruction are always signaled.

There are some interesting cases involving R31 as a destination:

• STx_C R31,disp(Rb)

Although this might seem like a good way to zero out a shared location and reset
the lock_flag, this instruction causes the lock_flag and virtual location {Rbv +
SEXT(disp)} to become UNPREDICTABLE.

• LDx_L R31,disp(Rb)

This instruction produces no useful result since it causes both lock_flag and
locked_physical_address to become UNPREDICTABLE.
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Unconditional Branch (BR and BSR) and Jump (JMP, JSR, RET, and JSR_
COROUTINE) instructions, when R31 is specified as the Ra operand, execute
normally and update the PC with the target virtual address. Of course, no PC
value can be saved in R31.

3.1.3 Floating-Point Registers

There are 32 floating-point registers (F0 through F31), each 64 bits wide.

When F31 is specified as a register source operand, a true zero-valued operand is
supplied. See Section 4.7.3 for a definition of true zero.

Results of an instruction that specifies F31 as a destination operand are discarded
and it is UNPREDICTABLE whether the other destination operands (implicit
and explicit) are changed by the instruction. In this case, it is implementation-
dependent to what extent the instruction is actually executed once it has been
fetched. An exception is never signaled for a load that specifies F31 as a destination
operation. For all other operations, it is UNPREDICTABLE whether exceptions are
signaled during the execution of such an instruction. Note, however, that exceptions
associated with the instruction fetch of such an instruction are always signaled.

A floating-point instruction that operates on single-precision data reads all bits
<63:0> of the source floating-point register. A floating-point instruction that
produces a single-precision result writes all bits <63:0> of the destination floating-
point register.

3.1.4 Lock Registers

There are two per-processor registers associated with the LDx_L and STx_C
instructions, the lock_flag and the locked_physical_address register. The use of these
registers is described in Section 4.2.

3.1.5 Processor Cycle Counter (PCC) Register

The PCC register consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>)
are an unsigned, wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>),
PCC_OFF, are operating system dependent in their implementation.

PCC_CNT is the base clock register for measuring time intervals, and is suitable for
timing intervals on the order of nanoseconds.

PCC_CNT increments once per N CPU cycles, where N is an implementation-specific
integer in the range 1..16. The cycle counter frequency is the number of times the
processor cycle counter gets incremented per second. The integer count wraps to
0 from a count of FFFF FFFF16. The counter wraps no more frequently than 1.5
times the implementation’s interval clock interrupt period (which is two thirds of
the interval clock interrupt frequency), which guarantees that an interrupt occurs
before PCC_CNT overflows twice.

PCC_OFF need not contain a value related to time and could contain all zeros in
a simple implementation. However, if PCC_OFF is used to calculate a per-process
or per-thread cycle count, it must contain a value that, when added to PCC_CNT,
returns the total PCC register count for that process or thread, modulo 2**32.
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Implementation Note:

OpenVMS Alpha and Digital UNIX supply a per-process value in PCC_OFF.

PCC is required on all implementations. It is required for every processor, and each
processor on a multiprocessor system has its own private, independent PCC.

The PCC is read by the RPCC instruction. See Section 4.11.8.

3.1.6 Optional Registers

Some Alpha implementations may include optional memory prefetch or VAX
compatibility processor registers.

3.1.6.1 Memory Prefetch Registers

If the prefetch instructions FETCH and FETCH_M are implemented, an
implementation will include two sets of state prefetch registers used by those
instructions. The use of these registers is described in Section 4.11. These registers
are not directly accessible by software and are listed for completeness.

3.1.6.2 VAX Compatibility Register

The VAX compatibility instructions RC and RS include the intr_flag register, as
described in Section 4.12.

3.2 Notation

The notation used to describe the operation of each instruction is given as a sequence
of control and assignment statements in an ALGOL-like syntax.

3.2.1 Operand Notation

Tables 3–1, 3–2, and 3–3 list the notation for the operands, the operand values, and
the other expression operands.

Table 3–1: Operand Notation

Notation Meaning

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Rc An integer register operand in the Rc field of the instruction.

Fa A floating-point register operand in the Ra field of the instruction.

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.
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Table 3–2: Operand Value Notation

Notation Meaning

Rav The value of the Ra operand. This is the contents of register Ra.

Rbv The value of the Rb operand. This could be the contents of register Rb, or a
zero-extended 8-bit literal in the case of an Operate format instruction.

Fav The value of the floating point Fa operand. This is the contents of register Fa.

Fbv The value of the floating point Fb operand. This is the contents of register Fb.

Table 3–3: Expression Operand Notation

Notation Meaning

IPR_x Contents of Internal Processor Register x

IPR_SP[mode] Contents of the per-mode stack pointer selected by mode

PC Updated PC value

Rn Contents of integer register n

Fn Contents of floating-point register n

X[m] Element m of array X

3.2.2 Instruction Operand Notation

The notation used to describe instruction operands follows from the operand specifier
notation used in the VAX Architecture Standard. Instruction operands are described
as follows:

<name>.<access type><data type>

<name>
Specifies the instruction field (Ra, Rb, Rc, or disp) and register type of the operand
(integer or floating). It can be one of the following:

Name Meaning

disp The displacement field of the instruction.

fnc The PALcode function field of the instruction.

Ra An integer register operand in the Ra field of the instruction.

Rb An integer register operand in the Rb field of the instruction.

#b An integer literal operand in the Rb field of the instruction.

Rc An integer register operand in the Rc field of the instruction.

Fa A floating-point register operand in the Ra field of the instruction.
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Name Meaning

Fb A floating-point register operand in the Rb field of the instruction.

Fc A floating-point register operand in the Rc field of the instruction.

<access type>
Is a letter denoting the operand access type:

Access Type Meaning

a The operand is used in an address calculation to form an effective
address. The data type code that follows indicates the units of
addressability (or scale factor) applied to this operand when the
instruction is decoded.
For example:
‘‘.al’’ means scale by 4 (longwords) to get byte units (used in branch
displacements); ‘‘.ab’’ means the operand is already in byte units
(used in load/store instructions).

i The operand is an immediate literal in the instruction.

r The operand is read only.

m The operand is both read and written.

w The operand is write only.

<data type>
Is a letter denoting the data type of the operand:

Data Type Meaning

b Byte

f F_floating

g G_floating

l Longword

q Quadword

s IEEE single floating (S_floating)

t IEEE double floating (T_floating)

w Word

x The data type is specified by the instruction
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3.2.3 Operators

Table 3–4 describes the operators:

Table 3–4: Operators

Operator Meaning

! Comment delimiter

+ Addition

- Subtraction

* Signed multiplication

*U Unsigned multiplication

** Exponentiation (left argument raised to right argument)

/ Division

← Replacement

| | Bit concatenation

{} Indicates explicit operator precedence

(x) Contents of memory location whose address is x

x<m:n> Contents of bit field of x defined by bits n through m

x<m> M’th bit of x

ACCESS(x,y) Accessibility of the location whose address is x using the
access mode y. Returns a Boolean value TRUE if the address
is accessible, else FALSE.

AND Logical product

ARITH_RIGHT_SHIFT(x,y) Arithmetic right shift of first operand by the second operand.
Y is an unsigned shift value. Bit 63, the sign bit, is copied
into vacated bit positions and shifted out bits are discarded.

BYTE_ZAP(x,y) X is a quadword, y is an 8-bit vector in which each bit
corresponds to a byte of the result. The y bit to x byte
correspondence is y<n> ↔ x<8n+7:8n>. This correspondence
also exists between y and the result.

For each bit of y from n = 0 to 7, if y <n> is 0 then byte <n>
of x is copied to byte <n> of result, and if y <n> is 1 then byte
<n> of result is forced to all zeros.
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Table 3–4 (Cont.): Operators

Operator Meaning

CASE The CASE construct selects one of several actions based on
the value of its argument. The form of a case is:

CASE argument OF
argvalue1: action_1
argvalue2: action_2
...
argvaluen: action_n
[otherwise: default_action]

ENDCASE

If the value of argument is argvalue1 then action_1 is
executed; if argument = argvalue2, then action_2 is executed,
and so forth.

Once a single action is executed, the code stream breaks
to the ENDCASE (there is an implicit break as in Pascal).
Each action may nonetheless be a sequence of pseudocode
operations, one operation per line.

Optionally, the last argvalue may be the atom ’otherwise’. The
associated default action will be taken if none of the other
argvalues match the argument.

DIV Integer division (truncates)

LEFT_SHIFT(x,y) Logical left shift of first operand by the second operand.

Y is an unsigned shift value. Zeros are moved into the vacated
bit positions, and shifted out bits are discarded.

LOAD_LOCKED The processor records the target physical address in a per-
processor locked_physical_address register and sets the per-
processor lock_flag.

lg Log to the base 2

MAP_x F_float or S_float memory-to-register exponent mapping
function.

MAXS(x,y) Returns the larger of x and y, with x and y interpreted as
signed integers

MAXU(x,y) Returns the larger of x and y, with x and y interpreted as
unsigned integers

MINS(x,y) Returns the smaller of x and y, with x and y interpreted as
signed integers

MINU(x,y) Returns the smaller of x and y, with x and y interpreted as
unsigned integers

x MOD y x modulo y

NOT Logical (ones) complement

OR Logical sum
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Table 3–4 (Cont.): Operators

Operator Meaning

PHYSICAL_ADDRESS Translation of a virtual address

PRIORITY_ENCODE Returns the bit position of most significant set bit, interpret-
ing its argument as a positive integer ( = int( lg( x ) ) ).

For example:

priority_encode( 255 ) = 7

Relational Operators

Operator Meaning

LT Less than signed

LTU Less than unsigned

LE Less or equal signed

LEU Less or equal unsigned

EQ Equal signed and unsigned

NE Not equal signed and unsigned

GE Greater or equal signed

GEU Greater or equal unsigned

GT Greater signed

GTU Greater unsigned

LBC Low bit clear

LBS Low bit set

RIGHT_SHIFT(x,y) Logical right shift of first operand by the second operand. Y
is an unsigned shift value. Zeros are moved into vacated bit
positions, and shifted out bits are discarded.

SEXT(x) X is sign-extended to the required size.

STORE_CONDITIONAL If the lock_flag is set, then do the indicated store and clear
the lock_flag.

TEST(x,cond) The contents of register x are tested for branch condition
(cond) true. TEST returns a Boolean value TRUE if x bears
the specified relation to 0, else FALSE is returned. Integer
and floating test conditions are drawn from the preceding list
of relational operators.

XOR Logical difference

ZEXT(x) X is zero-extended to the required size.
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3.2.4 Notation Conventions

The following conventions are used:

1. Only operands that appear on the left side of a replacement operator are modified.

2. No operator precedence is assumed other than that replacement (←) has the
lowest precedence. Explicit precedence is indicated by the use of ‘‘{}’’.

3. All arithmetic, logical, and relational operators are defined in the context of their
operands. For example, ‘‘+’’ applied to G_floating operands means a G_floating
add, whereas ‘‘+’’ applied to quadword operands is an integer add. Similarly, ‘‘LT’’
is a G_floating comparison when applied to G_floating operands and an integer
comparison when applied to quadword operands.

3.3 Instruction Formats

There are five basic Alpha instruction formats:

• Memory

• Branch

• Operate

• Floating-point Operate

• PALcode

All instruction formats are 32 bits long with a 6-bit major opcode field in bits <31:26>
of the instruction.

Any unused register field (Ra, Rb, Fa, Fb) of an instruction must be set to a value
of 31.

Software Note:

There are several instructions, each formatted as a memory instruction, that do
not use the Ra and/or Rb fields. These instructions are: Memory Barrier, Fetch,
Fetch_M, Read Process Cycle Counter, Read and Clear, Read and Set, and Trap
Barrier.

3.3.1 Memory Instruction Format

The Memory format is used to transfer data between registers and memory, to
load an effective address, and for subroutine jumps. It has the format shown in
Figure 3–1.
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Figure 3–1: Memory Instruction Format

031 26 25 21 20 16 15

Opcode Ra Rb Memory_disp

A Memory format instruction contains a 6-bit opcode field, two 5-bit register address
fields, Ra and Rb, and a 16-bit signed displacement field.

The displacement field is a byte offset. It is sign-extended and added to the contents
of register Rb to form a virtual address. Overflow is ignored in this calculation.

The virtual address is used as a memory load/store address or a result value,
depending on the specific instruction. The virtual address (va) is computed as follows
for all memory format instructions except the load address high (LDAH):

va ← {Rbv + SEXT(Memory_disp)}

For LDAH the virtual address (va) is computed as follows:

va ← {Rbv + SEXT(Memory_disp*65536)}

3.3.1.1 Memory Format Instructions with a Function Code

Memory format instructions with a function code replace the memory displacement
field in the memory instruction format with a function code that designates a set of
miscellaneous instructions. The format is shown in Figure 3–2.

Figure 3–2: Memory Instruction with Function Code Format

031 26 25 21 20 16 15

Opcode Ra Rb Function

The memory instruction with function code format contains a 6-bit opcode field and
a 16-bit function field. Unused function codes produce UNPREDICTABLE but not
UNDEFINED results; they are not security holes.

There are two fields, Ra and Rb. The usage of those fields depends on the instruction.
See Section 4.11.

3.3.1.2 Memory Format Jump Instructions

For computed branch instructions (CALL, RET, JMP, JSR_COROUTINE) the
displacement field is used to provide branch-prediction hints as described in
Section 4.3.
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3.3.2 Branch Instruction Format

The Branch format is used for conditional branch instructions and for PC-relative
subroutine jumps. It has the format shown in Figure 3–3.

Figure 3–3: Branch Instruction Format

031 26 25 21 20

Opcode Ra Branch_disp

A Branch format instruction contains a 6-bit opcode field, one 5-bit register address
field (Ra), and a 21-bit signed displacement field.

The displacement is treated as a longword offset. This means it is shifted left two bits
(to address a longword boundary), sign-extended to 64 bits and added to the updated
PC to form the target virtual address. Overflow is ignored in this calculation. The
target virtual address (va) is computed as follows:

va ← PC + {4*SEXT(Branch_disp)}

3.3.3 Operate Instruction Format

The Operate format is used for instructions that perform integer register to integer
register operations. The Operate format allows the specification of one destination
operand and two source operands. One of the source operands can be a literal
constant. The Operate format in Figure 3–4 shows the two cases when bit <12> of
the instruction is 0 and 1.

Figure 3–4: Operate Instruction Format

031 26 25

0

13 12 1121 20 16 15 5 4

Opcode Ra Rb SBZ Function Rc

031 26 25

1

13 12 1121 20 5 4

Opcode Ra LIT Function Rc

An Operate format instruction contains a 6-bit opcode field and a 7-bit function
field. Unused function codes for those opcodes defined as reserved in the Version
5 Alpha architecture specification (May 1992) produce an illegal instruction trap.
Those opcodes are 01, 02, 03, 04, 05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, 1B, 1D, 1E,
and 1F. For other opcodes, unused function codes produce UNPREDICTABLE but
not UNDEFINED results; they are not security holes.
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There are three operand fields, Ra, Rb, and Rc.

The Ra field specifies a source operand. Symbolically, the integer Rav operand is
formed as follows:

IF inst<25:21> EQ 31 THEN
Rav ← 0

ELSE
Rav ← Ra

END

The Rb field specifies a source operand. Integer operands can specify a literal or an
integer register using bit <12> of the instruction.

If bit <12> of the instruction is 0, the Rb field specifies a source register operand.

If bit <12> of the instruction is 1, an 8-bit zero-extended literal constant is formed
by bits <20:13> of the instruction. The literal is interpreted as a positive integer
between 0 and 255 and is zero-extended to 64 bits. Symbolically, the integer Rbv
operand is formed as follows:

IF inst<12> EQ 1 THEN
Rbv ← ZEXT(inst<20:13>)

ELSE
IF inst<20:16> EQ 31 THEN

Rbv ← 0
ELSE

Rbv ← Rb
END

END

The Rc field specifies a destination operand.

3.3.4 Floating-Point Operate Instruction Format

The Floating-point Operate format is used for instructions that perform floating-
point register to floating-point register operations. The Floating-point Operate
format allows the specification of one destination operand and two source operands.
The Floating-point Operate format is shown in Figure 3–5.

Figure 3–5: Floating-Point Operate Instruction Format

031 26 25 21 20 16 15 5 4

Opcode Fa Fb Function Fc

A Floating-point Operate format instruction contains a 6-bit opcode field and an
11-bit function field. Unused function codes for those opcodes defined as reserved
in the Version 5 Alpha architecture specification (May 1992) produce an illegal
instruction trap. Those opcodes are 01, 02, 03, 04, 05, 06, 07, 14, 19, 1B, 1D,
1E, and 1F. For other opcodes, unused function codes produce UNPREDICTABLE
but not UNDEFINED results; they are not security holes.
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There are three operand fields, Fa, Fb, and Fc. Each operand field specifies either
an integer or floating-point operand as defined by the instruction.

The Fa field specifies a source operand. Symbolically, the Fav operand is formed as
follows:

IF inst<25:21> EQ 31 THEN
Fav ← 0

ELSE
Fav ← Fa

END

The Fb field specifies a source operand. Symbolically, the Fbv operand is formed as
follows:

IF inst<20:16> EQ 31 THEN
Fbv ← 0

ELSE
Fbv ← Fb

END

Note

Neither Fa nor Fb can be a literal in Floating-point Operate instructions.

The Fc field specifies a destination operand.

3.3.4.1 Floating-Point Convert Instructions

Floating-point Convert instructions use a subset of the Floating-point Operate
format and perform register-to-register conversion operations. The Fb operand
specifies the source; the Fa field must be F31.

3.3.4.2 Floating-Point/Integer Register Moves

Instructions that move data between a floating-point register file and an integer
register file are a subset of of the Floating-point Operate format. The unused source
field must be 31.

3.3.5 PALcode Instruction Format

The Privileged Architecture Library (PALcode) format is used to specify extended
processor functions. It has the format shown in Figure 3–6.

Figure 3–6: PALcode Instruction Format

031 26 25

Opcode PALcode Function

The 26-bit PALcode function field specifies the operation.

The source and destination operands for PALcode instructions are supplied in fixed
registers that are specified in the individual instruction descriptions.
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An opcode of zero and a PALcode function of zero specify the HALT instruction.

3–14 Alpha Architecture Handbook



Chapter 4

Instruction Descriptions (I)

4.1 Instruction Set Overview

This chapter describes the instructions implemented by the Alpha architecture. The
instruction set is divided into the following sections:

Instruction Type Section

Integer load and store 4.2

Integer control 4.3

Integer arithmetic 4.4

Logical and shift 4.5

Byte manipulation 4.6

Floating-point load and store 4.8

Floating-point control 4.9

Floating-point operate 4.10

Miscellaneous 4.11

Multimedia (graphics and video) 4.13

Within each major section, closely related instructions are combined into groups and
described together. The instruction group description is composed of the following:

• The group name

• The format of each instruction in the group, which includes the name, access
type, and data type of each instruction operand

• The operation of the instruction

• Exceptions specific to the instruction

• The instruction mnemonic and name of each instruction in the group

• Qualifiers specific to the instructions in the group

• A description of the instruction operation

• Optional programming examples and optional notes on the instruction
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4.1.1 Subsetting Rules

An instruction that is omitted in a subset implementation of the Alpha architecture
is not performed in either hardware or PALcode. System software may provide
emulation routines for subsetted instructions.

4.1.1.1 Floating-Point Subsets

Floating-point support is optional on an Alpha processor. An implementation that
supports floating-point must implement the following:

• The 32 floating-point registers

• The Floating-point Control Register (FPCR) and the instructions to access it.

• The floating-point branch instructions

• The floating-point copy sign (CPYSx) instructions.

• The floating-point convert instructions.

• The floating-point conditional move instruction (FCMOV).

• The integer register to floating-point register, and floating-point register to
integer register move instructions.

• The S_floating and T_floating memory operations.

Software Note:

A system that will not support floating-point operations is still required to provide
the 32 floating-point registers, the Floating-point Control Register (FPCR) and
the instructions to access it, and the T_floating memory operations if the system
intends to support the OpenVMS Alpha operating system. This requirement
facilitates the implementation of a floating-point emulator and simplifies context-
switching.

In addition, floating-point support requires at least one of the following subset
groups:

1. VAX Floating-point Operate and Memory instructions (F_ and G_floating).

2. IEEE Floating-point Operate instructions (S_ and T_floating). Within this group,
an implementation can choose to include or omit separately the ability to perform
IEEE rounding to plus infinity and minus infinity.

Note: if one instruction in a group is provided, all other instructions in that group
must be provided. An implementation with full floating-point support includes
both groups; a subset floating-point implementation supports only one of these
groups. The individual instruction descriptions indicate whether an instruction can
be subsetted.
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4.1.2 Software Emulation Rules

General-purpose layered and application software that executes in User mode may
assume that certain loads (LDL, LDQ, LDF, LDG, LDS, and LDT) and certain stores
(STL, STQ, STF, STG, STL and STT) of unaligned data are emulated by system
software. General-purpose layered and application software that executes in User
mode may assume that subsetted instructions are emulated by system software.
Frequent use of emulation may be significantly slower than using alternative code
sequences.

Emulation of loads and stores of unaligned data and subsetted instructions need
not be provided in privileged access modes. System software that supports special-
purpose dedicated applications need not provide emulation in User mode if emulation
is not needed for correct execution of the special-purpose applications.

4.1.3 Opcode Qualifiers

Some Operate format and Floating-point Operate format instructions have several
variants. For example, for the VAX formats, Add F_floating (ADDF) is supported
with and without floating underflow enabled, and with either chopped or VAX
rounding. For IEEE formats, IEEE unbiased rounding, chopped, round toward plus
infinity, and round toward minus infinity can be selected.

The different variants of such instructions are denoted by opcode qualifiers, which
consist of a slash (/) followed by a string of selected qualifiers. Each qualifier is
denoted by a single character as shown in Table 4–1. The opcodes for each qualifier
are listed in Appendix C.

Table 4–1: Opcode Qualifiers

Qualifier Meaning

C Chopped rounding

D Rounding mode dynamic

M Round toward minus infinity

I Inexact result enable

S Software completion enable

U Floating underflow enable

V Integer overflow enable

The default values are normal rounding, software completion disabled, inexact result
disabled, floating underflow disabled, and integer overflow disabled.
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4.2 Memory Integer Load/Store Instructions

The instructions in this section move data between the integer registers and memory.

They use the Memory instruction format. The instructions are summarized in
Table 4–2.

Table 4–2: Memory Integer Load/Store Instructions

Mnemonic Operation

LDA Load Address

LDAH Load Address High

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword

LDL_L Load Sign-Extended Longword Locked

LDQ Load Quadword

LDQ_L Load Quadword Locked

LDQ_U Load Quadword Unaligned

LDWU Load Zero-Extended Word from Memory to Register

STB Store Byte

STL Store Longword

STL_C Store Longword Conditional

STQ Store Quadword

STQ_C Store Quadword Conditional

STQ_U Store Quadword Unaligned

STW Store Word
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4.2.1 Load Address

Format:

LDAx Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

Ra ← Rbv + SEXT(disp) !LDA

Ra ← Rbv + SEXT(disp*65536) !LDAH

Exceptions:

None

Instruction mnemonics:

LDA Load Address

LDAH Load Address High

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement for LDA, and 65536 times the sign-extended 16-bit displacement for
LDAH. The 64-bit result is written to register Ra.
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4.2.2 Load Memory Data into Integer Register

Format:

LDx Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va’ ← va XOR 0002 !LDQ
big_endian_data: va’ ← va XOR 1002 !LDL
big_endian_data: va’ ← va XOR 1102 !LDWU
big_endian_data: va’ ← va XOR 1112 !LDBU
little_endian_data: va’ ← va

ENDCASE

Ra ← (va’)<63:0> !LDQ
Ra ← SEXT((va’)<31:0>) !LDL
Ra ← ZEXT((va’)<15:0>) !LDWU
Ra ← ZEXT((va’)<07:0>) !LDBU

Exceptions:

Access Violation
Alignment
Fault on Read
Translation Not Valid

Instruction mnemonics:

LDBU Load Zero-Extended Byte from Memory to Register

LDL Load Sign-Extended Longword from Memory to Register

LDQ Load Quadword from Memory to Register

LDWU Load Zero-Extended Word from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian access, the indicated bits are inverted, and any
memory management fault is reported for va (not va’).
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In the case of LDQ and LDL, the source operand is fetched from memory, sign-
extended, and written to register Ra.

In the case of LDWU and LDBU, the source operand is fetched from memory, zero-
extended, and written to register Ra.

In all cases, if the data is not naturally aligned, an alignment exception is generated.

Notes:

• The word or byte that the LDWU or LDBU instruction fetches from memory is
placed in the low (rightmost) word or byte of Ra, with the remaining 6 or 7 bytes
set to zero.

• Accesses have byte granularity.

• For big-endian access with LDWU or LDBU, the word/byte remains in the
rightmost part of Ra, but the va sent to memory has the indicated bits inverted.
See Operation section, above.

• No sparse address space mechanisms are allowed with the LDWU and LDBU
instructions.

Implementation Notes:

• Depending on an address space region’s caching policy, implementations may
read a (partial) cache block in order to do word/byte stores. This may only be
done in regions that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and
length-of-access information to devices on I/O buses. But, strictly speaking, this
is outside the scope of architecture.
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4.2.3 Load Unaligned Memory Data into Integer Register

Format:

LDQ_U Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va ← {{Rbv + SEXT(disp)} AND NOT 7}

Ra ← (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Translation Not Valid

Instruction mnemonics:

LDQ_U Load Unaligned Quadword from Memory to Register

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement, then the low-order three bits are cleared. The source operand is
fetched from memory and written to register Ra.
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4.2.4 Load Memory Data into Integer Register Locked

Format:

LDx_L Ra.wq,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE

big_endian_data: va’ ← va XOR 0002 ! LDQ_L

big_endian_data: va’ ← va XOR 1002 ! LDL_L
little_endian_data: va’ ← va ! LDL_L

ENDCASE

lock_flag ← 1
locked_physical_address ← PHYSICAL_ADDRESS(va)

Ra ← SEXT((va’)<31:0>) ! LDL_L
Ra ← (va)<63:0> ! LDQ_L

Exceptions:

Access Violation
Alignment
Fault on Read
Translation Not Valid

Instruction mnemonics:

LDL_L Load Sign-Extended Longword from Memory to Register Locked

LDQ_L Load Quadword from Memory to Register Locked

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va’). The
source operand is fetched from memory, sign-extended for LDL_L, and written to
register Ra.
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When a LDx_L instruction is executed without faulting, the processor records the
target physical address in a per-processor locked_physical_address register and sets
the per-processor lock_flag.

If the per-processor lock_flag is (still) set when a STx_C instruction is executed
(accessing within the same 16-byte naturally aligned block as the LDx_L), the store
occurs; otherwise, it does not occur, as described for the STx_C instructions. The
behavior of a STx_C instruction is UNPREDICTABLE, as described in Section 4.2.5,
when it does not access the same 16-byte naturally aligned block as the LDx_L.

Processor A causes the clearing of a set lock_flag in processor B by doing any of the
following in B’s locked range of physical addresses: a successful store, a successful
store_conditional, or executing a WH64 instruction that modifies data on processor
B. A processor’s locked range is the aligned block of 2**N bytes that includes the
locked_physical_address. The 2**N value is implementation dependent. It is at
least 16 (minimum lock range is an aligned 16-byte block) and is at most the page
size for that implementation (maximum lock range is one physical page).

A processor’s lock_flag is also cleared if that processor encounters a CALL_PAL REI,
CALL_PAL rti, or CALL_PAL rfe instruction. It is UNPREDICTABLE whether
or not a processor’s lock_flag is cleared on any other CALL_PAL instruction. It
is UNPREDICTABLE whether a processor’s lock_flag is cleared by that processor
executing a normal load or store instruction. It is UNPREDICTABLE whether a
processor’s lock_flag is cleared by that processor executing a taken branch (including
BR, BSR, and Jumps); conditional branches that fall through do not clear the lock_
flag. It is UNPREDICTABLE whether a processor’s lock_flag is cleared by that
processor executing a WH64 or ECB instruction.

The sequence:

LDx_L
Modify
STx_C
BEQ xxx

when executed on a given processor, does an atomic read-modify-write of a datum
in shared memory if the branch falls through. If the branch is taken, the store did
not modify memory and the sequence may be repeated until it succeeds.

Notes:

• LDx_L instructions do not check for write access; hence a matching STx_C may
take an access-violation or fault-on-write exception.

Executing a LDx_L instruction on one processor does not affect any
architecturally visible state on another processor, and in particular cannot cause
a STx_C on another processor to fail.

LDx_L and STx_C instructions need not be paired. In particular, an LDx_L
may be followed by a conditional branch: on the fall-through path an STx_C is
executed, whereas on the taken path no matching STx_C is executed.
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If two LDx_L instructions execute with no intervening STx_C, the second one
overwrites the state of the first one. If two STx_C instructions execute with no
intervening LDx_L, the second one always fails because the first clears lock_flag.

• Software will not emulate unaligned LDx_L instructions.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are
not within the same naturally aligned 16-byte sections of virtual and physical
memory, that sequence may always fail, or may succeed despite another
processor’s store to the lock range; hence, no useful program should do this.

• If any other memory access (ECB, LDx, LDQ_U, STx, STQ_U, WH64) is executed
on the given processor between the LDx_L and the STx_C, the sequence above
may always fail on some implementations; hence, no useful program should do
this.

• If a branch is taken between the LDx_L and the STx_C, the sequence above may
always fail on some implementations; hence, no useful program should do this.
(CMOVxx may be used to avoid branching.)

• If a subsetted instruction (for example, floating-point) is executed between
the LDx_L and the STx_C, the sequence above may always fail on some
implementations, because of the Illegal Instruction Trap; hence, no useful
program should do this.

• If an instruction with an unused function code is executed between the LDx_L
and the STx_C, the sequence above may always fail on some implementations
because an instruction with an unused function code is UNPREDICTABLE.

• If a large number of instructions are executed between the LDx_L and the STx_C,
the sequence above may always fail on some implementations because of a timer
interrupt always clearing the lock_flag before the sequence completes; hence, no
useful program should do this.

• Hardware implementations are encouraged to lock no more than 128 bytes.
Software implementations are encouraged to separate locked locations by at
least 128 bytes from other locations that could potentially be written by another
processor while the first location is locked.

• Execution of a WH64 instruction on processor A to a region within the lock range
of processor B, where the execution of the WH64 changes the contents of memory,
causes the lock_flag on processor B to be cleared. If the WH64 does not change
the contents of memory on processor B, it need not clear the lock_flag.

Implementation Notes:

Implementations that impede the mobility of a cache block on LDx_L, such as
that which may occur in a Read for Ownership cache coherency protocol, may
release the cache block and make the subsequent STx_C fail if a branch-taken
or memory instruction is executed on that processor.

All implementations should guarantee that at least 40 non-subsetted operate
instructions can be executed between timer interrupts.
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4.2.5 Store Integer Register Data into Memory Conditional

Format:

STx_C Ra.mx,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE

big_endian_data: va’ ← va XOR 0002 ! STQ_C

big_endian_data: va’ ← va XOR 1002 ! STL_C
little_endian_data: va’ ← va ! STL_C

ENDCASE

IF lock_flag EQ 1 THEN
(va’)<31:0> ← Rav<31:0> ! STL_C
(va) ← Rav ! STQ_C

Ra ← lock_flag
lock_flag ← 0

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STL_C Store Longword from Register to Memory Conditional

STQ_C Store Quadword from Register to Memory Conditional

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va’).

If the lock_flag is set and the address meets the following constraints relative to
the address specified by the preceding LDx_L instruction, the Ra operand is written
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to memory at this address. If the address meets the following constraints but the
lock_flag is not set, a zero is returned in Ra and no write to memory occurs. The
constraints are:

• The computed virtual address must specify a location within the naturally
aligned 16-byte block in virtual memory accessed by the preceding LDx_L
instruction.

• The resultant physical address must specify a location within the naturally
aligned 16-byte block in physical memory accessed by the preceding LDx_L
instruction.

If those addressing constraints are not met, it is UNPREDICTABLE whether the
STx_C instruction succeeds or fails, regardless of the state of the lock_flag, unless
the lock_flag is cleared as described in the next paragraph.

Whether or not the addressing constraints are met, a zero is returned and no write
to memory occurs if the lock_flag was cleared by execution on a processor of a CALL_
PAL REI, CALL_PAL rti, CALL_PAL rfe, or STx_C, after the most recent execution
on that processor of a LDx_L instruction (in processor issue sequence).

In all cases, the lock_flag is set to zero at the end of the operation.

Notes:

• Software will not emulate unaligned STx_C instructions.

• Each implementation must do the test and store atomically, as illustrated in the
following two examples. (See Section 5.6.1 for complete information.)

— If two processors attempt STx_C instructions to the same lock range and that
lock range was accessed by both processors’ preceding LDx_L instructions,
exactly one of the stores succeeds.

— A processor executes a LDx_L/STx_C sequence and includes an MB between
the LDx_L to a particular address and the successful STx_C to a different
address (one that meets the constraints required for predictable behavior).
That instruction sequence establishes an access order under which a store
operation by another processor to that lock range occurs before the LDx_L or
after the STx_C.

• If the virtual and physical addresses for a LDx_L and STx_C sequence are
not within the same naturally aligned 16-byte sections of virtual and physical
memory, that sequence may always fail, or may succeed despite another
processor’s store to the lock range; hence, no useful program should do this.

• The following sequence should not be used:
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try_again: LDQ_L R1,x
<modify R1>
STQ_C R1,x
BEQ R1, try_again

.

.

.

That sequence penalizes performance when the STQ_C succeeds, because the
sequence contains a backward branch, which is predicted to be taken in the
Alpha architecture. In the case where the STQ_C succeeds and the branch
will actually fall through, that sequence incurs unnecessary delay due to a
mispredicted backward branch. Instead, a forward branch should be used to
handle the failure case, as shown in Section 5.5.2.

Software Note:

If the address specified by a STx_C instruction does not match the one given
in the preceding LDx_L instruction, an MB is required to guarantee ordering
between the two instructions.

Hardware/Software Implementation Note:

STQ_C is used in the first Alpha implementations to access the MailBox Pointer
Register (MBPR). In this special case, the effect of the STQ_C is well defined (that
is, not UNPREDICTABLE) even though the preceding LDx_L did not specify the
address of the MBPR. The effect of STx_C in this special case may vary from
implementation to implementation.

Implementation Notes:

A STx_C must propagate to the point of coherency, where it is guaranteed to
prevent any other store from changing the state of the lock bit, before its outcome
can be determined.

If an implementation could encounter a TB or cache miss on the data reference of
the STx_C in the sequence above (as might occur in some shared I- and D-stream
direct-mapped TBs/caches), it must be able to resolve the miss and complete the
store without always failing.
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4.2.6 Store Integer Register Data into Memory

Format:

STx Ra.rx,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va’ ← va XOR 0002 !STQ
big_endian_data: va’ ← va XOR 1002 !STL
big_endian_data: va’ ← va XOR 1102 !STW
big_endian_data: va’ ← va XOR 1112 !STB
little_endian_data: va’ ← va

ENDCASE

(va’) ← Rav !STQ
(va’)<31:00> ← Rav<31:0> !STL
(va’)<15:00> ← Rav<15:0> !STW
(va’)<07:00> ← Rav<07:0> !STB

Exceptions:

Access Violation
Alignment
Fault on Read
Translation Not Valid

Instruction mnemonics:

STB Store Byte from Register to Memory

STL Store Longword from Register to Memory

STQ Store Quadword from Register to Memory

STW Store Word from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian access, the indicated bits are inverted, and any
memory management fault is reported for va (not va’).
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The Ra operand is written to memory at this address. If the data is not naturally
aligned, an alignment exception is generated.

Notes:

• The word or byte that the STB or STW instruction stores to memory comes from
the low (rightmost) byte or word of Ra.

• Accesses have byte granularity.

• For big-endian access with STB or STW, the byte/word remains in the rightmost
part of Ra, but the va sent to memory has the indicated bits inverted. See
Operation section, above.

• No sparse address space mechanisms are allowed with the STB and STW
instructions.

Implementation Notes:

• Depending on an address space region’s caching policy, implementations may
read a (partial) cache block in order to do byte/word stores. This may only be
done in regions that have memory-like behavior.

• Implementations are expected to provide sufficient low-order address bits and
length-of-access information to devices on I/O buses. But, strictly speaking, this
is outside the scope of architecture.
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4.2.7 Store Unaligned Integer Register Data into Memory

Format:

STQ_U Ra.rq,disp.ab(Rb.ab) !Memory format

Operation:

va ← {{Rbv + SEXT(disp)} AND NOT 7}

(va)<63:0> ← Rav<63:0>

Exceptions:

Access Violation
Fault on Write
Translation Not Valid

Instruction mnemonics:

STQ_U Store Unaligned Quadword from Register to Memory

Qualifiers:

None

Description:

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement, then clearing the low order three bits. The Ra operand is written to
memory at this address.
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4.3 Control Instructions

Alpha provides integer conditional branch, unconditional branch, branch to
subroutine, and jump instructions. The PC used in these instructions is the updated
PC, as described in Section 3.1.1.

To allow implementations to achieve high performance, the Alpha architecture
includes explicit hints based on a branch-prediction model:

1. For many implementations of computed branches (JSR/RET/JMP), there is a
substantial performance gain in forming a good guess of the expected target I-
cache address before register Rb is accessed.

2. For many implementations, the first-level (or only) I-cache is no bigger than a
page (8 KB to 64 KB).

3. Correctly predicting subroutine returns is important for good performance. Some
implementations will therefore keep a small stack of predicted subroutine return
I-cache addresses.

The Alpha architecture provides three kinds of branch-prediction hints: likely target
address, return-address stack action, and conditional branch-taken.

For computed branches, the otherwise unused displacement field contains a function
code (JMP/JSR/RET/JSR_COROUTINE), and, for JSR and JMP, a field that
statically specifies the 16 low bits of the most likely target address. The PC-
relative calculation using these bits can be exactly the PC-relative calculation used
in unconditional branches. The low 16 bits are enough to specify an I-cache block
within the largest possible Alpha page and hence are expected to be enough for
branch-prediction logic to start an early I-cache access for the most likely target.

For all branches, hint or opcode bits are used to distinguish simple branches,
subroutine calls, subroutine returns, and coroutine links. These distinctions allow
branch-predict logic to maintain an accurate stack of predicted return addresses.

For conditional branches, the sign of the target displacement is used as a taken
/fall-through hint. The instructions are summarized in Table 4–3.
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Table 4–3: Control Instructions Summary

Mnemonic Operation

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

BR Unconditional Branch

BSR Branch to Subroutine

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return
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4.3.1 Conditional Branch

Format:

Bxx Ra.rq,disp.al !Branch format

Operation:

{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Rav, Condition_based_on_Opcode) THEN

PC ← va

Exceptions:

None

Instruction mnemonics:

BEQ Branch if Register Equal to Zero

BGE Branch if Register Greater Than or Equal to Zero

BGT Branch if Register Greater Than Zero

BLBC Branch if Register Low Bit Is Clear

BLBS Branch if Register Low Bit Is Set

BLE Branch if Register Less Than or Equal to Zero

BLT Branch if Register Less Than Zero

BNE Branch if Register Not Equal to Zero

Qualifiers:

None

Description:

Register Ra is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/– 1M instructions.
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The test is on the signed quadword integer interpretation of the register contents;
all 64 bits are tested.

Notes:

• Forward conditional branches (positive displacement) are predicted to fall
through. Backward conditional branches (negative displacement) are predicted
to be taken. Conditional branches do not affect a predicted return address stack.
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4.3.2 Unconditional Branch

Format:

BxR Ra.wq,disp.al !Branch format

Operation:

{update PC}
Ra ← PC
PC ← PC + {4*SEXT(disp)}

Exceptions:

None

Instruction mnemonics:

BR Unconditional Branch

BSR Branch to Subroutine

Qualifiers:

None

Description:

The PC of the following instruction (the updated PC) is written to register Ra, and
then the PC is loaded with the target address.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The unconditional branch instructions are PC-relative. The 21-bit signed
displacement gives a forward/backward branch distance of +/– 1M instructions.

PC-relative addressability can be established by:

BR Rx,L1
L1:

Notes:

• BR and BSR do identical operations. They only differ in hints to possible branch-
prediction logic. BSR is predicted as a subroutine call (pushes the return address
on a branch-prediction stack), whereas BR is predicted as a branch (no push).
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4.3.3 Jumps

Format:

mnemonic Ra.wq,(Rb.ab),hint !Memory format

Operation:

{update PC}
va ← Rbv AND {NOT 3}
Ra ← PC
PC ← va

Exceptions:

None

Instruction mnemonics:

JMP Jump

JSR Jump to Subroutine

RET Return from Subroutine

JSR_COROUTINE Jump to Subroutine Return

Qualifiers:

None

Description:

The PC of the instruction following the Jump instruction (the updated PC) is written
to register Ra, and then the PC is loaded with the target virtual address.

The new PC is supplied from register Rb. The low two bits of Rb are ignored. Ra
and Rb may specify the same register; the target calculation using the old value is
done before the new value is assigned.

All Jump instructions do identical operations. They only differ in hints to possible
branch-prediction logic. The displacement field of the instruction is used to pass this
information. The four different ‘‘opcodes’’ set different bit patterns in disp<15:14>,
and the hint operand sets disp<13:0>.
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These bits are intended to be used as shown in Table 4–4.

Table 4–4: Jump Instructions Branch Prediction

disp<15:14> Meaning
Predicted
Target<15:0>

Prediction
Stack Action

00 JMP PC + {4*disp<13:0>} –

01 JSR PC + {4*disp<13:0>} Push PC

10 RET Prediction stack Pop

11 JSR_COROUTINE Prediction stack Pop, push PC

The design in Table 4–4 allows specification of the low 16 bits of a likely longword
target address (enough bits to start a useful I-cache access early), and also allows
distinguishing call from return (and from the other two less frequent operations).

Note that the above information is used only as a hint; correct setting of these bits
can improve performance but is not needed for correct operation. See Appendix A
for more information on branch prediction.

An unconditional long jump can be performed by:

JMP R31,(Rb),hint

Coroutine linkage can be performed by specifying the same register in both the Ra
and Rb operands. When disp<15:14> equals ‘10’ (RET) or ‘11’ (JSR_COROUTINE)
(that is, the target address prediction, if any, would come from a predictor
implementation stack), then bits <13:0> are reserved for software and must be
ignored by all implementations. All encodings for bits <13:0> are used by Digital
software or Reserved to Digital, as follows:

Encoding Meaning

000016 Indicates non-procedure return

000116 Indicates procedure return

All other encodings are reserved to Digital.
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4.4 Integer Arithmetic Instructions

The integer arithmetic instructions perform add, subtract, multiply, signed and
unsigned compare, and bit count operations.

The integer instructions are summarized in Table 4–5.

Table 4–5: Integer Arithmetic Instructions Summary

Mnemonic Operation

ADD Add Quadword/Longword

S4ADD Scaled Add by 4

S8ADD Scaled Add by 8

CMPEQ Compare Signed Quadword Equal

CMPLT Compare Signed Quadword Less Than

CMPLE Compare Signed Quadword Less Than or Equal

CTLZ Count leading zero

CTPOP Count population

CTTZ Count trailing zero

CMPULT Compare Unsigned Quadword Less Than

CMPULE Compare Unsigned Quadword Less Than or Equal

MUL Multiply Quadword/Longword

UMULH Multiply Quadword Unsigned High

SUB Subtract Quadword/Longword

S4SUB Scaled Subtract by 4

S8SUB Scaled Subtract by 8

There is no integer divide instruction. Division by a constant can be done via
UMULH; division by a variable can be done via a subroutine. See Appendix A.
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4.4.1 Longword Add

Format:

ADDL Ra.rl,Rb.rl,Rc.wq !Operate format

ADDL Ra.rl,#b.ib,Rc.wq !Operate format

Operation:

Rc ← SEXT( (Rav + Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDL Add Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is added to register Rb or a literal, and the sign-extended 32-bit sum is
written to Rc.

The high order 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit sum. Overflow detection is based on the longword
sum Rav<31:0> + Rbv<31:0>.
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4.4.2 Scaled Longword Add

Format:

SxADDL Ra.rl,Rb.rq,Rc.wq !Operate format

SxADDL Ra.rl,#b.ib,Rc.wq !Operate format

Operation:

CASE
S4ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) + Rbv)<31:0>)
S8ADDL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) + Rbv)<31:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDL Scaled Add Longword by 4

S8ADDL Scaled Add Longword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDL) or 8 (for S8ADDL) and is added to register
Rb or a literal, and the sign-extended 32-bit sum is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit sum.
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4.4.3 Quadword Add

Format:

ADDQ Ra.rq,Rb.rq,Rc.wq !Operate format

ADDQ Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← Rav + Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

ADDQ Add Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is added to register Rb or a literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the
destination register.

The unsigned compare instructions can be used to generate carry. After adding two
values, if the sum is less unsigned than either one of the inputs, there was a carry
out of the most significant bit.
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4.4.4 Scaled Quadword Add

Format:

SxADDQ Ra.rq,Rb.rq,Rc.wq !Operate format

SxADDQ Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE
S4ADDQ: Rc ← LEFT_SHIFT(Rav,2) + Rbv
S8ADDQ: Rc ← LEFT_SHIFT(Rav,3) + Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4ADDQ Scaled Add Quadword by 4

S8ADDQ Scaled Add Quadword by 8

Qualifiers:

None

Description:

Register Ra is scaled by 4 (for S4ADDQ) or 8 (for S8ADDQ) and is added to register
Rb or a literal, and the 64-bit sum is written to Rc.

On overflow, the least significant 64 bits of the true result are written to the
destination register.
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4.4.5 Integer Signed Compare

Format:

CMPxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMPxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

IF Rav SIGNED_RELATION Rbv THEN
Rc ← 1

ELSE
Rc ← 0

Exceptions:

None

Instruction mnemonics:

CMPEQ Compare Signed Quadword Equal

CMPLE Compare Signed Quadword Less Than or Equal

CMPLT Compare Signed Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Rc.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.4.6 Integer Unsigned Compare

Format:

CMPUxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMPUxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

IF Rav UNSIGNED_RELATION Rbv THEN
Rc ← 1

ELSE
Rc ← 0

Exceptions:

None

Instruction mnemonics:

CMPULE Compare Unsigned Quadword Less Than or Equal

CMPULT Compare Unsigned Quadword Less Than

Qualifiers:

None

Description:

Register Ra is compared to Register Rb or a literal. If the specified relationship is
true, the value one is written to register Rc; otherwise, zero is written to Rc.
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4.4.7 Count Leading Zero

Format:

CTLZ Rb.rq,Rc.wq ! Operate format

Operation:

temp = 0
FOR i FROM 63 DOWN TO 0

IF { Rbv<i> EQ 1 } THEN BREAK
temp = temp + 1

END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

None

Instruction mnemonics:

CTLZ Count Leading Zero

Qualifiers:

None

Description:

The number of leading zeros in Rb, starting at the most significant bit position, is
written to Rc. Ra must be R31.
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4.4.8 Count Population

Format:

CTPOP Rb.rq,Rc.wq ! Operate format

Operation:

temp = 0
FOR i FROM 0 TO 63

IF { Rbv<i> EQ 1 } THEN temp = temp + 1
END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

None

Instruction mnemonics:

CTPOP Count Population

Qualifiers:

None

Description:

The number of ones in Rb is written to Rc. Ra must be R31.
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4.4.9 Count Trailing Zero

Format:

CTTZ Rb.rq,Rc.wq ! Operate format

Operation:

temp = 0
FOR i FROM 0 TO 63

IF { Rbv<i> EQ 1 } THEN BREAK
temp = temp + 1

END
Rc<6:0> ← temp<6:0>
Rc<63:7> ← 0

Exceptions:

None

Instruction mnemonics:

CTPOP Count Trailing Zero

Qualifiers:

None

Description:

The number of trailing zeros in Rb, starting at the least significant bit position, is
written to Rc. Ra must be R31.
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4.4.10 Longword Multiply

Format:

MULL Ra.rl,Rb.rl,Rc.wq !Operate format

MULL Ra.rl,#b.ib,Rc.wq !Operate format

Operation:

Rc ← SEXT ((Rav * Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

MULL Multiply Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal, and the sign-extended 32-bit
product is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension
of the truncated 32-bit product. Overflow detection is based on the longword
product Rav<31:0> * Rbv<31:0>. On overflow, the proper sign extension of the least
significant 32 bits of the true result are written to the destination register.

The MULQ instruction can be used to return the full 64-bit product.
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4.4.11 Quadword Multiply

Format:

MULQ Ra.rq,Rb.rq,Rc.wq !Operate format

MULQ Ra.Rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← Rav * Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

MULQ Multiply Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Ra is multiplied by register Rb or a literal, and the 64-bit product is written
to register Rc. Overflow detection is based on considering the operands and the result
as signed quantities. On overflow, the least significant 64 bits of the true result are
written to the destination register.

The UMULH instruction can be used to generate the upper 64 bits of the 128-bit
result when an overflow occurs.
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4.4.12 Unsigned Quadword Multiply High

Format:

UMULH Ra.rq,Rb.rq,Rc.wq !Operate format

UMULH Ra.Rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← {Rav *U Rbv}<127:64>

Exceptions:

None

Instruction mnemonics:

UMULH Unsigned Multiply Quadword High

Qualifiers:

None

Description:

Register Ra and Rb or a literal are multiplied as unsigned numbers to produce a
128-bit result. The high-order 64-bits are written to register Rc.

The UMULH instruction can be used to generate the upper 64 bits of a 128-bit result
as follows:

Ra and Rb are unsigned: result of UMULH

Ra and Rb are signed: (result of UMULH) − Ra<63>*Rb − Rb<63>*Ra

The MULQ instruction gives the low 64 bits of the result in either case.
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4.4.13 Longword Subtract

Format:

SUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SUBL Ra.rl,#b.ib,Rc.wq !Operate format

Operation:

Rc ← SEXT ((Rav - Rbv)<31:0>)

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBL Subtract Longword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra, and the sign-extended 32-bit
difference is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference. Overflow detection is based on the longword difference
Rav<31:0> − Rbv<31:0>.
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4.4.14 Scaled Longword Subtract

Format:

SxSUBL Ra.rl,Rb.rl,Rc.wq !Operate format

SxSUBL Ra.rl,#b.ib,Rc.wq !Operate format

Operation:

CASE
S4SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,2)) - Rbv)<31:0>)
S8SUBL: Rc ← SEXT (((LEFT_SHIFT(Rav,3)) - Rbv)<31:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBL Scaled Subtract Longword by 4

S8SUBL Scaled Subtract Longword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBL) or 8 (for S8SUBL), and the sign-extended 32-bit difference
is written to Rc.

The high 32 bits of Ra and Rb are ignored. Rc is a proper sign extension of the
truncated 32-bit difference.
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4.4.15 Quadword Subtract

Format:

SUBQ Ra.rq,Rb.rq,Rc.wq !Operate format

SUBQ Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← Rav - Rbv

Exceptions:

Integer Overflow

Instruction mnemonics:

SUBQ Subtract Quadword

Qualifiers:

Integer Overflow Enable (/V)

Description:

Register Rb or a literal is subtracted from register Ra, and the 64-bit difference is
written to register Rc. On overflow, the least significant 64 bits of the true result
are written to the destination register.

The unsigned compare instructions can be used to generate borrow. If the minuend
(Rav) is less unsigned than the subtrahend (Rbv), there will be a borrow.
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4.4.16 Scaled Quadword Subtract

Format:

SxSUBQ Ra.rq,Rb.rq,Rc.wq !Operate format

SxSUBQ Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE
S4SUBQ: Rc ← LEFT_SHIFT(Rav,2) - Rbv
S8SUBQ: Rc ← LEFT_SHIFT(Rav,3) - Rbv

ENDCASE

Exceptions:

None

Instruction mnemonics:

S4SUBQ Scaled Subtract Quadword by 4

S8SUBQ Scaled Subtract Quadword by 8

Qualifiers:

None

Description:

Register Rb or a literal is subtracted from the scaled value of register Ra, which is
scaled by 4 (for S4SUBQ) or 8 (for S8SUBQ), and the 64-bit difference is written to
Rc.
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4.5 Logical and Shift Instructions

The logical instructions perform quadword Boolean operations. The conditional move
integer instructions perform conditionals without a branch. The shift instructions
perform left and right logical shift and right arithmetic shift. These are summarized
in Table 4–6.

Table 4–6: Logical and Shift Instructions Summary

Mnemonic Operation

AND Logical Product

BIC Logical Product with Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

CMOVxx Conditional Move Integer

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical

Software Note:

There is no arithmetic left shift instruction. Where an arithmetic left shift would
be used, a logical shift will do. For multiplying by a small power of two in address
computations, logical left shift is acceptable.

Integer multiply should be used to perform an arithmetic left shift with overflow
checking.

Bit field extracts can be done with two logical shifts. Sign extension can be done
with left logical shift and a right arithmetic shift.
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4.5.1 Logical Functions

Format:

mnemonic Ra.rq,Rb.rq,Rc.wq !Operate format

mnemonic Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← Rav AND Rbv !AND
Rc ← Rav OR Rbv !BIS
Rc ← Rav XOR Rbv !XOR
Rc ← Rav AND {NOT Rbv} !BIC
Rc ← Rav OR {NOT Rbv} !ORNOT
Rc ← Rav XOR {NOT Rbv} !EQV

Exceptions:

None

Instruction mnemonics:

AND Logical Product

BIC Logical Product with Complement

BIS Logical Sum (OR)

EQV Logical Equivalence (XORNOT)

ORNOT Logical Sum with Complement

XOR Logical Difference

Qualifiers:

None

Description:

These instructions perform the designated Boolean function between register Ra and
register Rb or a literal. The result is written to register Rc.

The ‘‘NOT’’ function can be performed by doing an ORNOT with zero (Ra = R31).
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4.5.2 Conditional Move Integer

Format:

CMOVxx Ra.rq,Rb.rq,Rc.wq !Operate format

CMOVxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

IF TEST(Rav, Condition_based_on_Opcode) THEN

Rc ← Rbv

Exceptions:

None

Instruction mnemonics:

CMOVEQ CMOVE if Register Equal to Zero

CMOVGE CMOVE if Register Greater Than or Equal to Zero

CMOVGT CMOVE if Register Greater Than Zero

CMOVLBC CMOVE if Register Low Bit Clear

CMOVLBS CMOVE if Register Low Bit Set

CMOVLE CMOVE if Register Less Than or Equal to Zero

CMOVLT CMOVE if Register Less Than Zero

CMOVNE CMOVE if Register Not Equal to Zero

Qualifiers:

None

Description:

Register Ra is tested. If the specified relationship is true, the value Rbv is written
to register Rc.
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Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

CMOVEQ Ra,Rb,Rc

is exactly equivalent to:

BNE Ra,label
OR Rb,Rb,Rc

label: ...

For example, a branchless sequence for:

R1=MAX(R1,R2)

is:

CMPLT R1,R2,R3 ! R3=1 if R1<R2
CMOVNE R3,R2,R1 ! Move R2 to R1 if R1<R2
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4.5.3 Shift Logical

Format:

SxL Ra.rq,Rb.rq,Rc.wq !Operate format

SxL Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← LEFT_SHIFT(Rav, Rbv<5:0>) !SLL
Rc ← RIGHT_SHIFT(Rav, Rbv<5:0>) !SRL

Exceptions:

None

Instruction mnemonics:

SLL Shift Left Logical

SRL Shift Right Logical

Qualifiers:

None

Description:

Register Ra is shifted logically left or right 0 to 63 bits by the count in register Rb
or a literal. The result is written to register Rc. Zero bits are propagated into the
vacated bit positions.
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4.5.4 Shift Arithmetic

Format:

SRA Ra.rq,Rb.rq,Rc.wq !Operate format

SRA Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

Rc ← ARITH_RIGHT_SHIFT(Rav, Rbv<5:0>)

Exceptions:

None

Instruction mnemonics:

SRA Shift Right Arithmetic

Qualifiers:

None

Description:

Register Ra is right shifted arithmetically 0 to 63 bits by the count in register Rb or
a literal. The result is written to register Rc. The sign bit (Rav<63>) is propagated
into the vacated bit positions.
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4.6 Byte-Manipulation Instructions

Along with the LDBU and STB instructions for loading and storing byte datum
between a register and memory, Alpha provides the following instructions for
operating on byte operands within registers. These instructions allow full-width
memory accesses in the load/store instructions combined with powerful in-register
byte manipulation.

The instructions are summarized in Table 4–7.

Table 4–7: Byte-Manipulation Instructions Summary

Mnemonic Operation

CMPBGE Compare Byte

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High

EXTQH Extract Quadword High

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

INSQH Insert Quadword High

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High
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Table 4–7 (Cont.): Byte-Manipulation Instructions Summary

Mnemonic Operation

SEXTB Sign extend byte

SEXTW Sign extend word

ZAP Zero Bytes

ZAPNOT Zero Bytes Not
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4.6.1 Compare Byte

Format:

CMPBGE Ra.rq,Rb.rq,Rc.wq !Operate format

CMPBGE Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

FOR i FROM 0 TO 7

temp<8:0> ← {0 || Rav<i*8+7:i*8>} +
{0|| NOT Rbv<i*8+7:i*8>} + 1

Rc<i> ← temp<8>
END
Rc<63:8> ← 0

Exceptions:

None

Instruction mnemonics:

CMPBGE Compare Byte

Qualifiers:

None

Description:

CMPBGE does eight parallel unsigned byte comparisons between corresponding
bytes of Rav and Rbv, storing the eight results in the low eight bits of Rc. The
high 56 bits of Rc are set to zero. Bit 0 of Rc corresponds to byte 0, bit 1 of Rc
corresponds to byte 1, and so forth. A result bit is set in Rc if the corresponding byte
of Rav is greater than or equal to Rbv (unsigned).
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Notes:
The result of CMPBGE can be used as an input to ZAP and ZAPNOT.

To scan for a byte of zeros in a character string:

<initialize R1 to aligned QW address of string>
LOOP:

LDQ R2,0(R1) ; Pick up 8 bytes
LDA R1,8(R1) ; Increment string pointer
CMPBGE R31,R2,R3 ; If NO bytes of zero, R3<7:0>=0
BEQ R3,LOOP ; Loop if no terminator byte found
... ; At this point, R3 can be used to

; determine which byte terminated

To compare two character strings for greater/less:

<initialize R1 to aligned QW address of string1>
<initialize R2 to aligned QW address of string2>

LOOP:
LDQ R3,0(R1) ; Pick up 8 bytes of string1
LDA R1,8(R1) ; Increment string1 pointer
LDQ R4,0(R2) ; Pick up 8 bytes of string2
LDA R2,8(R2) ; Increment string2 pointer
XOR R3,R4,R5 ; Test for all equal bytes
BEQ R5,LOOP ; Loop if all equal
CMPBGE R31,R5,R5 ;
... ; At this point, R5 can be used to

; determine the first not-equal
; byte position.

To range-check a string of characters in R1 for ‘0’..‘9’:

LDQ R2,lit0s ; Pick up 8 bytes of the character
; BELOW ‘0’ ‘////////’

LDQ R3,lit9s ; Pick up 8 bytes of the character
; ABOVE ‘9’ ‘::::::::’

CMPBGE R2,R1,R4 ; Some R4<i>=1 if character is LT ‘0’
CMPBGE R1,R3,R5 ; Some R5<i>=1 if character is GT ‘9’
BNE R4,ERROR ; Branch if some char too low
BNE R5,ERROR ; Branch if some char too high
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4.6.2 Extract Byte

Format:

EXTxx Ra.rq,Rb.rq,Rc.wq !Operate format

EXTxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE
big_endian_data: Rbv’ ← Rbv XOR 1112
little_endian_data: Rbv’ ← Rbv

ENDCASE

CASE

EXTBL: byte_mask ← 0000 0001 2
EXTWx: byte_mask ← 0000 0011 2
EXTLx: byte_mask ← 0000 1111 2
EXTQx: byte_mask ← 1111 1111 2

ENDCASE

CASE

EXTxL:
byte_loc ← Rbv’<2:0>*8
temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask) )

EXTxH:
byte_loc ← 64 - Rbv’<2:0>*8
temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask) )

ENDCASE

Exceptions:

None

Instruction mnemonics:

EXTBL Extract Byte Low

EXTWL Extract Word Low

EXTLL Extract Longword Low

EXTQL Extract Quadword Low

EXTWH Extract Word High

EXTLH Extract Longword High
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EXTQH Extract Quadword High

Qualifiers:

None

Description:

EXTxL shifts register Ra right by 0 to 7 bytes, inserts zeros into vacated bit positions,
and then extracts 1, 2, 4, or 8 bytes into register Rc. EXTxH shifts register Ra left
by 0 to 7 bytes, inserts zeros into vacated bit positions, and then extracts 2, 4, or 8
bytes into register Rc. The number of bytes to shift is specified by Rbv’<2:0>. The
number of bytes to extract is specified in the function code. Remaining bytes are
filled with zeros.

Notes:
The comments in the examples below assume that the effective address (ea) of
X(R11) is such that (ea mod 8) = 5, the value of the aligned quadword containing
X(R11) is CBAx xxxx, and the value of the aligned quadword containing X+7(R11) is
yyyH GFED, and the datum is little-endian.

The examples below are the most general case unless otherwise noted; if more
information is known about the value or intended alignment of X, shorter sequences
can be used.

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
LDQ_U R2,X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTQL R1,R3,R1 ; R1 = 0000 0CBA
EXTQH R2,R3,R2 ; R2 = HGFE D000
OR R2,R1,R1 ; R1 = HGFE DCBA

The intended sequence for loading and zero-extending a longword from unaligned
address X is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
LDQ_U R2,X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTLL R1,R3,R1 ; R1 = 0000 0CBA
EXTLH R2,R3,R2 ; R2 = 0000 D000
OR R2,R1,R1 ; R1 = 0000 DCBA

The intended sequence for loading and sign-extending a longword from unaligned
address X is:
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LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
LDQ_U R2,X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTLL R1,R3,R1 ; R1 = 0000 0CBA
EXTLH R2,R3,R2 ; R2 = 0000 D000
OR R2,R1,R1 ; R1 = 0000 DCBA
ADDL R31,R1,R1 ; R1 = ssss DCBA

For software that is not designed to use the BWX extension1 , the intended sequence
for loading and zero-extending a word from unaligned address X is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
LDQ_U R2,X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTWL R1,R3,R1 ; R1 = 0000 00BA
EXTWH R2,R3,R2 ; R2 = 0000 0000
OR R2,R1,R1 ; R1 = 0000 00BA

For software that is not designed to use the BWX extension1, the intended sequence
for loading and sign-extending a word from unaligned address X is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
LDQ_U R2,X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDA R3,X+1+1(R11) ; R3<2:0> = 5+1+1 = 7
EXTQL R1,R3,R1 ; R1 = 0000 000y
EXTQH R2,R3,R2 ; R2 = BAxx xxx0
OR R2,R1,R1 ; R1 = BAxx xxxy
SRA R1,#48,R1 ; R1 = ssss ssBA

For software that is not designed to use the BWX extension1, the intended sequence
for loading and zero-extending a byte from address X is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
LDA R3,X(R11) ; R3<2:0> = (X mod 8) = 5
EXTBL R1,R3,R1 ; R1 = 0000 000A

For software that is not designed to use the BWX extension1, the intended sequence
for loading and sign-extending a byte from address X is:

LDQ_U R1, X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
LDA R3, X+1(R11) ; R3<2:0> = (X + 1) mod 8, i.e.,

; convert byte position within
; quadword to one-origin based

EXTQH R1, R3, R1 ; Places the desired byte into byte 7
; of R1.final by left shifting
; R1.initial by ( 8 - R3<2:0> ) byte
; positions

SRA R1, #56, R1 ; Arithmetic Shift of byte 7 down
; into byte 0,

Optimized examples:

Assume that a word fetch is needed from 10(R3), where R3 is intended to contain
a longword-aligned address. The optimized sequences below take advantage of the

1 See the Preface and Appendix D for information about the BWX extension.
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known constant offset, and the longword alignment (hence a single aligned longword
contains the entire word). The sequences generate a Data Alignment Fault if R3 does
not contain a longword-aligned address.

For software that is not designed to use the BWX extension1 , the intended sequence
for loading and zero-extending an aligned word from 10(R3) is:

LDL R1,8(R3) ; R1 = ssss BAxx
; Faults if R3 is not longword aligned

EXTWL R1,#2,R1 ; R1 = 0000 00BA

For software that is not designed to use the BWX extension1 , the intended sequence
for loading and sign-extending an aligned word from 10(R3) is:

LDL R1,8(R3) ; R1 = ssss BAxx
; Faults if R3 is not longword aligned

SRA R1,#16,R1 ; R1 = ssss ssBA

Big-endian examples:

For software that is not designed to use the BWX extension1 , the intended sequence
for loading and zero-extending a byte from address X is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = xxxx xAyy
LDA R3,X(R11) ; R3<2:0> = 5, shift will be 2 bytes
EXTBL R1,R3,R1 ; R1 = 0000 000A

The intended sequence for loading a quadword from unaligned address X(R11) is:

LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = xxxxxABC
LDQ_U R2,X+7(R11) ; Ignores va<2:0>, R2 = DEFGHyyy
LDA R3,X+7(R11) ; R3<2:0> = 4, shift will be 3 bytes
EXTQH R1,R3,R1 ; R1 = ABC0 0000
EXTQL R2,R3,R2 ; R2 = 000D EFGH
OR R1,R2,R1 ; R1 = ABCD EFGH

Note that the address in the LDA instruction for big-endian quadwords is X+7, for
longwords is X+3, and for words is X+1; for little-endian, these are all just X. Also
note that the EXTQH and EXTQL instructions are reversed with respect to the
little-endian sequence.

1 See the Preface and Appendix D for information about the BWX extension.
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4.6.3 Byte Insert

Format:

INSxx Ra.rq,Rb.rq,Rc.wq !Operate format

INSxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE
big_endian_data: Rbv’ ← Rbv XOR 1112
little_endian_data: Rbv’ ← Rbv

ENDCASE

CASE
INSBL: byte_mask ← 0000 0000 0000 0001 2
INSWx: byte_mask ← 0000 0000 0000 0011 2
INSLx: byte_mask ← 0000 0000 0000 1111 2
INSQx: byte_mask ← 0000 0000 1111 1111 2

ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv’<2:0>)

CASE

INSxL:
byte_loc ← Rbv’<2:0>*8
temp ← LEFT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask<7:0>))

INSxH:
byte_loc ← 64 - Rbv’<2:0>*8
temp ← RIGHT_SHIFT(Rav, byte_loc<5:0>)
Rc ← BYTE_ZAP(temp, NOT(byte_mask<15:8>))

ENDCASE

Exceptions:

None

Instruction mnemonics:

INSBL Insert Byte Low

INSWL Insert Word Low

INSLL Insert Longword Low

INSQL Insert Quadword Low

INSWH Insert Word High

INSLH Insert Longword High

4–56 Alpha Architecture Handbook



INSQH Insert Quadword High

Qualifiers:

None

Description:

INSxL and INSxH shift bytes from register Ra and insert them into a field of zeros,
storing the result in register Rc. Register Rbv’<2:0> selects the shift amount, and the
function code selects the maximum field width: 1, 2, 4, or 8 bytes. The instructions
can generate a byte, word, longword, or quadword datum that is spread across two
registers at an arbitrary byte alignment.
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4.6.4 Byte Mask

Format:

MSKxx Ra.rq,Rb.rq,Rc.wq !Operate format

MSKxx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE
big_endian_data: Rbv’ ← Rbv XOR 1112
little_endian_data: Rbv’ ← Rbv

ENDCASE

CASE
MSKBL: byte_mask ← 0000 0000 0000 0001 2
MSKWx: byte_mask ← 0000 0000 0000 0011 2
MSKLx: byte_mask ← 0000 0000 0000 1111 2
MSKQx: byte_mask ← 0000 0000 1111 1111 2

ENDCASE
byte_mask ← LEFT_SHIFT(byte_mask, Rbv’<2:0>)

CASE
MSKxL:

Rc ← BYTE_ZAP(Rav, byte_mask<7:0>)

MSKxH:
Rc ← BYTE_ZAP(Rav, byte_mask<15:8>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

MSKBL Mask Byte Low

MSKWL Mask Word Low

MSKLL Mask Longword Low

MSKQL Mask Quadword Low

MSKWH Mask Word High

MSKLH Mask Longword High

MSKQH Mask Quadword High
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Qualifiers:

None

Description:

MSKxL and MSKxH set selected bytes of register Ra to zero, storing the result
in register Rc. Register Rbv’<2:0> selects the starting position of the field of zero
bytes, and the function code selects the maximum width: 1, 2, 4, or 8 bytes. The
instructions generate a byte, word, longword, or quadword field of zeros that can
spread across two registers at an arbitrary byte alignment.

Notes:
The comments in the examples below assume that the effective address (ea) of X(R11)
is such that (ea mod 8) = 5, the value of the aligned quadword containing X(R11) is
CBAx xxxx, the value of the aligned quadword containing X+7(R11) is yyyH GFED,
the value to be stored from R5 is HGFE DCBA, and the datum is little-endian. Slight
modifications similer to those in Section 4.6.2 apply to big-endian data.

The examples below are the most general case; if more information is known about
the value or intended alignment of X, shorter sequences can be used.

The intended sequence for storing an unaligned quadword R5 at address X(R11) is:

LDA R6,X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R2,X+7(R11) ; Ignores va<2:0>, R2 = yyyH GFED
LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
INSQH R5,R6,R4 ; R4 = 000H GFED
INSQL R5,R6,R3 ; R3 = CBA0 0000
MSKQH R2,R6,R2 ; R2 = yyy0 0000
MSKQL R1,R6,R1 ; R1 = 000x xxxx
OR R2,R4,R2 ; R2 = yyyH GFED
OR R1,R3,R1 ; R1 = CBAx xxxx
STQ_U R2,X+7(R11) ; Must store high then low for
STQ_U R1,X(R11) ; degenerate case of aligned QW

The intended sequence for storing an unaligned longword R5 at X is:

LDA R6,X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R2,X+3(R11) ; Ignores va<2:0>, R2 = yyyy yyyD
LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = CBAx xxxx
INSLH R5,R6,R4 ; R4 = 0000 000D
INSLL R5,R6,R3 ; R3 = CBA0 0000
MSKLH R2,R6,R2 ; R2 = yyyy yyy0
MSKLL R1,R6,R1 ; R1 = 000x xxxx
OR R2,R4,R2 ; R2 = yyyy yyyD
OR R1,R3,R1 ; R1 = CBAx xxxx
STQ_U R2,X+3(R11) ; Must store high then low for
STQ_U R1,X(R11) ; degenerate case of aligned
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For software that is not designed to use the BWX extension1 , the intended sequence
for storing an unaligned word R5 at X is:

LDA R6,X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R2,X+1(R11) ; Ignores va<2:0>, R2 = yBAx xxxx
LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = yBAx xxxx
INSWH R5,R6,R4 ; R4 = 0000 0000
INSWL R5,R6,R3 ; R3 = 0BA0 0000
MSKWH R2,R6,R2 ; R2 = yBAx xxxx
MSKWL R1,R6,R1 ; R1 = y00x xxxx
OR R2,R4,R2 ; R2 = yBAx xxxx
OR R1,R3,R1 ; R1 = yBAx xxxx
STQ_U R2,X+1(R11) ; Must store high then low for
STQ_U R1,X(R11) ; degenerate case of aligned

For software that is not designed to use the BWX extension1, the intended sequence
for storing a byte R5 at X is:

LDA R6,X(R11) ; R6<2:0> = (X mod 8) = 5
LDQ_U R1,X(R11) ; Ignores va<2:0>, R1 = yyAx xxxx
INSBL R5,R6,R3 ; R3 = 00A0 0000
MSKBL R1,R6,R1 ; R1 = yy0x xxxx
OR R1,R3,R1 ; R1 = yyAx xxxx
STQ_U R1,X(R11) ;

1 See the Preface and Appendix D for information about the BWX extension.
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4.6.5 Sign Extend

Format:

SEXTx Rb.rq,Rc.wq !Operate format

SEXTx #b.ib,Rc.wq !Operate format

Operation:

CASE
SEXTB: Rc ← SEXT(Rbv<07:0>)
SEXTW: Rc ← SEXT(Rbv<15:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

SEXTB Sign Extend Byte

SEXTW Sign Extend Word

Qualifiers:

None

Description:

The byte or word in register Rb is sign-extended to 64 bits and written to register
Rc. Ra must be R31.
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4.6.6 Zero Bytes

Format:

ZAPx Ra.rq,Rb.rq,Rc.wq !Operate format

ZAPx Ra.rq,#b.ib,Rc.wq !Operate format

Operation:

CASE

ZAP:
Rc ← BYTE_ZAP(Rav, Rbv<7:0>)

ZAPNOT:
Rc ← BYTE_ZAP(Rav, NOT Rbv<7:0>)

ENDCASE

Exceptions:

None

Instruction mnemonics:

ZAP Zero Bytes

ZAPNOT Zero Bytes Not

Qualifiers:

None

Description:

ZAP and ZAPNOT set selected bytes of register Ra to zero, and store the result in
register Rc. Register Rb<7:0> selects the bytes to be zeroed; bit 0 of Rbv corresponds
to byte 0, bit 1 of Rbv corresponds to byte 1, and so on. A result byte is set to zero
if the corresponding bit of Rbv is a one for ZAP and a zero for ZAPNOT.

4–62 Alpha Architecture Handbook



4.7 Floating-Point Instructions

Alpha provides instructions for operating on floating-point operands in each of four
data formats:

• F_floating (VAX single)

• G_floating (VAX double, 11-bit exponent)

• S_floating (IEEE single)

• T_floating (IEEE double, 11-bit exponent)

Data conversion instructions are also provided to convert operands between floating-
point and quadword integer formats, between double and single floating, and
between quadword and longword integers.

Note:

D_floating is a partially supported datatype; no D_floating arithmetic operations
are provided in the architecture. For backward compatibility, exact D_
floating arithmetic may be provided via software emulation. D_floating ‘‘format
compatibility,’’ in which binary files of D_floating numbers may be processed but
without the last 3 bits of fraction precision, can be obtained via conversions to
G_floating, G arithmetic operations, then conversion back to D_floating.

The choice of data formats is encoded in each instruction. Each instruction also
encodes the choice of rounding mode and the choice of trapping mode.

All floating-point operate instructions (that is, not including loads or stores) that
yield an F_ or G_floating zero result must materialize a true zero.

4.7.1 Floating-Point Single-Precision Operations

Single-precision values (F_floating or S_floating) are stored in the floating-point
registers in canonical form, as subsets of double-precision values, with 11-bit
exponents restricted to the corresponding single-precision range, and with the 29
low-order fraction bits restricted to be all zero.

Single-precision operations applied to canonical single-precision values give single-
precision results. Single-precision operations applied to non-canonical operands give
UNPREDICTABLE results.

Longword integer values in floating-point registers are stored in bits <63:62,58:29>,
with bits <61:59> ignored and zeros in bits <28:0>.

4.7.2 Floating Subsets and Floating Faults

All floating-point operations may take floating disabled faults. Any subsetted
floating-point instruction may take an Illegal Instruction Trap. These faults are
not explicitly listed in the description of each instruction.

All floating-point loads and stores may take memory management faults (access
control violation, translation not valid, fault on read/write, data alignment).
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The floating-point enable (FEN) internal processor register (IPR) allows system
software to restrict access to the floating-point registers.

If a floating-point instruction is implemented and FEN = 0, attempts to execute the
instruction cause a floating disabled fault.

If a floating-point instruction is not implemented, attempts to execute the instruction
cause an Illegal Instruction Trap. This rule holds regardless of the value of FEN.

An Alpha implementation may provide both VAX and IEEE floating-point operations,
either, or none.

Some floating-point instructions are common to the VAX and IEEE subsets, some
are VAX only, and some are IEEE only. These are designated in the descriptions
that follow. If either subset is implemented, all the common instructions must be
implemented.

An implementation that includes IEEE floating-point may subset the ability
to perform rounding to plus infinity and minus infinity. If not implemented,
instructions requesting these rounding modes take Illegal Instruction Trap.

An implementation that includes IEEE floating-point may implement any subset
of the Trap Disable flags. If a flag is not implemented, it reads as zero and the
corresponding trap occurs as usual.

4.7.3 Definitions

The following definitions apply to Alpha floating-point support.

Alpha finite number
A floating-point number with a definite, in-range value. Specifically, all numbers in
the inclusive ranges –MAX through –MIN, zero, and +MIN through +MAX, where
MAX is the largest non-infinite representable floating-point number and MIN is the
smallest non-zero representable normalized floating-point number.

For VAX floating-point, finites do not include reserved operands or dirty zeros (this
differs from the usual VAX interpretation of dirty zeros as finite). For IEEE floating-
point, finites do not include infinites, NaNs, or denormals, but do include minus zero.

denormal
An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

dirty zero
A VAX floating-point bit pattern that represents a zero value, but not in true-zero
form.

infinity
An IEEE floating-point bit pattern that represents plus or minus infinity.
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LSB
The least significant bit. For a positive representable number A whose fraction is
not all ones, A + 1 LSB is the next larger representable number, and A + 1/2 LSB
is exactly halfway between A and the next larger representable number.

non-finite number
An IEEE infinity, NaN, denormal number, or a VAX dirty zero or reserved operand.

Not-a-Number
An IEEE floating-point bit pattern that represents something other than a number.
This comes in two forms: signaling NaNs (for Alpha , those with an initial fraction
bit of 0) and quiet NaNs (for Alpha , those with initial fraction bit of 1).

representable result
A real number that can be represented exactly as a VAX or IEEE floating-point
number, with finite precision and bounded exponent range.

reserved operand
A VAX floating-point bit pattern that represents an illegal value.

trap shadow
The set of instructions potentially executed after an instruction that signals an
arithmetic trap but before the trap is actually taken.

true result
The mathematically correct result of an operation, assuming that the input operand
values are exact. The true result is typically rounded to the nearest representable
result.

true zero
The value +0, represented as exactly 64 zeros in a floating-point register.

4.7.4 Encodings

Floating-point numbers are represented with three fields: sign, exponent, and
fraction. The sign is 1 bit; the exponent is 8, 11, or 15 bits; and the fraction is
23, 52, 55, or 112 bits. Some encodings represent special values:

Sign Exponent Fraction
Vax
Meaning

VAX
Finite

IEEE
Meaning

IEEE
Finite

x All-1’s Non-zero Finite Yes +/–NaN No

x All-1’s 0 Finite Yes +/–Infinity No

0 0 Non-zero Dirty zero No +Denormal No
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Sign Exponent Fraction
Vax
Meaning

VAX
Finite

IEEE
Meaning

IEEE
Finite

1 0 Non-zero Resv. operand No –Denormal No

0 0 0 True zero Yes +0 Yes

1 0 0 Resv. operand No –0 Yes

x Other x Finite Yes finite Yes

The values of MIN and MAX for each of the five floating-point data formats are:

Data
Format MIN MAX

F_floating 2**–127 * 0.5
(0.293873588e–38)

2**127 * (1.0 − 2**–24)
(1.7014117e38)

G_floating 2**–1023 * 0.5
(0.5562684646268004e–308)

2**1023 * (1.0 − 2**–53)
(0.89884656743115785407e308)

S_floating 2**–126 * 1.0
(1.17549435e–38)

2**127 * (2.0 − 2**–23)
(3.40282347e38)

T_floating 2**–1022 * 1.0
(2.2250738585072013e–308)

2**1023 * (2.0 − 2**–52)
(1.7976931348623158e308)

X_floating 2**–16382 * 1.0
(3.36210314311209350626267781732175260e–4932)

2**16383 * (2.0 − 2**–112)
(1.18973149535723176508575932662800702e4932)

4.7.5 Floating-Point Rounding Modes

All rounding modes map a true result that is exactly representable to that
representable value.

VAX Rounding Modes
For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction: normal (biased) rounding and chopped rounding.

Normal VAX rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the larger in absolute
value (sometimes called biased rounding away from zero); maps true results
≥ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN − 1/2 LSB
in magnitude to an underflow.

Chopped VAX rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ≥ MAX + 1 LSB in magnitude
to an overflow; maps true results < MIN in magnitude to an underflow.

IEEE Rounding Modes
For IEEE floating-point operations, four rounding modes are provided: normal
rounding (unbiased round to nearest), rounding toward minus infinity, round toward
zero, and rounding toward plus infinity. The first three can be specified in the
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instruction. Rounding toward plus infinity can be obtained by setting the Floating-
point Control Register (FPCR) to select it and then specifying dynamic rounding
mode in the instruction (See Section 4.7.7). Alpha IEEE arithmetic does rounding
before detecting overflow/underflow.

Normal IEEE rounding maps the true result to the nearest of two representable
results, with true results exactly halfway between mapped to the one whose
fraction ends in 0 (sometimes called unbiased rounding to even); maps true results
≥ MAX + 1/2 LSB in magnitude to an overflow; maps true results < MIN − 1/2 LSB
in magnitude to an underflow.

Plus infinity IEEE rounding maps the true result to the larger of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results ≤ +MIN − 1 LSB to an underflow; and maps negative true
results > –MIN to an underflow.

Minus infinity IEEE rounding maps the true result to the smaller of two surrounding
representable results; maps true results > MAX in magnitude to an overflow; maps
positive true results < +MIN to an underflow; and maps negative true results
≥ –MIN + 1 LSB to an underflow.

Chopped IEEE rounding maps the true result to the smaller in magnitude of two
surrounding representable results; maps true results ≥ MAX + 1 LSB in magnitude
to an overflow; and maps non-zero true results < MIN in magnitude to an underflow.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR register
and is described in more detail in Section 4.7.7.

The following tables summarize the floating-point rounding modes:

VAX Rounding Mode Instruction Notation

Normal rounding (No modifier)

Chopped /C

IEEE Rounding Mode Instruction Notation

Normal rounding (No modifier)

Dynamic rounding /D

Plus infinity /D and ensure that FPCR<DYN> = ‘11’

Minus infinity /M

Chopped /C
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4.7.6 Floating-Point Trapping Modes

There are six exceptions that can be generated by floating-point operate instructions,
all signaled by an arithmetic exception trap. These exceptions are:

• Invalid operation

• Division by zero

• Overflow

• Underflow, may be disabled

• Inexact result, may be disabled

• Integer overflow (conversion to integer only), may be disabled

For more detail on the information passed to an arithmetic exception handler, see
Part II, Operating Systems.

VAX Trapping Modes
For VAX floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow.

For VAX conversions from floating-point to integer, four trapping modes are provided.
They specify software completion and whether traps are enabled for integer overflow.

IEEE Trapping Modes
For IEEE floating-point operations other than CVTxQ, four trapping modes are
provided. They specify software completion and whether traps are enabled for
underflow and inexact results.

For IEEE conversions from floating-point to integer, four trapping modes are
provided. They specify software completion, and whether traps are enabled for
integer overflow and inexact results.

The modes and instruction notation are:

VAX Trap Mode Instruction Notation

Imprecise, underflow disabled (No modifier)

Imprecise, underflow enabled /U

Software, underflow disabled /S

Software, underflow enabled /SU

VAX Convert-to-Integer Trap Mode Instruction Notation

Imprecise, integer overflow disabled (No modifier)
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VAX Convert-to-Integer Trap Mode Instruction Notation

Imprecise, integer overflow enabled /V

Software, integer overflow disabled /S

Software, integer overflow enabled /SV

IEEE Trap Mode Instruction Notation

Imprecise, unfl disabled, inexact disabled (No modifier)

Imprecise, unfl enabled, inexact disabled /U

Software, unfl enabled, inexact disabled /SU

Software, unfl enabled, inexact enabled /SUI

IEEE Convert-to-Integer Trap Mode Instruction Notation

Imprecise, int.ovfl disabled, inexact disabled (No modifier)

Imprecise, int.ovfl enabled, inexact disabled /V

Software, int.ovfl enabled, inexact disabled /SV

Software, int.ovfl enabled, inexact enabled /SVI

4.7.6.1 Imprecise /Software Completion Trap Modes

Floating-point instructions may be pipelined, and all hardware exceptions are
imprecise traps:

• For the floating overflow, divide by zero, and invalid operation exceptions, the
trapping instruction may write an UNPREDICTABLE result value.

• The trap PC is an arbitrary number of instructions past the one triggering
the trap. The trigger instruction plus all intervening executed instructions are
collectively referred to as the trap shadow of the trigger instruction.

• The extent of the trap shadow is bounded only by an EXCB or TRAPB instruction
(or the implicit TRAPB within a CALL_PAL instruction).

• Input operand values may have been overwritten in the trap shadow.

• Result values may have been overwritten in the trap shadow.

• An UNPREDICTABLE result value may have been used as an input operand in
the trap shadow.

• Additional traps may occur in the trap shadow.

• In general, it is not feasible to fix up the result value or to continue from the
trap.
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This behavior is ideal for operations on finite operands that give finite results. For
programs that deliberately operate outside the overflow/underflow range, or use
IEEE NaNs, software assistance is required to complete floating-point operations
correctly. This assistance can be provided by a software arithmetic trap handler,
plus constraints on the instructions surrounding the trap.

For a trap handler to complete non-finite arithmetic, the conditions described below
must hold:

• Conditions 1–3 allow a software trap handler to emulate the trigger instruction
with its original input operand values and then to reexecute the rest of the trap
shadow.

• Condition 4 prevents memory accesses at UNPREDICTABLE addresses.

• Conditions 5–7 make it possible for a software trap handler to find the trigger
instruction via a linear scan backwards from the trap PC.

Conditions

1. If the value in a register or memory location is used as input to some instruction
in the trap shadow, then either the following condition a or condition b must be
met.

a. The register or memory location is not modified by the instruction that uses
it or by any subsequent instruction in the trap shadow.

b. The value was produced by an earlier instruction in the trap shadow,
and no trapping instruction appears between the producing and consuming
instructions.

Condition a ensures that if the instruction is reexecuted, its inputs are
unchanged. If condition a cannot be ensured, then condition b requires that the
input values be created and hence valid when reexecution starts at the trigger
instruction.

2. If a conditional move (CMOVxx or FCMOVxx) instruction appears in the trap
shadow, then the Ra/Fa and Rb/Fb operands of the instruction must satisfy
condition 1 above and either the following condition a or condition b must be
met.

a. The Ra/Fa operand of the conditional move does not depend on any value
produced earlier in the trap shadow by an instruction that might trap.

b. The Rc/Fc operand of the instruction was produced by an earlier instruction in
the trap shadow, and no trapping instruction appears between the producing
instruction and the conditional move.

Condition a ensures that the conditional move instruction will be reexecuted with
the same condition in Ra/Fa. If condition a cannot be ensured, then condition
b requires that the value that might be overlaid is valid when the conditional
move is reexecuted.
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3. If a value is produced in the trap shadow as the result of a floating-point
instruction that might trap, that value may not contribute to any value that
is subsequently used in the trap shadow as the input to an integer instruction
that has the /V modifier.

4. Within the trap shadow, the computation of the base register for a memory load
or store instruction may not involve using the result of an instruction that might
generate an UNPREDICTABLE result.

5. Within the trap shadow, if a register is used as the destination register of an
instruction that might cause a floating-point exception (and thus set a bit in
the software implementation’s exception summary), it may not be used as the
destination of any other instruction in the trap shadow.

6. The trap shadow may not include any branch instructions.

7. Each floating-point instruction to be completed must be so marked, by specifying
the /S software completion modifier. The /S modifier must not be used on any
floating-point instruction that is not in a trap shadow that meets these conditions.

Note:

The /S modifier does not affect instruction operation or trap behavior; it is an
informational bit passed to a software trap handler. It allows a trap handler
to test easily whether an instruction is intended to be completed. (The /S
bits of instructions signaling traps are carried into a software implementation’s
exception summary. The handler may then assume that the other conditions are
met without examining the code stream.

If a software trap handler is provided, it must handle the completion of all floating-
point operations marked /S that follow the rules above. In effect, one TRAPB
instruction per basic block can be used.

4.7.6.2 Invalid Operation (INV) Arithmetic Trap

An invalid operation arithmetic trap is signaled if an operand is invalid for the
operation to be performed. Invalid operations are:

• Any operation on a signaling NaN.

• Addition of unlike-signed infinities or subtraction of like-signed infinities, such
as (+infinity + –infinity) or (+infinity − +infinity).

• Multiplication of 0∗infinity.

• Division of 0/0 or infinity/infinity.

• Conversion of an infinity or NaN to an integer.

• CMPTLE or CMPTLT when either operand is a NaN.

An implementation may also choose to signal an invalid operation when it encounters
an operand that is non-finite. However, CMPTxy does not trap on plus or minus
infinity.
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The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE
value is stored in the result register.

IEEE-compliant system software must also supply an invalid operation indication to
the user for SQRT of a negative non-zero number, for x REM 0, and for conversions
to integer that take an integer overflow trap. If an implementation does not support
the division by zero disable bit (DZED), it may respond to the division of 0/0 by
delivering a division by zero trap to the operating system, which IEEE compliant
software must change to an invalid operation trap for the user.

4.7.6.3 Division by Zero (DZE) Arithmetic Trap

A division by zero arithmetic trap is taken if the numerator does not cause an invalid
operation trap and the denominator is zero.

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE
value is stored in the result register.

If an implementation does not support the division by zero disable bit (DZED), it may
respond to the division of 0/0 by delivering a division by zero trap to the operating
system, which IEEE compliant software must change to an invalid operation trap
for the user.

4.7.6.4 Overflow (OVF) Arithmetic Trap

An overflow arithmetic trap is signaled if the rounded result exceeds in magnitude
the largest finite number of the destination format.

The instruction cannot disable the trap. If the trap occurs, an UNPREDICTABLE
value is stored in the result register.

4.7.6.5 Underflow (UNF) Arithmetic Trap

An underflow occurs if the rounded result is smaller in magnitude than the smallest
finite number of the destination format.

If an underflow occurs, a true zero (64 bits of zero) is always stored in the result
register, even if the proper IEEE result would have been –0 (underflow below the
negative denormal range).

If an underflow occurs and underflow traps are enabled by the instruction, an
underflow arithmetic trap is signaled.

4.7.6.6 Inexact Result (INE) Arithmetic Trap

An inexact result occurs if the infinitely precise result differs from the rounded
result.

If an inexact result occurs, the normal rounded result is still stored in the result
register.

If an inexact result occurs and inexact result traps are enabled by the instruction,
an inexact result arithmetic trap is signaled.
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4.7.6.7 Integer Overflow (IOV) Arithmetic Trap

In conversions from floating to quadword integer, an integer overflow occurs if the
rounded result is outside the range –2**63..2**63–1. In conversions from quadword
integer to longword integer, an integer overflow occurs if the result is outside the
range –2**31..2**31–1.

If an integer overflow occurs in CVTxQ or CVTQL, the true result truncated to the
low-order 64 or 32 bits respectively is stored in the result register.

If an integer overflow occurs and integer overflow traps are enabled by the
instruction, an integer overflow arithmetic trap is signaled.

4.7.6.8 Floating-Point Trap Disable Bits

In the case of IEEE software completion trap modes, any of the traps described
in Sections 4.7.6.2 through 4.7.6.7 may be disabled by setting the corresponding
trap disable bit in the FPCR. The trap disable bits only affect the corresponding
IEEE trap modes when the instruction is coupled with the /S (software completion)
qualifier. The trap disable bits do not affect any of the VAX trap modes.

If a trap disable bit is set and the corresponding trap condition occurs, the hardware
implementation sets the result of the operation to the nontrapping result value as
specified in the IEEE standard and Section 4.7.10 and modified by the underflow to
zero (UNDZ) bit. If the implementation is unable to calculate the required result, it
ignores the trap disable bit and signals a trap as usual. (When an implementation
supports both the underflow disable bit and the underflow to zero bit, and both bits
are set in the FPCR, the implementation sets the result of an underflow operation
to an appropriately signed true zero value.)

Note that a hardware implementation may choose to support any subset of the trap
disable bits, including the empty subset.

4.7.7 FPCR Register and Dynamic Rounding Mode

When an IEEE floating-point operate instruction specifies dynamic mode (/D) in its
function field (function field bits <12:11> = 11), the rounding mode to be used for
the instruction is derived from the FPCR register. The layout of the rounding mode
bits and their assignments matches exactly the format used in the 11-bit function
field of the floating-point operate instructions. The function field is described in
Section 4.7.9.

In addition, the FPCR gives a summary of each exception type for the exception
conditions detected by all IEEE floating-point operates thus far, as well as an
overall summary bit that indicates whether any of these exception conditions has
been detected. The individual exception bits match exactly in purpose and order
the exceptions bits found in the exception summary quadword that is pushed for
arithmetic traps. However, for each instruction, these exceptions bits are set
independent of the trapping mode specified for the instruction. Therefore, even
though trapping may be disabled for a certain exceptional condition, the fact that
the exceptional condition was encountered by an instruction will still be recorded in
the FPCR.
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Floating-point operates that belong to the IEEE subset and CVTQL, which belongs
to both VAX and IEEE subsets, appropriately set the FPCR exception bits. It is
UNPREDICTABLE whether floating-point operates that belong only to the VAX
floating-point subset set the FPCR exception bits.

Alpha floating-point hardware only transitions these exception bits from zero to one.
Once set to one, these exception bits are only cleared when software writes zero into
these bits by writing a new value into the FPCR.

The five trap disable bits may be subsetted in the hardware implementation. Any
unimplemented bits are read as zero and ignored when set; the hardware behaves
as if unimplemented bits are zero. In addition:

• If the UNFD bit is not implemented, the hardware may not implement the UNDZ
bit.

• If the DZED bit is implemented, division of 0/0 must be treated as an invalid
operation instead of a division by zero.

The format of the FPCR is shown in Figure 4–1 and described in Table 4–8.

Figure 4–1: Floating-Point Control Register (FPCR) Format
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Table 4–8: Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

63 Summary Bit (SUM). Records bitwise OR of FPCR exception bits. Equal to
FPCR<57 | 56 | 55 | 54 | 53 | 52>.

62 Inexact Disable (INED). Suppress INE trap and place correct IEEE nontrapping
result in the destination register.

61 Underflow Disable (UNFD). Suppress UNF trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result. The correct result value is
determined according to the value of the UNDZ bit.

60 Underflow to Zero (UNDZ). When set together with UNFD, on underflow the
hardware places a true zero (64 bits of zero) in the destination register rather
than the denormal number specified by the IEEE standard.
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Table 4–8 (Cont.): Floating-Point Control Register (FPCR) Bit Descriptions

Bit Description (Meaning When Set)

59–58 Dynamic Rounding Mode (DYN). Indicates the rounding mode to be used by
an IEEE floating-point operate instruction when the instruction’s function field
specifies dynamic mode (/D). Assignments are:

DYN IEEE Rounding Mode Selected

00 Chopped rounding mode

01 Minus infinity

10 Normal rounding

11 Plus infinity

57 Integer Overflow (IOV). An integer arithmetic operation or a conversion from
floating to integer overflowed the destination precision.

56 Inexact Result (INE). A floating arithmetic or conversion operation gave a result
that differed from the mathematically exact result.

55 Underflow (UNF). A floating arithmetic or conversion operation underflowed the
destination exponent.

54 Overflow (OVF). A floating arithmetic or conversion operation overflowed the
destination exponent.

53 Division by Zero (DZE). An attempt was made to perform a floating divide
operation with a divisor of zero.

52 Invalid Operation (INV). An attempt was made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values were
illegal.

51 Overflow Disable (OVFD). Suppress OVF trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result.

50 Division by Zero Disable (DZED). Suppress DZE trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result.

49 Invalid Operation Disable (INVD). Suppress INV trap and place correct IEEE
nontrapping result in the destination register if the implementation is capable
of producing correct IEEE nontrapping result.

48–0 Reserved. Read As Zero; Ignored when written.

FPCR is read from and written to the floating-point registers by the MT_FPCR and
MF_FPCR instructions respectively, which are described in Section 4.7.7.1.

FPCR and the instructions to access it are required for an implementation that
supports floating-point (see Section 4.7.7). On implementations that do not support
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floating-point, the instructions that access FPCR (MF_FPCR and MT_FPCR) take
an Illegal Instruction Trap.

Software Note:

Support for FPCR is required on a system that supports the OpenVMS Alpha
operating system even if that system does not support floating-point.

4.7.7.1 Accessing the FPCR

Because Alpha floating-point hardware can overlap the execution of a number of
floating-point instructions, accessing the FPCR must be synchronized with other
floating-point instructions. An EXCB instruction must be issued both prior to
and after accessing the FPCR to ensure that the FPCR access is synchronized
with the execution of previous and subsequent floating-point instructions; otherwise
synchronization is not ensured.

Issuing an EXCB followed by an MT_FPCR followed by another EXCB ensures that
only floating-point instructions issued after the second EXCB are affected by and
affect the new value of the FPCR. Issuing an EXCB followed by an MF_FPCR
followed by another EXCB ensures that the value read from the FPCR only records
the exception information for floating-point instructions issued prior to the first
EXCB.

Consider the following example:

ADDT/D
EXCB ;1
MT_FPCR F1,F1,F1
EXCB ;2
SUBT/D

Without the first EXCB, it is possible in an implementation for the ADDT/D to
execute in parallel with the MT_FPCR. Thus, it would be UNPREDICTABLE
whether the ADDT/D was affected by the new rounding mode set by the MT_
FPCR and whether fields cleared by the MT_FPCR in the exception summary were
subsequently set by the ADDT/D.

Without the second EXCB, it is possible in an implementation for the MT_FPCR to
execute in parallel with the SUBT/D. Thus, it would be UNPREDICTABLE whether
the SUBT/D was affected by the new rounding mode set by the MT_FPCR and
whether fields cleared by the MT_FPCR in the exception summary field of FPCR
were previously set by the SUBT/D.

Specifically, code should issue an EXCB before and after it accesses the FPCR if that
code needs to see valid values in FPCR bits <63> and <57:52>. An EXCB should
be issued before attempting to write the FPCR if the code expects changes to bits
<59:52> not to have dependencies with prior instructions. An EXCB should be issued
after attempting to write the FPCR if the code expects subsequent instructions to
have dependencies with changes to bits <59:52>.
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4.7.7.2 Default Values of the FPCR

Processor initialization leaves the value of FPCR UNPREDICTABLE.

Software Note:

Digital software should initialize FPCR<DYN> = 10 during program activation.
Using this default, a program can be coded to use only dynamic rounding without
the need to explicitly set the rounding mode to normal rounding in its start-up
code.

Program activation normally clears all other fields in the FPCR. However, this
behavior may depend on the operating system.

4.7.7.3 Saving and Restoring the FPCR

The FPCR must be saved and restored across context switches so that the FPCR
value of one process does not affect the rounding behavior and exception summary
of another process.

The dynamic rounding mode put into effect by the programmer (or initialized by
image activation) is valid for the entirety of the program and remains in effect until
subsequently changed by the programmer or until image run-down occurs.

Software Notes:

The following software notes apply to saving and restoring the FPCR:

1. The IEEE standard precludes saving and restoring the FPCR across
subroutine calls.

2. The IEEE standard requires that an implementation provide status flags
that are set whenever the corresponding conditions occur and are reset
only at the user’s request. The exception bits in the FPCR do not satisfy
that requirement, because they can be spuriously set by instructions in a
trap shadow that should not have been executed had the trap been taken
synchronously.

The IEEE status flags can be provided by software (as software status bits)
as follows:

Trap interface software (usually the operating system) keeps a set of
software status bits and a mask of the traps that the user wants to
receive. Code is generated with the /SUI modifiers. For a particular
exception, the software clears the corresponding trap disable bit if either
the corresponding software status bit is 0 or if the user wants to receive
such traps. If a trap occurs, the software locates the offending instruction
in the trap shadow, simulates it and sets any of the software status bits
that are appropriate. Then, the software either delivers the trap to the
user program or disables further delivery of such traps. The user program
must interface to this trap interface software to set or clear any of the
software status bits or to enable or disable floating-point traps.
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When such a scheme is being used, the trap disable bits should be modified
only by the trap interface software. If the disable bits are spuriously cleared,
unnecessary traps may occur. If they are spuriously set, the software may
fail to set the correct values in the software status bits. Programs should call
routines in the trap interface software to set or clear bits in the FPCR.

Digital software may choose to initialize the software status bits and the
trap disable bits to all 1’s to avoid any initial trapping when an exception
condition first occurs. Or, software may choose to initialize those bits to all
0’s in order to provide a summary of the exception behavior when the program
terminates.

In any event, the exception bits in the FPCR are still useful to programs. A
program can clear all of the exception bits in the FPCR, execute a single
floating-point instruction, and then examine the status bits to determine
which hardware-defined exceptions the instruction encountered. For this
operation to work in the presence of various implementation options, the
single instruction should be followed by a TRAPB or EXCB instruction, and
software completion by the system software should save and restore the FPCR
registers without other modifications.

3. Because of the way the LDS and STS instructions manipulate bits <61:59> of
floating-point registers, they should not be used to manipulate FPCR values.

4.7.8 Floating-Point Computational Models

There are three models of arithmetic available with the IEEE floating-point subset
in the Alpha architecture:

• IEEE compliant arithmetic

• IEEE compliant arithmetic without inexact exception

• High-performance IEEE-format arithmetic

IEEE Compliant Arithmetic
This model provides floating-point arithmetic that fully complies with the IEEE
standard. It provides all of the exception status flags that are in the standard and
allows the user to specify which exceptional conditions should trap and which should
proceed without trapping.

This model is implemented in a program by using IEEE floating-point operates with
the /SUI modifiers, with the help of the trap interface software described in Software
Note 2 in Section 4.7.7.3. It provides acceptable performance on implementations of
the Alpha architecture that implement the inexact disable (INED) bit in the FPCR,
as long as such programs do not turn on traps for the inexact condition. Performance
under this model may be slow if the INED bit is not implemented.

IEEE Compliant Arithmetic Without Inexact Exception
This is similar to the previous model, but it does not provide the inexact exception
status bit, nor does it allow a program to request traps when an inexact operation
occurs.
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This model is implemented in a program by using IEEE floating-point operates with
the /SU modifiers, with the help of the trap interface software.

High-Performance IEEE-Format Arithmetic
This model provides arithmetic operations on IEEE format numbers, but does not
allow operations on or generation of non-finite numbers. Any attempt to operate
on a non-finite number may cause an unrecoverable trap, and any operation except
underflow that would generate a non-finite number (according to the IEEE standard)
may also cause an unrecoverable trap. Underflow results are set to zero. There are
no reliable IEEE exception status flags available.

This model is implemented in a program by using IEEE floating-point operates
without the /SU or /SUI modifiers. It is the fastest of the three models.

4.7.9 Floating-Point Instruction Function Field Format

The function code for IEEE and VAX floating-point instructions, bits <15..5>, contain
the function field. That field is shown in Figure 4–2 and described for IEEE floating-
point in Table 4–9 and for VAX floating-point in Table 4–10. Function codes for the
independent floating-point instructions, those with opcode 1716, do not correspond
to the function fields below.

The function field contains subfields that specify the trapping and rounding modes
that are enabled for the instruction, the source datatype, and the instruction class.

Figure 4–2: Floating-Point Instruction Function Field
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Table 4–9: IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning1

15–13 TRP Trapping modes:

000 Imprecise (default)
001 Underflow enable (/U) — floating-point output

Integer overflow enable (/V) — integer output
010 Unsupported
011 Unsupported
100 Unsupported
101 /SU — floating-point output

/SV — integer output
110 Unsupported
111 /SUI — floating-point output

/SVI — integer output

12–11 RND Rounding modes:

00 Chopped (/C)
01 Minus infinity (/M)
10 Normal (default)
11 Dynamic (/D)

10–9 SRC Source datatype:

00 S_floating
01 Reserved
10 T_floating
11 Q_fixed

1Encodings for the instructions CVTST and CVTST/S are exceptions to this table; use the encodings in Appendix C.
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Table 4–9 (Cont.): IEEE Floating-Point Function Field Bit Summary

Bits Field Meaning1

8–5 FNC Instruction class:

0000 ADDx
0001 SUBx
0010 MULx
0011 DIVx
0100 CMPxUN
0101 CMPxEQ
0110 CMPxLT
0111 CMPxLE
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 CVTxS
1101 Reserved
1110 CVTxT
1111 CVTxQ

1Encodings for the instructions CVTST and CVTST/S are exceptions to this table; use the encodings in Appendix C.

Table 4–10: VAX Floating-Point Function Field Bit Summary

Bits Field Meaning

15–13 TRP Trapping modes:

000 Imprecise (default)
001 Underflow enable (/U) — floating-point output

Integer overflow enable (/V) — integer output
010 Unsupported
011 Unsupported
100 Software completion enable (/S)
101 /SU — floating-point output

/SV — integer output
110 Unsupported
111 Unsupported

12–11 RND Rounding modes:

00 Chopped (/C)
01 Unsupported
10 Normal (default)
11 Unsupported
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Table 4–10 (Cont.): VAX Floating-Point Function Field Bit Summary

Bits Field Meaning

10–9 SRC Source datatype:

00 F_floating
01 D_floating
10 G_floating
11 Q_fixed

8–5 FNC Instruction class:

0000 ADDx
0001 SUBx
0010 MULx
0011 DIVx
0100 CMPxUN
0101 CMPxEQ
0110 CMPxLT
0111 CMPxLE
1000 Reserved
1001 Reserved
1010 Reserved
1011 Reserved
1100 CVTxF
1101 CVTxD
1110 CVTxG
1111 CVTxQ

4.7.10 IEEE Standard

The IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754-
1985) is included by reference.

This standard leaves certain operations as implementation dependent. The
remainder of this section specifies the behavior of the Alpha architecture in these
situations. Note that this behavior may be supplied by either hardware (if the invalid
operation disable, or INVD, bit is implemented) or by software. See Sections 4.7.6.8,
4.7.7, and 4.7.7.3.

4.7.10.1 Conversion of NaN and Infinity Values

Conversion of a NaN or an Infinity value to an integer gives a result of zero.

Conversion of a NaN value from S_floating to T_floating gives a result identical to
the input, except that the most significant fraction bit (bit 51) is set to indicate a
quiet NaN.

4–82 Alpha Architecture Handbook



Conversion of a NaN value from T_floating to S_floating gives a result identical to
the input, except that the most significant fraction bit (bit 51) is set to indicate a
quiet NaN, and bits <28:0> are cleared to zero.

4.7.10.2 Copying NaN Values

Copying a NaN value without changing its precision does not cause an invalid
operation exception.

4.7.10.3 Generating NaN Values

When an operation is required to produce a NaN and none of its inputs are NaN
values, the result of the operation is the quiet NaN value that has the sign bit set
to one, all exponent bits set to one (to indicate a NaN), the most significant fraction
bit set to one (to indicate that the NaN is quiet), and all other fraction bits cleared
to zero. This value is referred to as the ‘‘canonical quiet NaN.’’

4.7.10.4 Propagating NaN Values

When an operation is required to produce a NaN and one or both of its inputs
are NaN values, the IEEE standard requires that quiet NaN values be propagated
when possible. With the Alpha architecture, the result of such an operation is a
NaN generated according to the first of the following rules that is applicable:

1. If the operand in the Fb register of the operation is a quiet NaN, that value is
used as the result.

2. If the operand in the Fb register of the operation is a signaling NaN, the result is
the quiet NaN formed from the Fb value by setting the most significant fraction
bit (bit 51) to a one bit.

3. If the operation uses its Fa operand and the value in the Fa register is a quiet
NaN, that value is used as the result.

4. If the operation uses its Fa operand and the value in the Fa register is a signaling
NaN, the result is the quiet NaN formed from the Fa value by setting the most
significant fraction bit (bit 51) to a one bit.

5. The result is the canonical quiet NaN.
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4.8 Memory Format Floating-Point Instructions

The instructions in this section move data between the floating-point registers and
memory. They use the Memory instruction format. They do not interpret the bits
moved in any way; specifically, they do not trap on non-finite values.

The instructions are summarized in Table 4–11.

Table 4–11: Memory Format Floating-Point Instructions Summary

Mnemonic Operation Subset

LDF Load F_floating VAX

LDG Load G_floating (Load D_floating) VAX

LDS Load S_floating (Load Longword Integer) Both

LDT Load T_floating (Load Quadword Integer) Both

STF Store F_floating VAX

STG Store G_floating (Store D_floating) VAX

STS Store S_floating (Store Longword Integer) Both

STT Store T_floating (Store Quadword Integer) Both
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4.8.1 Load F_floating

Format:

LDF Fa.wf,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va’ ← va XOR 1002
little_endian_data: va’ ← va

ENDCASE

Fa ← (va’)<15> || MAP_F((va’)<14:7>) ||
(va’)<6:0> || (va’)<31:16> || 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDF Load F_floating

Qualifiers:

None

Description:

LDF fetches an F_floating datum from memory and writes it to register Fa. If the
data is not naturally aligned, an alignment exception is generated.

The MAP_F function causes the 8-bit memory-format exponent to be expanded to an
11-bit register-format exponent according to Table 2–1.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va’). The
source operand is fetched from memory and the bytes are reordered to conform to
the F_floating register format. The result is then zero-extended in the low-order
longword and written to register Fa.
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4.8.2 Load G_floating

Format:

LDG Fa.wg,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

Fa ← (va)<15:0> || (va)<31:16> ||
(va)<47:32> || (va)<63:48>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDG Load G_floating (Load D_floating)

Qualifiers:

None

Description:

LDG fetches a G_floating (or D_floating) datum from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory, the bytes are reordered to
conform to the G_floating register format (also conforming to the D_floating register
format), and the result is then written to register Fa.
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4.8.3 Load S_floating

Format:

LDS Fa.ws,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va’ ← va XOR 1002
little_endian_data: va’ ← va

ENDCASE

Fa ← (va’)<31> || MAP_S((va’)<30:23>) ||
(va’)<22:0> || 0<28:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDS Load S_floating (Load Longword Integer)

Qualifiers:

None

Description:

LDS fetches a longword (integer or S_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated. The
MAP_S function causes the 8-bit memory-format exponent to be expanded to an
11-bit register-format exponent according to Table 2–2.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va’). The
source operand is fetched from memory, is zero-extended in the low-order longword,
and then written to register Fa. Longword integers in floating registers are stored
in bits <63:62,58:29>, with bits <61:59> ignored and zeros in bits <28:0>.
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4.8.4 Load T_floating

Format:

LDT Fa.wt,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

Fa ← (va)<63:0>

Exceptions:

Access Violation
Fault on Read
Alignment
Translation Not Valid

Instruction mnemonics:

LDT Load T_floating (Load Quadword Integer)

Qualifiers:

None

Description:

LDT fetches a quadword (integer or T_floating) from memory and writes it to register
Fa. If the data is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from memory and written to register
Fa.
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4.8.5 Store F_floating

Format:

STF Fa.rf,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va’ ← va XOR 1002
little_endian_data: va’ ← va

ENDCASE

(va’)<31:0> ← Fav<44:29> || Fav<63:62>|| Fav<58:45>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STF Store F_floating

Qualifiers:

None

Description:

STF stores an F_floating datum from Fa to memory. If the data is not naturally
aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va’). The bits
of the source operand are fetched from register Fa, the bits are reordered to conform
to F_floating memory format, and the result is then written to memory. Bits <61:59>
and <28:0> of Fa are ignored. No checking is done.
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4.8.6 Store G_floating

Format:

STG Fa.rg,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

(va)<63:0> ← Fav<15:0> || Fav<31:16> ||
Fav<47:32> || Fav<63:48>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STG Store G_floating (Store D_floating)

Qualifiers:

None

Description:

STG stores a G_floating (or D_floating) datum from Fa to memory. If the data is not
naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-
bit displacement. The source operand is fetched from register Fa, the bytes are
reordered to conform to the G_floating memory format (also conforming to the D_
floating memory format), and the result is then written to memory.
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4.8.7 Store S_floating

Format:

STS Fa.rs,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

CASE
big_endian_data: va’ ← va XOR 1002
little_endian_data: va’ ← va

ENDCASE

(va’)<31:0> ← Fav<63:62>||Fav<58:29>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STS Store S_floating (Store Longword Integer)

Qualifiers:

None

Description:

STS stores a longword (integer or S_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. For a big-endian longword access, va<2> (bit 2 of the virtual address)
is inverted, and any memory management fault is reported for va (not va’). The bits
of the source operand are fetched from register Fa, the bits are reordered to conform
to S_floating memory format, and the result is then written to memory. Bits <61:59>
and <28:0> of Fa are ignored. No checking is done.
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4.8.8 Store T_floating

Format:

STT Fa.rt,disp.ab(Rb.ab) !Memory format

Operation:

va ← {Rbv + SEXT(disp)}

(va)<63:0> ← Fav<63:0>

Exceptions:

Access Violation
Fault on Write
Alignment
Translation Not Valid

Instruction mnemonics:

STT Store T_floating (Store Quadword Integer)

Qualifiers:

None

Description:

STT stores a quadword (integer or T_floating) datum from Fa to memory. If the data
is not naturally aligned, an alignment exception is generated.

The virtual address is computed by adding register Rb to the sign-extended 16-bit
displacement. The source operand is fetched from register Fa and written to memory.
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4.9 Branch Format Floating-Point Instructions

Alpha provides six floating conditional branch instructions. These branch-format
instructions test the value of a floating-point register and conditionally change the
PC.

They do not interpret the bits tested in any way; specifically, they do not trap on
non-finite values.

The test is based on the sign bit and whether the rest of the register is all zero bits.
All 64 bits of the register are tested. The test is independent of the format of the
operand in the register. Both plus and minus zero are equal to zero. A non-zero
value with a sign of zero is greater than zero. A non-zero value with a sign of one
is less than zero. No reserved operand or non-finite checking is done.

The floating-point branch operations are summarized in Table 4–12.

Table 4–12: Floating-Point Branch Instructions Summary

Mnemonic Operation Subset

FBEQ Floating Branch Equal Both

FBGE Floating Branch Greater Than or Equal Both

FBGT Floating Branch Greater Than Both

FBLE Floating Branch Less Than or Equal Both

FBLT Floating Branch Less Than Both

FBNE Floating Branch Not Equal Both
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4.9.1 Conditional Branch

Format:

FBxx Fa.rq,disp.al !Branch format

Operation:

{update PC}
va ← PC + {4*SEXT(disp)}
IF TEST(Fav, Condition_based_on_Opcode) THEN

PC ← va

Exceptions:

None

Instruction mnemonics:

FBEQ Floating Branch Equal

FBGE Floating Branch Greater Than or Equal

FBGT Floating Branch Greater Than

FBLE Floating Branch Less Than or Equal

FBLT Floating Branch Less Than

FBNE Floating Branch Not Equal

Qualifiers:

None

Description:

Register Fa is tested. If the specified relationship is true, the PC is loaded with
the target virtual address; otherwise, execution continues with the next sequential
instruction.

The displacement is treated as a signed longword offset. This means it is shifted
left two bits (to address a longword boundary), sign-extended to 64 bits, and added
to the updated PC to form the target virtual address.

The conditional branch instructions are PC-relative only. The 21-bit signed
displacement gives a forward/backward branch distance of +/– 1M instructions.
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Notes:

• To branch properly on non-finite operands, compare to F31, then branch on the
result of the compare.

• The largest negative integer (8000 0000 0000 000016) is the same bit pattern as
floating minus zero, so it is treated as equal to zero by the branch instructions.
To branch properly on the largest negative integer, convert it to floating or move
it to an integer register and do an integer branch.
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4.10 Floating-Point Operate Format Instructions

The floating-point bit-operate instructions perform copy and integer convert
operations on 64-bit register values. The bit-operate instructions do not interpret
the bits moved in any way; specifically, they do not trap on non-finite values.

The floating-point arithmetic-operate instructions perform add, subtract, multiply,
divide, compare, and floating convert operations on 64-bit register values in one of
the four specified floating formats.

Each instruction specifies the source and destination formats of the values, as well
as the rounding mode and trapping mode to be used. These instructions use the
Floating-point Operate format.

The floating-point operate instructions are summarized in Table 4–13.

Table 4–13: Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Bit and FPCR Operations

CPYS Copy Sign Both

CPYSE Copy Sign and Exponent Both

CPYSN Copy Sign Negate Both

CVTLQ Convert Longword to Quadword Both

CVTQL Convert Quadword to Longword Both

FCMOVxx Floating Conditional Move Both

MF_FPCR Move from Floating-point Control Register Both

MT_FPCR Move to Floating-point Control Register Both
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Table 4–13 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Arithmetic Operations

ADDF Add F_floating VAX

ADDG Add G_floating VAX

ADDS Add S_floating IEEE

ADDT Add T_floating IEEE

CMPGxx Compare G_floating VAX

CMPTxx Compare T_floating IEEE

CVTDG Convert D_floating to G_floating VAX

CVTGD Convert G_floating to D_floating VAX

CVTGF Convert G_floating to F_floating VAX

CVTGQ Convert G_floating to Quadword VAX

CVTQF Convert Quadword to F_floating VAX

CVTQG Convert Quadword to G_floating VAX

CVTQS Convert Quadword to S_floating IEEE

CVTQT Convert Quadword to T_floating IEEE

CVTST Convert S_floating to T_floating IEEE

CVTTQ Convert T_floating to Quadword IEEE

CVTTS Convert T_floating to S_floating IEEE

DIVF Divide F_floating VAX

DIVG Divide G_floating VAX

DIVS Divide S_floating IEEE

DIVT Divide T_floating IEEE

FTOIS Floating-point to integer register move, S_floating IEEE

FTOIT Floating-point to integer register move, T_floating IEEE

ITOFF Integer to floating-point register move, F_floating VAX

ITOFS Integer to floating-point register move, S_floating IEEE

ITOFT Integer to floating-point register move, T_floating IEEE
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Table 4–13 (Cont.): Floating-Point Operate Instructions Summary

Mnemonic Operation Subset

Arithmetic Operations

MULF Multiply F_floating VAX

MULG Multiply G_floating VAX

MULS Multiply S_floating IEEE

MULT Multiply T_floating IEEE

SQRTF Square root F_floating VAX

SQRTG Square root G_floating VAX

SQRTS Square root S_floating IEEE

SQRTT Square root T_floating IEEE

SUBF Subtract F_floating VAX

SUBG Subtract G_floating VAX

SUBS Subtract S_floating IEEE

SUBT Subtract T_floating IEEE
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4.10.1 Copy Sign

Format:

CPYSy Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

Operation:

CASE
CPYS: Fc ← Fav<63> || Fbv<62:0>
CPYSN: Fc ← NOT(Fav<63>) || Fbv<62:0>
CPYSE: Fc ← Fav<63:52> || Fbv<51:0>

ENDCASE

Exceptions:

None

Instruction mnemonics:

CPYS Copy Sign

CPYSE Copy Sign and Exponent

CPYSN Copy Sign Negate

Qualifiers:

None

Description:

For CPYS and CPYSN, the sign bit of Fa is fetched (and complemented in the case
of CPYSN) and concatenated with the exponent and fraction bits from Fb; the result
is stored in Fc.

For CPYSE, the sign and exponent bits from Fa are fetched and concatenated with
the fraction bits from Fb; the result is stored in Fc.

No checking of the operands is performed.

Notes:

• Register moves can be performed using CPYS Fx,Fx,Fy. Floating-point absolute
value can be done using CPYS F31,Fx,Fy. Floating-point negation can be done
using CPYSN Fx,Fx,Fy. Floating values can be scaled to a known range by using
CPYSE.
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4.10.2 Convert Integer to Integer

Format:

CVTxy Fb.rq,Fc.wx !Floating-point Operate format

Operation:

CASE
CVTQL: Fc ← Fbv<31:30> || 0<2:0> ||

Fbv<29:0> || 0<28:0>

CVTLQ: Fc ← SEXT(Fbv<63:62> || Fbv<58:29>)
ENDCASE

Exceptions:

Integer Overflow, CVTQL only

Instruction mnemonics:

CVTLQ Convert Longword to Quadword

CVTQL Convert Quadword to Longword

Qualifiers:

Trapping: Software (/S) (CVTQL only)

Integer Overflow Enable (/V) (CVTQL only)

Description:

The two’s-complement operand in register Fb is converted to a two’s-complement
result and written to register Fc. Register Fa must be F31.

The conversion from quadword to longword is a repositioning of the low 32 bits of
the operand, with zero fill and optional integer overflow checking. Integer overflow
occurs if Fb is outside the range –2**31..2**31–1. If integer overflow occurs, the
truncated result is stored in Fc, and an arithmetic trap is taken if enabled.

The conversion from longword to quadword is a repositioning of 32 bits of the
operand, with sign extension.
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4.10.3 Floating-Point Conditional Move

Format:

FCMOVxx Fa.rq,Fb.rq,Fc.wq !Floating-point Operate format

Operation:

IF TEST(Fav, Condition_based_on_Opcode) THEN

Fc ← Fbv

Exceptions:

None

Instruction mnemonics:

FCMOVEQ FCMOVE if Register Equal to Zero

FCMOVGE FCMOVE if Register Greater Than or Equal to Zero

FCMOVGT FCMOVE if Register Greater Than Zero

FCMOVLE FCMOVE if Register Less Than or Equal to Zero

FCMOVLT FCMOVE if Register Less Than Zero

FCMOVNE FCMOVE if Register Not Equal to Zero

Qualifiers:

None

Description:

Register Fa is tested. If the specified relationship is true, register Fb is written to
register Fc; otherwise, the move is suppressed and register Fc is unchanged. The
test is based on the sign bit and whether the rest of the register is all zero bits, as
described for floating branches in Section 4.9.

Instruction Descriptions (I) 4–101



Notes:
Except that it is likely in many implementations to be substantially faster, the
instruction:

FCMOVxx Fa,Fb,Fc

is exactly equivalent to:

FByy Fa,label ; yy = NOT xx
CPYS Fb,Fb,Fc

label: ...

For example, a branchless sequence for:

F1=MAX(F1,F2)

is:

CMPxLT F1,F2,F3 ! F3=one if F1<F2; x=F/G/S/T
FCMOVNE F3,F2,F1 ! Move F2 to F1 if F1<F2
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4.10.4 Move from/to Floating-Point Control Register

Format:

Mx_FPCR Fa.rq,Fa.rq,Fa.wq !Floating-point Operate format

Operation:

CASE
MT_FPCR: FPCR← Fav
MF_FPCR: Fa ← FPCR

ENDCASE

Exceptions:

None

Instruction mnemonics:

MF_FPCR Move from Floating-point Control Register

MT_FPCR Move to Floating-point Control Register

Qualifiers:

None

Description:

The Floating-point Control Register (FPCR) is read from (MF_FPCR) or written
to (MT_FPCR), a floating-point register. The floating-point register to be used is
specified by the Fa, Fb, and Fc fields all pointing to the same floating-point register.
If the Fa, Fb, and Fc fields do not all point to the same floating-point register, then
it is UNPREDICTABLE which register is used. If the Fa, Fb, and Fc fields do not
all point to the same floating-point register, the resulting values in the Fc register
and in FPCR are UNPREDICTABLE.

If the Fc field is F31 in the case of MT_FPCR, the resulting value in FPCR is
UNPREDICTABLE.

The use of these instructions and the FPCR are described in Section 4.7.7.
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4.10.5 VAX Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

ADDF Add F_floating

ADDG Add G_floating

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded or chopped to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs. See Section 4.7.6 for details of the stored result
on overflow or underflow.
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4.10.6 IEEE Floating Add

Format:

ADDx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav + Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

ADDS Add S_floating

ADDT Add T_floating

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

Register Fa is added to register Fb, and the sum is written to register Fc.

The sum is rounded to the specified precision, and then the corresponding range is
checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.7 VAX Floating Compare

Format:

CMPGyy Fa.rg,Fb.rg,Fc.wq !Floating-point Operate format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc ← 4000 0000 0000 0000 16

ELSE
Fc ← 0000 0000 0000 0000 16

Exceptions:

Invalid Operation

Instruction mnemonics:

CMPGEQ Compare G_floating Equal

CMPGLE Compare G_floating Less Than or Equal

CMPGLT Compare G_floating Less Than

Qualifiers:

Trapping: Software (/S)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (0.5) is written to register Fc; otherwise,
a true zero is written to Fc.

Comparisons are exact and never overflow or underflow. Three mutually exclusive
relations are possible: less than, equal, and greater than.

An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

Notes:

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.10.8 IEEE Floating Compare

Format:

CMPTyy Fa.rx,Fb.rx,Fc.wq !Floating-point Operate format

Operation:

IF Fav SIGNED_RELATION Fbv THEN
Fc ← 4000 0000 0000 0000 16

ELSE
Fc ← 0000 0000 0000 0000 16

Exceptions:

Invalid Operation

Instruction mnemonics:

CMPTEQ Compare T_floating Equal

CMPTLE Compare T_floating Less Than or Equal

CMPTLT Compare T_floating Less Than

CMPTUN Compare T_floating Unordered

Qualifiers:

Trapping: Software (/SU)

Description:

The two operands in Fa and Fb are compared. If the relationship specified by the
qualifier is true, a non-zero floating value (2.0) is written to register Fc; otherwise,
a true zero is written to Fc.

Comparisons are exact and never overflow or underflow. Four mutually exclusive
relations are possible: less than, equal, greater than, and unordered. The unordered
relation is true if one or both operands are NaN. (This behavior must be provided
by a software trap handler, since NaNs trap.) Comparisons ignore the sign of zero,
so +0 = –0.

Comparisons with plus and minus infinity execute normally and do not take an
invalid operation trap.
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Notes:

• In order to use CMPTxx with software completion trap handling, it is necessary
to specify the /SU IEEE trap mode, even though an underflow trap is not possible.

• Compare Less Than A,B is the same as Compare Greater Than B,A; Compare
Less Than or Equal A,B is the same as Compare Greater Than or Equal B,A.
Therefore, only the less-than operations are included.
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4.10.9 Convert VAX Floating to Integer

Format:

CVTGQ Fb.rx,Fc.wq !Floating-point Operate format

Operation:

Fc ← {conversion of Fbv}

Exceptions:

Invalid Operation
Integer Overflow

Instruction mnemonics:

CVTGQ Convert G_floating to Quadword

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Integer Overflow Enable (/V)

Description:

The floating operand in register Fb is converted to a two’s-complement quadword
number and written to register Fc. The conversion aligns the operand fraction with
the binary point just to the right of bit zero, rounds as specified, and complements
the result if negative. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on integer overflow.
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4.10.10 Convert Integer to VAX Floating

Format:

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

Operation:

Fc ← {conversion of Fbv<63:0>}

Exceptions:

None

Instruction mnemonics:

CVTQF Convert Quadword to F_floating

CVTQG Convert Quadword to G_floating

Qualifiers:

Rounding: Chopped (/C)

Description:

The two’s-complement quadword operand in register Fb is converted to a single-
or double-precision floating result and written to register Fc. The conversion
complements a number if negative, normalizes it, rounds to the target precision,
and packs the result with an appropriate sign and exponent field. Register Fa must
be F31.
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4.10.11 Convert VAX Floating to VAX Floating

Format:

CVTxy Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

CVTDG Convert D_floating to G_floating

CVTGD Convert G_floating to D_floating

CVTGF Convert G_floating to F_floating

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Description:

The floating operand in register Fb is converted to the specified alternate floating
format and written to register Fc. Register Fa must be F31.

An invalid operation trap is signaled if the operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.
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Notes:

• The only arithmetic operations on D_floating values are conversions to and from
G_floating. The conversion to G_floating rounds or chops as specified, removing
three fraction bits. The conversion from G_floating to D_floating adds three low-
order zeros as fraction bits, then the 8-bit exponent range is checked for overflow
/underflow.

• The conversion from G_floating to F_floating rounds or chops to single precision,
then the 8-bit exponent range is checked for overflow/underflow.

• No conversion from F_floating to G_floating is required, since F_floating values
are always stored in registers as equivalent G_floating values.

4–112 Alpha Architecture Handbook



4.10.12 Convert IEEE Floating to Integer

Format:

CVTTQ Fb.rx,Fc.wq !Floating-point Operate format

Operation:

Fc ← {conversion of Fbv}

Exceptions:

Invalid Operation
Inexact Result
Integer Overflow

Instruction mnemonics:

CVTTQ Convert T_floating to Quadword

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Integer Overflow Enable (/V)

Inexact Enable (/I)

Description:

The floating operand in register Fb is converted to a two’s-complement number and
written to register Fc. The conversion aligns the operand fraction with the binary
point just to the right of bit zero, rounds as specified, and complements the result if
negative. Register Fa must be F31.

See Section 4.7.6 for details of the stored result on integer overflow and inexact
result.
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4.10.13 Convert Integer to IEEE Floating

Format:

CVTQy Fb.rq,Fc.wx !Floating-point Operate format

Operation:

Fc ← {conversion of Fbv<63:0>}

Exceptions:

Inexact Result

Instruction mnemonics:

CVTQS Convert Quadword to S_floating

CVTQT Convert Quadword to T_floating

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Inexact Enable (/I)

Description:

The two’s-complement operand in register Fb is converted to a single- or double-
precision floating result and written to register Fc. The conversion complements
a number if negative, normalizes it, rounds to the target precision, and packs the
result with an appropriate sign and exponent field. Register Fa must be F31.

See Section 4.7.6 for details of the stored result on inexact result.

Notes:

• In order to use CVTQS or CVTQT with software completion trap handling, it is
necessary to specify the /SUI IEEE trap mode, even though an underflow trap is
not possible.
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4.10.14 Convert IEEE S_Floating to IEEE T_Floating

Format:

CVTST Fb.rx,Fc.wx ! Floating-point Operate format

Operation:

Fc ← {conversion of Fbv}

Exceptions:

Invalid Operation

Instruction mnemonics:

CVTST Convert S_floating to T_floating

Qualifiers:

Trapping: Software (/S)

Description:

The S_floating operand in register Fb is converted to T_floating format and written
to register Fc. Register Fa must be F31.

Notes:

• The conversion from S_floating to T_floating is exact. No rounding occurs. No
underflow, overflow, or inexact result can occur. In fact, the conversion for finite
values is the identity transformation.

• A trap handler can convert an S_floating denormal value into the corresponding
T_floating finite value by adding 896 to the exponent and normalizing.
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4.10.15 Convert IEEE T_Floating to IEEE S_Floating

Format:

CVTTS Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← {conversion of Fbv}

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

CVTTS Convert T_floating to S_floating

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

The T_floating operand in register Fb is converted to S_floating format and written
to register Fc. Register Fa must be F31.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.16 VAX Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow

Instruction mnemonics:

DIVF Divide F_floating

DIVG Divide G_floating

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fc.

The quotient is rounded or chopped to the specified precision and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.
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An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

A division by zero trap is signaled if Fbv is zero. The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.

4–118 Alpha Architecture Handbook



4.10.17 IEEE Floating Divide

Format:

DIVx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav / Fbv

Exceptions:

Invalid Operation
Division by Zero
Overflow
Underflow
Inexact Result

Instruction mnemonics:

DIVS Divide S_floating

DIVT Divide T_floating

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

The dividend operand in register Fa is divided by the divisor operand in register Fb,
and the quotient is written to register Fc.

The quotient is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.18 Floating-Point Register to Integer Register Move

Format:

FTOIx Fa.rq,Rc.wq !Floating-point Operate format

Operation:

CASE:
FTOIS:

Rc<63:32> ← SEXT(Fav<63>)
Rc<31:0> ← Fav<63:62> || Fav <58:29>

FTOIT:
Rc <- Fav

ENDCASE

Exceptions:

None

Instruction mnemonics:

FTOIS Floating-point to Integer Register Move, S_floating

FTOIT Floating-point to Integer Register Move, T_floating

Qualifiers:

None

Description:

Data in a floating-point register file is moved to an integer register file. The Fb field
must be 31.

The instructions do not interpret bits in the register files; specifically, the
instructions do not trap on non-finite values. Also, the instructions do not access
memory.

FTOIS is exactly equivalent to the sequence:

STS
LDL

FTOIT is exactly equivalent to the sequence:

STT
LDQ
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Software Note:

FTOIS and FTOIT are no slower than the corresponding store/load sequence,
and can be significantly faster.
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4.10.19 Integer Register to Floating-Point Register Move

Format:

ITOFx Ra.rq,Fc.wq !Floating-point Operate format

Operation:

CASE:
ITOFF:

Fc ← Rav<31> || MAP_F(Rav<30:23> || Rav<22:0> ||
0<28:0>

ITOFS:
Fc ← Rav<31> || MAP_S(Rav<30:23> || Rav<22:0> ||

0<28:0>
ITOFT:

Fc <- Rav
ENDCASE

Exceptions:

None

Instruction mnemonics:

ITOFF Integer to Floating-point Register Move, F_floating

ITOFS Integer to Floating-point Register Move, S_floating

ITOFT Integer to Floating-point Register Move, T_floating

Qualifiers:

None

Description:

Data in an integer register file is moved to a floating-point register file. The Rb field
must be 31.

The instructions do not interpret bits in the register files; specifically, the
instructions do not trap on non-finite values. Also, the instructions do not access
memory.

ITOFF is equivalent to the following sequence, except that the word swapping that
LDF normally performs is not performed by ITOFF:

STL
LDF
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ITOFS is exactly equivalent to the sequence:

STL
LDS

ITOFT is exactly equivalent to the sequence:

STQ
LDT

Software Note:

ITOFF, ITOFS, and ITOFT are no slower than the corresponding store/load
sequence, and can be significantly faster.
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4.10.20 VAX Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

MULF Multiply F_floating

MULG Multiply G_floating

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fc.

The product is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.

An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.
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4.10.21 IEEE Floating Multiply

Format:

MULx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav * Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

MULS Multiply S_floating

MULT Multiply T_floating

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

The multiplicand operand in register Fb is multiplied by the multiplier operand in
register Fa, and the product is written to register Fc.

The product is rounded to the specified precision, and then the corresponding range
is checked for overflow/underflow. The single-precision operation on canonical single-
precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.
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4.10.22 VAX Floating Square Root

Format:

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fb ** (1/2)

Exceptions:

Invalid operation

Instruction mnemonics:

SQRTF Square root F_floating

SQRTG Square root G_floating

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U) !See Notes below

Description:

The square root of the floating-point operand in register Fb is written to register Fc.
(The Fa field of this instruction must be set to a value of 31.)

The result is rounded or chopped to the specified precision. The single-precision
operation on a canonical single-precision value produces a canonical single-precision
result.

An invalid operation is signaled if the operand has exp=0 and is not a true zero (that
is, VAX reserved operands and dirty zeros trap). An invalid operation is signaled if
the sign of the operand is negative.

The contents of the Fc are UNPREDICTABLE if an invalid operation is signaled.

Notes:

• Floating-point overflow and underflow are not possible for square root operation.
The underflow enable qualifier is ignored.
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4.10.23 IEEE Floating Square Root

Format:

SQRTx Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fb ** (1/2)

Exceptions:

Inexact result
Invalid operation

Instruction mnemonics:

SQRTS Square root S_floating

SQRTT Square root T_floating

Qualifiers:

Rounding: Chopped (/C)

Dynamic (/D)

Minus infinity (/M)

Trapping: Inexact Result (I)

Software (/S)

Underflow Enable (/U) !See Notes below

Description:

The square root of the floating-point operand in register Fb is written to register Fc.
(The Fa field of this instruction must be set to a value of 31.)

The result is rounded to the specified precision. The single-precision operation on a
canonical single-precision value produces a canonical single-precision result.

An invalid operation is signaled if the sign of the operand is less than zero. However,
SQRT (–0) produces a result of –0.

Notes:

• Floating-point overflow and underflow are not possible for square root operation.
The underflow enable qualifier is ignored.
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4.10.24 VAX Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow

Instruction mnemonics:

SUBF Subtract F_floating

SUBG Subtract G_floating

Qualifiers:

Rounding: Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fc.

The difference is rounded or chopped to the specified precision, and then the
corresponding range is checked for overflow/underflow. The single-precision
operation on canonical single-precision values produces a canonical single-precision
result.
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An invalid operation trap is signaled if either operand has exp=0 and is not a true
zero (that is, VAX reserved operands and dirty zeros trap). The contents of Fc are
UNPREDICTABLE if this occurs.

See Section 4.7.6 for details of the stored result on overflow or underflow.
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4.10.25 IEEE Floating Subtract

Format:

SUBx Fa.rx,Fb.rx,Fc.wx !Floating-point Operate format

Operation:

Fc ← Fav - Fbv

Exceptions:

Invalid Operation
Overflow
Underflow
Inexact Result

Instruction mnemonics:

SUBS Subtract S_floating

SUBT Subtract T_floating

Qualifiers:

Rounding: Dynamic (/D)

Minus infinity (/M)

Chopped (/C)

Trapping: Software (/S)

Underflow Enable (/U)

Inexact Enable (/I)

Description:

The subtrahend operand in register Fb is subtracted from the minuend operand in
register Fa, and the difference is written to register Fc.

The difference is rounded to the specified precision, and then the corresponding
range is checked for overflow/underflow. The single-precision operation on canonical
single-precision values produces a canonical single-precision result.

See Section 4.7.6 for details of the stored result on overflow, underflow, or inexact
result.
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4.11 Miscellaneous Instructions

Alpha provides the miscellaneous instructions shown in Table 4–14.

Table 4–14: Miscellaneous Instructions Summary

Mnemonic Operation

AMASK Architecture Mask

CALL_PAL Call Privileged Architecture Library Routine

ECB Evict cache block

EXCB Exception Barrier

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

IMPLVER Implementation Version

MB Memory Barrier

RPCC Read Processor Cycle Counter

TRAPB Trap Barrier

WH64 Write hint—64 bytes

WMB Write Memory Barrier
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4.11.1 Architecture Mask

Format:

AMASK Rb.rq,Rc.wq !Operate format

AMASK #b.ib,Rc.wq !Operate format

Operation:

Rc ← Rbv AND {NOT CPU_feature_mask}

Exceptions:

None

Instruction mnemonics:

AMASK Architecture Mask

Qualifiers:

None

Description:

Rbv represents a mask of the requested architectural extensions. Bits are cleared
that correspond to architectural extensions that are present. Reserved bits and bits
that correspond to absent extensions are copied unchanged. In either case, the result
is placed in Rc. If the result is zero, all requested features are present.

Software may specify an Rbv of all 1’s to determine the complete set of architectural
extensions implemented by a processor. Assigned bit definitions are located in
Appendix D.

Ra must be R31 or the result in Rc is UNPREDICTABLE and it is
UNPREDICTABLE whether an exception is signaled.

Software Note:

Use this instruction to make instruction-set decisions; use IMPLVER to make
code-tuning decisions.

Implementation Note:

Instruction encoding is implemented as follows:

• On 21064/21064A/21066/21068/21066A (EV4/EV45/LCA/LCA45 chips), AMASK
copies Rbv to Rc.
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• On 21164 (EV5), AMASK copies Rbv to Rc.

• On 21164A (EV56), 21164PC (PCA56), and 21264 (EV6), AMASK correctly
indicates support for architecture extensions by copying Rbv to Rc and
clearing appropriate bits.

Bits are assigned and placed in Appendix D for architecture extensions, as
ECOs for those extensions are passed. The low 8 bits are reserved for standard
architecture extensions, so they can be tested with a literal; application-specific
extensions are assigned from bit 8 upward.
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4.11.2 Call Privileged Architecture Library

Format:

CALL_PAL fnc.ir !PAL format

Operation:

{Stall instruction issuing until all
prior instructions are guaranteed to
complete without incurring exceptions.}
{Trap to PALcode.}

Exceptions:

None

Instruction mnemonics:

CALL_PAL Call Privileged Architecture Library

Qualifiers:

None

Description:

The CALL_PAL instruction is not issued until all previous instructions are
guaranteed to complete without exceptions. If an exception occurs, the continuation
PC in the exception stack frame points to the CALL_PAL instruction. The CALL_
PAL instruction causes a trap to PALcode.
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4.11.3 Evict Data Cache Block

Format:

ECB (Rb.ab) ! Misc format

Operation:

va ← Rbv

IF { va maps to memory space } THEN
Prepare to reuse cache resources that are occupied by the
the addressed byte.

END

Exceptions:

None

Instruction mnemonics:

ECB Evict Cache Block

Qualifiers:

None

Description:

The ECB instruction provides a hint that the addressed location will not be
referenced again in the near future, so any cache space it occupies should be made
available to cache other memory locations. If the cache copy of the location is dirty,
the processor may start writing it back; if the cache has multiple sets, the processor
may arrange for the set containing the addressed byte to be the next set allocated.

The ECB instruction does not generate exceptions; if it encounters data address
translation errors (access violation, translation not valid, and so forth) during
execution, it is treated as a NOP.

If the address maps to non-memory-like (I/O) space, ECB is treated as a NOP.

Software Note:

ECB makes a particular cache location available for reuse by evicting and
invalidating its contents. The intent is to give software more control over cache
allocation policy in set-associative caches so that ‘‘useful’’ blocks can be retained
in the cache.
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ECB is a performance hint — it does not serialize the eviction of the addressed
cache block with any preceding or following memory operation.

ECB is not intended for flushing caches prior to power failure or low power
operation — CFLUSH is intended for that purpose.

Implementation Note:

Implementations with set-associative caches are encouraged to update their
allocation pointer so that the next D-stream reference that misses the cache
and maps to this line is allocated into the vacated set.
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4.11.4 Exception Barrier

Format:

EXCB ! Memory format

Operation:

{EXCB does not appear to issue until completion of all
exceptions and dependencies on the Floating-point Control
Register (FPCR) from prior instructions.}

Exceptions:

None

Instruction mnemonics:

EXCB Exception Barrier

Qualifiers:

None

Description:

The EXCB instruction allows software to guarantee that in a pipelined
implementation, all previous instructions have completed any behavior related to
exceptions or rounding modes before any instructions after the EXCB are issued.

In particular, all changes to the Floating-point Control Register (FPCR) are
guaranteed to have been made, whether or not there is an associated exception. Also,
all potential floating-point exceptions and integer overflow exceptions are guaranteed
to have been taken. EXCB is thus a superset of TRAPB.

If a floating-point exception occurs for which trapping is enabled, the EXCB
instruction acts like a fault. In this case, the value of the Program Counter reported
to the program may be the address of the EXCB instruction (or earlier), but is never
the address of an instruction following the EXCB.

The relationship between EXCB and the FPCR is described in Section 4.7.7.1.
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4.11.5 Prefetch Data

Format:

FETCHx 0(Rb.ab) !Memory format

Operation:

va ← {Rbv}
{Optionally prefetch aligned 512-byte block surrounding va.}

Exceptions:

None

Instruction mnemonics:

FETCH Prefetch Data

FETCH_M Prefetch Data, Modify Intent

Qualifiers:

None

Description:

The virtual address is given by Rbv. This address is used to designate an aligned
512-byte block of data. An implementation may optionally attempt to move all or
part of this block (or a larger surrounding block) of data to a faster-access part of
the memory hierarchy, in anticipation of subsequent Load or Store instructions that
access that data.

The FETCH instruction is a hint to the implementation that may allow faster
execution. An implementation is free to ignore the hint. If prefetching is
done in an implementation, the order of fetch within the designated block is
UNPREDICTABLE.

The FETCH_M instruction gives the additional hint that modifications (stores) to
some or all of the data block are anticipated.

No exceptions are generated by FETCHx. If a Load (or Store in the case of FETCH_
M) that uses the same address would fault, the prefetch request is ignored. It is
UNPREDICTABLE whether a TB-miss fault is ever taken by FETCHx.
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Implementation Note:

Implementations are encouraged to take the TB-miss fault, then continue the
prefetch.

Software Note:

FETCH is intended to help software overlap memory latencies on the order of
100 cycles. FETCH is unlikely to help (or be implemented) for memory latencies
on the order of 10 cycles. Code scheduling should be used to overlap such short
latencies.

The programming model for effective use of FETCH and FETCH_M is given in
Appendix A.
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4.11.6 Implementation Version

Format:

IMPLVER Rc !Operate format

Operation:

Rc ← 0 for EV4, EV45, LCA, and LCA45 chips
(21064, 21064A, 21066, 21068, 21066A)

Rc ← 1 for EV5, EV56, and PCA56 chips
(21164, 21164A, 21164PC)

Rc ← 2 for EV6 and derivative chips
(21264, etc.)

Exceptions:

None

Instruction mnemonics:

IMPLVER Implementation Version

Description:

A small integer is placed in Rc that specifies the major implementation version of
the processor on which it is executed. This information can be used to make code-
scheduling or tuning decisions, or the information can be used to branch to different
pieces of code optimized for different implementations.

Note:

The value returned by IMPLVER does not identify the particular processor
TYPE. Rather, it identifies a group of processors that can be treated similarly
for performance characteristics such as scheduling. Ra must be R31 and Rb
must be the literal #1 or the result in Rc is UNPREDICTABLE and it is
UNPREDICTABLE whether an exception is signaled.

Software Note:

Use this instruction to make code-tuning decisions; use AMASK to make
instruction-set decisions.

Values are assigned and placed in Appendix D.
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4.11.7 Memory Barrier

Format:

MB !Memory format

Operation:

{Guarantee that all subsequent loads or stores
will not access memory until after all previous
loads and stores have accessed memory, as
observed by other processors.}

Exceptions:

None

Instruction mnemonics:

MB Memory Barrier

Qualifiers:

None

Description:

The use of the Memory Barrier (MB) instruction is required only in multiprocessor
systems.

In the absence of an MB instruction, loads and stores to different physical locations
are allowed to complete out of order on the issuing processor as observed by other
processors. The MB instruction allows memory accesses to be serialized on the
issuing processor as observed by other processors. See Chapter 5 for details on using
the MB instruction to serialize these accesses. Chapter 5 also details coordinating
memory accesses across processors.

Note that MB ensures serialization only; it does not necessarily accelerate the
progress of memory operations.
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4.11.8 Read Processor Cycle Counter

Format:

RPCC Ra.wq !Memory format

Operation:

Ra ← {cycle counter}

Exceptions:

None

Instruction mnemonics:

RPCC Read Processor Cycle Counter

Qualifiers:

None

Description:

Register Ra is written with the processor cycle counter (PCC). The PCC register
consists of two 32-bit fields. The low-order 32 bits (PCC<31:0>) are an unsigned,
wrapping counter, PCC_CNT. The high-order 32 bits (PCC<63:32>), PCC_OFF, are
operating-system dependent in their implementation.

See Section 3.1.5 for a description of the PCC.

If an operating system uses PCC_OFF to calculate the per-process or per-thread cycle
count, that count must be derived from the 32-bit sum of PCC_OFF and PCC_CNT.
The following example computes that cycle count, modulo 2**32, and returns the
count value in R0. Notice the care taken not to cause an unwanted sign extension.

RPCC R0 ; Read the process cycle counter
SLL R0, #32, R1 ; Line up the offset and count fields
ADDQ R0, R1, R0 ; Do add
SRL R0, #32, R0 ; Zero extend the cycle count to 64 bits

The following example code returns the value of PCC_CNT in R0<31:0> and all zeros
in R0<63:32>.

RPCC R0
ZAPNOT R0,#15,R0
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4.11.9 Trap Barrier

Format:

TRAPB !Memory format

Operation:

{TRAPB does not appear to issue until all prior instructions
are guaranteed to complete without causing any arithmetic traps}.

Exceptions:

None

Instruction mnemonics:

TRAPB Trap Barrier

Qualifiers:

None

Description:

The TRAPB instruction allows software to guarantee that in a pipelined
implementation, all previous arithmetic instructions will complete without incurring
any arithmetic traps before the TRAPB or any instructions after it are issued.

If an arithmetic exception occurs for which trapping is enabled, the TRAPB
instruction acts like a fault. In this case, the value of the Program Counter reported
to the program may be the address of the TRAPB instruction (or earlier) but is never
the address of the instruction following the TRAPB.

This fault behavior by TRAPB allows software, using one TRAPB instruction for
each exception domain, to isolate the address range in which an exception occurs.
If the address of the instruction following the TRAPB were allowed, there would be
no way to distinguish an exception in the address range preceding a label from an
exception in the range that includes the label along with the faulting instruction and
a branch back to the label. This case arises when the code is not following software
completion rules, but is inserting TRAPB instructions to isolate exceptions to the
proper scope.

Use of TRAPB should be compared with use of the EXCB instruction; see
Section 4.11.4.
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4.11.10 Write Hint

Format:

WH64 (Rb.ab) ! Misc format

Operation:

va ← Rbv

IF { va maps to memory space } THEN
Write UNPREDICTABLE data to the aligned 64-byte region
containing the addressed byte.

END

Exceptions:

None

Instruction mnemonics:

WH64 Write Hint - 64 Bytes

Qualifiers:

None

Description:

The WH64 instruction provides a hint that the current contents of the aligned
64-byte block containing the addressed byte will never be read again, but will be
overwritten in the near future.

The processor may allocate cache resources to hold the block without reading its
previous contents from memory; the contents of the block may be set to any value
that does not introduce a security hole, as described in Section 1.6.3.

The WH64 instruction does not generate exceptions; if it encounters data address
translation errors (access violation, translation not valid, and so forth), it is treated
as a NOP.

If the address maps to non-memory-like (I/O) space, WH64 is treated as a NOP.

Software Note:

This instruction is a performance hint that should be used when writing a large
continuous region of memory. The intended code sequence consists of one WH64
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instruction followed by eight quadword stores for each aligned 64-byte region to
be written.

Sometimes, the UNPREDICTABLE data will exactly match some or all of the
previous contents of the addressed block of memory.

Implementation Note:

If the 64-byte region containing the addressed byte is not in the data cache,
implementations are encouraged to allocate the region in the data cache without
first reading it from memory. However, if any of the addressed bytes exist in
the caches of other processors, they must be kept coherent with respect to those
processors.

Processors with cache blocks smaller than 64 bytes are encouraged to implement
WH64 as defined. However, they may instead implement the instruction by
allocating a smaller aligned cache block for write access or by treating WH64 as
a NOP.

Processors with cache blocks larger than 64 bytes are also encouraged to
implement WH64 as defined. However, they may instead treat WH64 as a NOP.
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4.11.11 Write Memory Barrier

Format:

WMB !Memory format

Operation:

{ Guarantee that
{ All preceding stores that access memory-like
{ regions are ordered before any subsequent stores
{ that access memory-like regions and
{ All preceding stores that access non-memory-like
{ regions are ordered before any subsequent stores
{ that access non-memory-like regions.

Exceptions:

None

Instruction mnemonics:

WMB Write Memory Barrier

Qualifiers:

None

Description:

The WMB instruction provides a way for software to control write buffers. It
guarantees that writes preceding the WMB are not aggregated with writes that
follow the WMB.

WMB guarantees that writes to memory-like regions that precede the WMB are
ordered before writes to memory-like regions that follow the WMB. Similarly, WMB
guarantees that writes to non-memory-like regions that precede the WMB are
ordered before writes to non-memory-like regions that follow the WMB. It does not
order writes to memory-like regions relative to writes to non-memory-like regions.

WMB causes writes that are contained in buffers to be completed without
unnecessary delay. It is particularly suited for batching writes to high-performance
I/O devices.

WMB prevents writes that precede the WMB from being merged with writes that
follow the WMB. In particular, two writes that access the same location and are
separated by a WMB cause two distinct and ordered write events.
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In the absence of a WMB (or IMB or MB) instruction, stores to memory-like or
non-memory-like regions can be aggregated and/or buffered and completed in any
order.

The WMB instruction is the preferred method for providing high-bandwidth write
streams where order must be preserved between writes in that stream.

Notes:
WMB is useful for ordering streams of writes to a non-memory-like region, such as to
memory-mapped control registers or to a graphics frame buffer. While both MB and
WMB can ensure that writes to a non-memory-like region occur in order, without
being aggregated or reordered, the WMB is usually faster and is never slower than
MB.

WMB can correctly order streams of writes in programs that operate on shared
sections of data if the data in those sections are protected by a classic semaphore
protocol. The following example illustrates such a protocol:

Processor i Processor j

<Acquire lock>
MB
<Read and write data
in shared section>
WMB
<Release lock> ⇒ <Acquire lock>

MB
<Read and write data in shared section>
WMB

The example above is similar to that in Section 5.5.3, except a WMB is substituted
for the second MB in the lock-update-release sequence. It is correct to substitute
WMB for the second MB only if:

A. All data locations that are read or written in the critical section are accessed
only after acquiring a software lock by using lock_variable (and before releasing
the software lock).

B. For each read u of shared data in the critical section, there is a write v such
that:

1. v is BEFORE the WMB

2. v follows u in processor issue sequence (see Section 5.6.1.1)

3. v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1),
or both.

C. Both lock_variable and all the shared data are in memory-like regions (or lock_
variable and all the shared data are in non-memory-like regions). If the lock_
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variable is in a non-memory-like region, the atomic lock protocol must use some
implementation-specific hardware support.

The substitution of a WMB for the second MB is usually faster and never slower.
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4.12 VAX Compatibility Instructions

Alpha provides the instructions shown in Table 4–15 for use in translated VAX code.
These instructions are not a permanent part of the architecture and will not be
available in some future implementations. They are intended to preserve customer
assumptions about VAX instruction atomicity in porting code from VAX to Alpha .

These instructions should be generated only by the VAX-to-Alpha software
translator; they should never be used in native Alpha code. Any native code that
uses them may cease to work.

Table 4–15: VAX Compatibility Instructions Summary

Mnemonic Operation

RC Read and Clear

RS Read and Set
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4.12.1 VAX Compatibility Instructions

Format:

Rx Ra.wq !Memory format

Operation:

Ra ← intr_flag
intr_flag ← 0 !RC
intr_flag ← 1 !RS

Exceptions:

None

Instruction mnemonics:

RC Read and Clear

RS Read and Set

Qualifiers:

None

Description:

The intr_flag is returned in Ra and then cleared to zero (RC) or set to one (RS).

These instructions may be used to determine whether the sequence of Alpha
instructions between RS and RC (corresponding to a single VAX instruction) was
executed without interruption or exception.

Intr_flag is a per-processor state bit. The intr_flag is cleared if that processor
encounters a CALL_PAL REI instruction.

It is UNPREDICTABLE whether a processor’s intr_flag is affected when that
processor executes an LDx_L or STx_C instruction. A processor’s intr_flag is not
affected when that processor executes a normal load or store instruction.

A processor’s intr_flag is not affected when that processor executes a taken branch.

Note:

These instructions are intended only for use by the VAX-to-Alpha software
translator; they should never be used by native code.
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4.13 Multimedia (Graphics and Video) Support Instructions

Alpha provides the following instructions that enhance support for graphics and
video algorithms:

Mnemonic Operation

MINUB8 Vector Unsigned Byte Minimum

MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum

MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum

MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum

MAXSW4 Vector Signed Word Maximum

PERR Pixel Error

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words

The MIN and MAX instructions allow the clamping of pixel values to maximium
values that are allowed in different standards and stages of the CODECs.

The PERR instruction accelerates the macroblock search in motion estimation.

The pack and unpack (PKxB and UNPKBx) instructions accelerate the blocking of
interleaved YUV coordinates for processing by the CODEC.
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4.13.1 Byte and Word Minimum and Maximum

Format:

MINxxx Ra.rq,Rb.rq,Rc.wq ! Operate Format

MAXxxx Ra.rq,#b.ib,Rc.wq ! Operate Format

Operation:

CASE
MINUB8:

FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MINU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MINSB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MINS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MINUW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MINU(Rav<4i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

MINSW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MINS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

MAXUB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MAXU(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MAXSB8:
FOR i FROM 0 TO 7
Rcv<i*8+7:i*8> = MAXS(Rav<i*8+7:i*8>,Rbv<i*8+7:i*8>)
END

MAXUW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MAXU(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

MAXSW4:
FOR i FROM 0 TO 3
Rcv<i*16+15:i*16> = MAXS(Rav<i*16+15:i*16>,Rbv<i*16+15:i*16>)
END

ENDCASE:

Exceptions:

None
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Instruction mnemonics:

MINUB8 Vector Unsigned Byte Minimum

MINSB8 Vector Signed Byte Minimum

MINUW4 Vector Unsigned Word Minimum

MINSW4 Vector Signed Word Minimum

MAXUB8 Vector Unsigned Byte Maximum

MAXSB8 Vector Signed Byte Maximum

MAXUW4 Vector Unsigned Word Maximum

MAXSW4 Vector Signed Word Maximum

Qualifiers:

None

Description:

For MINxB8, each byte of Rc is written with the smaller of the corresponding bytes
of Ra or Rb. The bytes may be interpreted as signed or unsigned values.

For MINxW4, each word of Rc is written with the smaller of the corresponding words
of Ra or Rb. The words may be interpreted as signed or unsigned values.

For MAXxB8, each byte of Rc is written with the larger of the corresponding bytes
of Ra or Rb. The bytes may be interpreted as signed or unsigned values.

For MAXxW4, each word of Rc is written with the larger of the corresponding words
of Ra or Rb. The words may be interpreted as signed or unsigned values.
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4.13.2 Pixel Error

Format:

PERR Ra.rq,Rb.rq,Rc.wq ! Operate Format

Operation:

temp = 0
FOR i FROM 0 TO 7

IF { Rav<i*8+7:i*8> GEU Rbv<i*8+7:i*8>} THEN
temp ← temp + (Rav<i*8+7:i*8> - Rbv<i*8+7:i*8>)

ELSE
temp ← temp + (Rbv<i*8+7:i*8> - Rav<i*8+7:i*8>)

END
Rc ← temp

Exceptions:

None

Instruction mnemonics:

PERR Pixel Error

Qualifiers:

None

Description:

The absolute value of the difference between each of the bytes in Ra and Rb is
calculated. The sum of the resulting bytes is written to Rc.
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4.13.3 Pack Bytes

Format:

PKxB Rb.rq,Rc.wq ! Operate Format

Operation:

CASE
PKLB:

BEGIN
Rc<07:00> ← Rbv<07:00>
Rc<15:08> ← Rbv<39:32>
Rc<63:16> ← 0
END

PKWB:
BEGIN
Rc<07:00> ← Rbv<07:00>
Rc<15:08> ← Rbv<23:16>
Rc<23:16> ← Rbv<39:32>
Rc<31:24> ← Rbv<55:48>
Rc<63:32> ← 0
END

ENDCASE

Exceptions:

None

Instruction mnemonics:

PKLB Pack Longwords to Bytes

PKWB Pack Words to Bytes

Qualifiers:

None

Description:

For PKLB, the component longwords of Rb are truncated to bytes and written to the
lower two byte positions of Rc. The upper six bytes of Rc are written with zero.

For PKWB, the component words of Rb are truncated to bytes and written to the
lower four byte positions of Rc. The upper four bytes of Rc are written with zero.
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4.13.4 Unpack Bytes

Format:

UNPKBx Rb.rq,Rc.wq ! Operate Format

Operation:

temp = 0
CASE

UNPKBL:
BEGIN
temp<07:00> = Rbv<07:00>
temp<39:32> = Rbv<15:08>
END

UNPKBW:
BEGIN
temp<07:00> = Rbv<07:00>
temp<23:16> = Rbv<15:08>
temp<39:32> = Rbv<23:16>
temp<55:48> = Rbv<31:24>
END

ENDCASE
Rc ← temp

Exceptions:

None

Instruction mnemonics:

UNPKBL Unpack Bytes to Longwords

UNPKBW Unpack Bytes to Words

Qualifiers:

None

Description:

For UNPKBL, the lower two component bytes of Rb are zero-extended to longwords.
The resulting longwords are written to Rc.

For UNPKBW, the lower four component bytes of Rb are zero-extended to words.
The resulting words are written to Rc.
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Chapter 5

System Architecture and Programming Implications
(I)

5.1 Introduction

Portions of the Alpha architecture have implications for programming, and
the system structure, of both uniprocessor and multiprocessor implementations.
Architectural implications considered in the following sections are:

• Physical address space behavior

• Caches and write buffers

• Translation buffers and virtual caches

• Data sharing

• Read/write ordering

• Arithmetic traps

To meet the requirements of the Alpha architecture, software and hardware
implementors need to take these issues into consideration.

5.2 Physical Address Space Characteristics

Alpha physical address space is divided into four equal-size regions. The regions are
delineated by the two most significant, implemented, physical address bits. Each
region’s characteristics are distinguished by the coherency, granularity, and width
of memory accesses, and whether the region exhibits memory-like behavior or non-
memory-like behavior.

5.2.1 Coherency of Memory Access

Alpha implementations must provide a coherent view of memory, in which each write
by a processor or I/O device (hereafter, called ‘‘processor’’) becomes visible to all other
processors. No distinction is made between coherency of ‘‘memory space’’ and ‘‘I/O
space’’.

Memory coherency may be provided in different ways, for each of the four physical
address regions.

Possible per-region policies include, but are not restricted to:

1. No caching
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No copies are kept of data in a region; all reads and writes access the actual data
location (memory or I/O register), but a processor may elide multiple accesses to
the same data (see Section 5.2.3).

2. Write-through caching

Copies are kept of any data in the region; reads may use the copies, but writes
update the actual data location and either update or invalidate all copies.

3. Write-back caching

Copies are kept of any data in the region; reads and writes may use the copies,
and writes use additional state to determine whether there are other copies to
invalidate or update.

Software/Hardware Note:

To produce separate and distinct accesses to a specific location, the location must
be a region with no caching and a memory barrier instruction must be inserted
between accesses. See Section 5.2.3.

Part of the coherency policy implemented for a given physical address region may
include restrictions on excess data transfers (performing more accesses to a location
than is necessary to acquire or change the location’s value), or may specify data
transfer widths (the granularity used to access a location).

Independent of coherency policy, a processor may use different hardware or different
hardware resource policies for caching or buffering different physical address
regions.

5.2.2 Granularity of Memory Access

For each region, an implementation must support aligned quadword access and may
optionally support aligned longword access or byte access. If byte access is supported
in a region, aligned word access and aligned longword access are also supported.

For a quadword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned quadwords produce the same
results regardless of the order of execution. Further, an access to an aligned
quadword must be done in a single atomic operation.

For a longword access region, accesses to physical memory must be implemented
such that independent accesses to adjacent aligned longwords produce the same
results regardless of the order of execution. Further, an access to an aligned
longword must be done in a single atomic operation, and an access to an aligned
quadword must also be done in a single atomic operation.

For a byte access region, accesses to physical memory must be implemented such
that independent accesses to adjacent bytes or adjacent aligned words produce the
same results, regardless of the order of execution. Further, an access to a byte, an
aligned word, an aligned longword, or an aligned quadword must be done in a single
atomic operation.
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In this context, ‘‘atomic’’ means that the following is true if different processors do
simultaneous reads and writes of the same data:

• The result of any set of writes must be the same as if the writes had occurred
sequentially in some order, and

• Any read that observes the effect of a write on some part of memory must observe
the effect of that write (or of a later write or writes) on the entire part of memory
that is accessed by both the read and the write.

When a write accesses only part of a given word, longword, or quadword, a read of
the entire structure may observe the effect of that partial write without observing
the effect of an earlier write of another byte or bytes to the same structure. See
Sections 5.6.1.5 and 5.6.1.6.

5.2.3 Width of Memory Access

Subject to the granularity, ordering, and coherency constraints given in Sections
5.2.1, 5.2.2, and 5.6, accesses to physical memory may be freely cached, buffered,
and prefetched.

A processor may read more physical memory data (such as a full cache block) than
is actually accessed, writes may trigger reads, and writes may write back more data
than is actually updated. A processor may elide multiple reads and/or writes to the
same data.

5.2.4 Memory-Like and Non-Memory-Like Behavior

Memory-like regions obey the following rules:

• Each page frame in the region either exists in its entirety or does not exist in its
entirety; there are no holes within a page frame.

• All locations that exist are read/write.

• A write to a location followed by a read from that location returns precisely the
bits written; all bits act as memory.

• A write to one location does not change any other location.

• Reads have no side effects.

• Longword access granularity is provided, and if the byte/word extension is
implemented, byte access granularity is provided.

• Instruction-fetch is supported.

• Load-locked and store-conditional are supported.

Non-memory-like regions may have much more arbitrary behavior:

• Unimplemented locations or bits may exist anywhere.

• Some locations or bits may be read-only and others write-only.

• Address ranges may overlap, such that a write to one location changes the bits
read from a different location.
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• Reads may have side effects, although this is strongly discouraged.

• Longword granularity need not be supported and, even if the byte/word extension
is implemented, byte access granularity need not be implemented.

• Instruction-fetch need not be supported.

• Load-locked and store-conditional need not be supported.

Hardware/Software Coordination Note:
The details of such behavior are outside the scope of the Alpha architecture.
Specific processor and I/O device implementations may choose and document
whatever behavior they need. It is the responsibility of system designers to
impose enough consistency to allow processors successfully to access matching
non-memory devices in a coherent way.

5.3 Translation Buffers and Virtual Caches

A system may choose to include a virtual instruction cache (virtual I-cache) or a
virtual data cache (virtual D-cache). A system may also choose to include either
a combined data and instruction translation buffer (TB) or separate data and
instruction TBs (DTB and ITB). The contents of these caches and/or translation
buffers may become invalid, depending on what operating system activity is being
performed.

Whenever a non-software field of a valid page table entry (PTE) is modified, copies
of that PTE must be made coherent. PALcode mechanisms are available to clear
all TBs, both DTB and ITB entries for a given VA, either DTB or ITB entries for a
given VA, or all entries with the address space match (ASM) bit clear. Virtual D-
cache entries are made coherent whenever the corresponding DTB entry is requested
to be cleared by any of the appropriate PALcode mechanisms. Virtual I-cache entries
can be made coherent via the CALL_PAL IMB instruction.

If a processor implements address space numbers (ASNs), and the old PTE has the
Address Space Match (ASM) bit clear (ASNs in use) and the Valid bit set, then
entries can also effectively be made coherent by assigning a new, unused ASN to
the currently running process and not reusing the previous ASN before calling the
appropriate PALcode routine to invalidate the translation buffer (TB).

In a multiprocessor environment, making the TBs and/or caches coherent on only
one processor is not always sufficient. An operating system must arrange to perform
the above actions on each processor that could possibly have copies of the PTE or
data for any affected page.

5.4 Caches and Write Buffers

A hardware implementation may include mechanisms to reduce memory access time
by making local copies of recently used memory contents (or those expected to be
used) or by buffering writes to complete at a later time. Caches and write buffers are
examples of these mechanisms. They must be implemented so that their existence
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is transparent to software (except for timing, error reporting/control/recovery, and
modification to the I-stream).

The following requirements must be met by all cache/write-buffer implementations.
All processors must provide a coherent view of memory.

1. Write buffers may be used to delay and aggregate writes. From the viewpoint
of another processor, buffered writes appear not to have happened yet. (Write
buffers must not delay writes indefinitely. See Section 5.6.1.9.)

2. Write-back caches must be able to detect a later write from another processor
and invalidate or update the cache contents.

3. A processor must guarantee that a data store to a location followed by a data
load from the same location reads the updated value.

4. Cache prefetching is allowed, but virtual caches must not prefetch from invalid
pages. See Sections 5.6.1.3, 5.6.4.3, and 5.6.4.4.

5. A processor must guarantee that all of its previous writes are visible to all other
processors before a HALT instruction completes. A processor must guarantee
that its caches are coherent with the rest of the system before continuing from
a HALT.

6. If battery backup is supplied, a processor must guarantee that the memory
system remains coherent across a powerfail/recovery sequence. Data that was
written by the processor before the powerfail may not be lost, and any caches
must be in a valid state before (and if) normal instruction processing is continued
after power is restored.

7. Virtual instruction caches are not required to notice modifications of the virtual
I-stream (they need not be coherent with the rest of memory). Software that
creates or modifies the instruction stream must execute a CALL_PAL IMB before
trying to execute the new instructions.

In this context, to ‘‘modify the virtual I-stream’’ means any Store to the
same physical address that is subsequently fetched as an instruction via some
corresponding (virtual address, ASN) pair, or to change the virtual-to-physical
address mapping so that different values are fetched.

For example, if two different virtual addresses, VA1 and VA2, map to the same
page frame, a store to VA1 modifies the virtual I-stream fetched via VA2.

However, the following sequence does not modify the virtual I-stream (this might
happen in soft page faults).

1. Change the mapping of an I-stream page from valid to invalid.

2. Copy the corresponding page frame to a new page frame.

3. Change the original mapping to be valid and point to the new page frame.

8. Physical instruction caches are not required to notice modifications of the
physical I-stream (they need not be coherent with the rest of memory), except for
certain paging activity. (See Section 5.6.4.4.) Software that creates or modifies
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the instruction stream must execute a CALL_PAL IMB before trying to execute
the new instructions.

In this context, to ‘‘modify the physical I-stream’’ means any Store to the same
physical address that is subsequently fetched as an instruction.

5.5 Data Sharing

In a multiprocessor environment, writes to shared data must be synchronized by the
programmer.

5.5.1 Atomic Change of a Single Datum

The ordinary STL and STQ instructions can be used to perform an atomic change
of a shared aligned longword or quadword. (‘‘Change’’ means that the new value is
not a function of the old value.) In particular, an ordinary STL or STQ instruction
can be used to change a variable that could be simultaneously accessed via an LDx_
L/STx_C sequence.

5.5.2 Atomic Update of a Single Datum

The load-locked/store-conditional instructions may be used to perform an atomic
update of a shared aligned longword or quadword. (‘‘Update’’ means that the new
value is a function of the old value.)

The following sequence performs a read-modify-write operation on location x. Only
register-to-register operate instructions and branch fall-throughs may occur in the
sequence:

try_again:
LDQ_L R1,x
<modify R1>
STQ_C R1,x
BEQ R1,no_store

:
:

no_store:
<code to check for excessive iterations>
BR try_again

If this sequence runs with no exceptions or interrupts, and no other processor writes
to location x (more precisely, the locked range including x) between the LDQ_L and
STQ_C instructions, then the STQ_C shown in the example stores the modified value
in x and sets R1 to 1. If, however, the sequence encounters exceptions or interrupts
that eventually continue the sequence, or another processor writes to x, then the
STQ_C does not store and sets R1 to 0. In this case, the sequence is repeated via
the branches to no_store and try_again. This repetition continues until the reasons
for exceptions or interrupts are removed, and no interfering store is encountered.

To be useful, the sequence must be constructed so that it can be replayed an arbitrary
number of times, giving the same result values each time. A sufficient (but not
necessary) condition is that, within the sequence, the set of operand destinations
and the set of operand sources are disjoint.
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Note:

A sufficiently long instruction sequence between LDx_L and STx_C will never
complete, because periodic timer interrupts will always occur before the sequence
completes. The rules in Appendix A describe sequences that will eventually
complete in all Alpha implementations.

This load-locked/store-conditional paradigm may be used whenever an atomic update
of a shared aligned quadword is desired, including getting the effect of atomic byte
writes.

5.5.3 Atomic Update of Data Structures

Before accessing shared writable data structures (those that are not a single aligned
longword or quadword), the programmer can acquire control of the data structure
by using an atomic update to set a software lock variable. Such a software lock can
be cleared with an ordinary store instruction.

A software-critical section, therefore, may look like the sequence:

stq_c_loop:
spin_loop:

LDQ R1,lock_variable ; This optional spin-loop code
BLBS R1,already_set ; should be used unless the

; lock is known to be low-contention.

LDQ_L R1,lock_variable ; \
BLBS R1,already_set ; \
OR R1,#1,R2 ; > Set lock bit
STQ_C R2,lock_variable ; /
BEQ R2,stq_c_fail ; /

MB
<critical section: updates various data structures>

MB ; Second MB

STQ R31,lock_variable ; Clear lock bit
:
:

already_set:
<code to block or reschedule or test for too many iterations>
BR spin_loop

stq_c_fail:
<code to test for too many iterations>
BR stq_c_loop

This code has a number of subtleties:

1. If the lock_variable is already set, the spin loop is done without doing any stores.
This avoidance of stores improves memory subsystem performance and avoids the
deadlock described below. The loop uses an ordinary load. This code sequence
is preferred unless the lock is known to be low-contention, because the sequence
increases the probability that the LDQ_L hits in the cache and the LDQ_L/STQ_
C sequence completes quickly and successfully.
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2. If the lock_variable is actually being changed from 0 to 1, and the STQ_C fails
(due to an interrupt, or because another processor simultaneously changed lock_
variable), the entire process starts over by reading the lock_variable again.

3. Only the fall-through path of the BLBS instructions do a STx_C; some
implementations may not allow a successful STx_C after a branch-taken.

4. Only register-to-register operate instructions are used to do the modify.

5. Both conditional branches are forward branches, so they are properly predicted
not to be taken (to match the common case of no contention for the lock).

6. The OR writes its result to a second register; this allows the OR and the BLBS
to be interchanged if that would give a faster instruction schedule.

7. Other operate instructions (from the critical section) may be scheduled into
the LDQ_L..STQ_C sequence, so long as they do not fault or trap, and they
give correct results if repeated; other memory or operate instructions may be
scheduled between the STQ_C and BEQ.

8. The memory barrier instructions are discussed in Section 5.5.4. It is correct to
substitute WMB for the second MB only if:

A. All data locations that are read or written in the critical section are accessed
only after acquiring a software lock by using lock_variable (and before
releasing the software lock).

B. For each read u of shared data in the critical section, there is a write v such
that:

1. v is BEFORE the WMB

2. v follows u in processor issue sequence (see Section 5.6.1.1)

3. v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1),
or both.

C. Both lock_variable and all the shared data are in memory-like regions (or
lock_variable and all the shared data are in non-memory-like regions). If the
lock_variable is in a non-memory-like region, the atomic lock protocol must
use some implementation-specific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

9. An ordinary STQ instruction is used to clear the lock_variable.

It would be a performance mistake to spin-wait by repeating the full LDQ_L..STQ_C
sequence (to move the BLBS after the BEQ) because that sequence may repeatedly
change the software lock_variable from ‘‘locked’’ to ‘‘locked,’’ with each write causing
extra access delays in all other caches that contain the lock_variable. In the extreme,
spin-waits that contain writes may deadlock as follows:

If, when one processor spins with writes, another processor is modifying (not
changing) the lock_variable, then the writes on the first processor may cause the
STx_C of the modify on the second processor always to fail.
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This deadlock situation is avoided by:

• Having only one processor execute a store (no STx_C), or

• Having no write in the spin loop, or

• Doing a write only if the shared variable actually changes state (1 → 1 does not
change state).

5.5.4 Ordering Considerations for Shared Data Structures

A critical section sequence, such as shown in Section 5.5.3, is conceptually only three
steps:

1. Acquire software lock

2. Critical section—read/write shared data

3. Clear software lock

In the absence of explicit instructions to the contrary, the Alpha architecture allows
reads and writes to be reordered. While this may allow more implementation speed
and overlap, it can also create undesired side effects on shared data structures.
Normally, the critical section just described would have two instructions added to it:

<acquire software lock>
MB (memory barrier #1)
<critical section -- read/write shared data>

MB (memory barrier #2)

<clear software lock>

The first memory barrier prevents any reads (from within the critical section) from
being prefetched before the software lock is acquired; such prefetched reads would
potentially contain stale data.

The second memory barrier prevents any writes and reads in the critical section
being delayed past the clearing of the software lock. Such delayed accesses could
interact with the next user of the shared data, defeating the purpose of the software
lock entirely. It is correct to substitute WMB for the second MB only if:

A. All data locations that are read or written in the critical section are accessed
only after acquiring a software lock by using lock_variable (and before releasing
the software lock).

B. For each read u of shared data in the critical section, there is a write v such
that:

1. v is BEFORE the WMB

2. v follows u in processor issue sequence (see Section 5.6.1.1)

3. v either depends on u (see Section 5.6.1.7) or overlaps u (see Section 5.6.1),
or both.

C. Both lock_variable and all the shared data are in memory-like regions (or lock_
variable and all the shared data are in non-memory-like regions). If the lock_
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variable is in a non-memory-like region, the atomic lock protocol must use some
implementation-specific hardware support.

Generally, the substitution of a WMB for the second MB increases performance.

Software Note:

In the VAX architecture, many instructions provide noninterruptable read-
modify-write sequences to memory variables. Most programmers never regard
data sharing as an issue.

In the Alpha architecture, programmers must pay more attention to
synchronizing access to shared data; for example, to AST routines. In the VAX,
a programmer can use an ADDL2 to update a variable that is shared between
a ‘‘MAIN’’ routine and an AST routine, if running on a single processor. In the
Alpha architecture, a programmer must deal with AST shared data by using
multiprocessor shared data sequences.

5.6 Read/Write Ordering

This section applies to programs that run on multiple processors or on one or more
processors that are interacting with DMA I/O devices. To a program running on
a single processor and not interacting with DMA I/O devices, all memory accesses
appear to happen in the order specified by the programmer. This section deals with
predictable read/write ordering across multiple processors and/or DMA I/O devices.

The order of reads and writes done in an Alpha implementation may differ from that
specified by the programmer.

For any two memory accesses A and B, either A must occur before B in all Alpha
implementations, B must occur before A, or they are UNORDERED. In the last
case, software cannot depend upon one occurring first: the order may vary from
implementation to implementation, and even from run to run or moment to moment
on a single implementation.

If two accesses cannot be shown to be ordered by the rules given, they are
UNORDERED and implementations are free to do them in any order that is
convenient. Implementations may take advantage of this freedom to deliver
substantially higher performance.

The discussion that follows first defines the architectural issue sequence of memory
accesses on a single processor, then defines the (partial) ordering on this issue
sequence that all Alpha implementations are required to maintain.

The individual issue sequences on multiple processors are merged into access
sequences at each shared memory location. The discussion defines the (partial)
ordering on the individual access sequences that all Alpha implementations are
required to maintain.

The net result is that for any code that executes on multiple processors, one can
determine which memory accesses are required to occur before others on all Alpha
implementations and hence can write useful shared-variable software.
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Software writers can force one access to occur before another by inserting a memory
barrier instruction (MB, WMB, or CALL_PAL IMB) between the accesses.

5.6.1 Alpha Shared Memory Model

An Alpha system consists of a collection of processors, I/O devices (and possibly a
bridge to connect remote I/O devices), and shared memories that are accessible by
all processors.

Note:

An example of an unshared location is a physical address in I/O space that refers
to a CSR that is local to a processor and not accessible by other processors.

A processor is an Alpha CPU.

In most systems, DMA I/O devices or other agents can read or write shared memory
locations. The order of accesses by those agents is not completely specified in this
document. It is possible in some systems for read accesses by I/O devices or other
agents to give results indicating some reordering of accesses. However, there are
guarantees that apply in all systems. See Section 5.6.4.7.

A shared memory is the primary storage place for one or more locations.

A location is a byte, specified by its physical address. Multiple virtual addresses
may map to the same physical address. Ordering considerations are based only on
the physical address. This definition of location specifically includes locations and
registers in memory mapped I/O devices and bridges to remote I/O (for example,
Mailbox Pointer Registers, or MBPRs).

Implementation Note:

An implementation may allow a location to have multiple physical addresses, but
the rules for accesses via mixtures of the addresses are implementation-specific
and outside the scope of this section. Accesses via exactly one of the physical
addresses follow the rules described next.

Each processor may generate accesses to shared memory locations. There are six
types of accesses:

1. Instruction fetch by processor i to location x, returning value a, denoted
Pi:I<4>(x,a).

2. Data read (including load-locked) by processor i to location x, returning value a,
denoted Pi:R<size>(x,a).

3. Data write (including successful store-conditional) by processor i to location x,
storing value a, denoted Pi:W<size>(x,a).

4. Memory barrier issued by processor i, denoted Pi:MB.

5. Write memory barrier issued by processor i, denoted Pi:WMB.

6. I-stream memory barrier issued by processor i, denoted Pi:IMB.
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The first access type is also called an I-stream access or I-fetch. The next two are
also called D-stream accesses. The first three types are collectively called read/write
accesses, denoted Pi:Op<m>(x,a), where m is the size of the access in bytes, x is the
(physical) address of the access, and a is a value representable in m bytes; for any k
in the range 0..m-1, byte k of value a (where byte 0 is the low-order byte) is the value
written to or read from location x+k by the access. This relationship reflects little-
endian addressing; big-endian addressing representation is as described in Common
Architecture, Chapter 2.

The last three types collectively are called barriers or memory barriers.

The size of a read/write access is 8 for a quadword access, 4 for a longword access
(including all instruction fetches), 2 for a word access, or 1 for a byte access. All
read/write accesses in this chapter are naturally aligned. That is, they have the
form Pi:Op<m>(x,a), where the address x is divisible by size m.

The word ‘‘access’’ is also used as a verb; a read/write access Pi:Op<m>(x,a) accesses
byte z if x ≤ z < x+m. Two read/write accesses Op1<m>(x,a) and Op2<n>(y,b) are
defined to overlap if there is at least one byte that is accessed by both, that is, if
max(x,y) < min(x+m,y+n).

5.6.1.1 Architectural Definition of Processor Issue Sequence

The issue sequence for a processor is architecturally defined with respect to a
hypothetical simple implementation that contains one processor and a single shared
memory, with no caches or buffers. This is the instruction execution model:

1. I-fetch: An Alpha instruction is fetched from memory.

2. Read/Write: That instruction is executed and runs to completion, including a
single data read from memory for a Load instruction or a single data write to
memory for a Store instruction.

3. Update: The PC for the processor is updated.

4. Loop: Repeat the above sequence indefinitely.

If the instruction fetch step gets a memory management fault, the I-fetch is not done
and the PC is updated to point to a PALcode fault handler. If the read/write step
gets a memory management fault, the read/write is not done and the PC is updated
to point to a PALcode fault handler.

5.6.1.2 Definition of Before and After

The ordering relation BEFORE (⇐) is a partial order on memory accesses. It is
further defined in Sections 5.6.1.3 through 5.6.1.9.

The ordering relation BEFORE (⇐), being a partial order, is acyclic.

The BEFORE order cannot be observed directly, nor fully predicted before an actual
execution, nor reproduced exactly from one execution to another. Nonetheless, some
useful ordering properties must hold in all Alpha implementations.

If u ⇐ v, then v is said to be AFTER u.
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5.6.1.3 Definition of Processor Issue Constraints

Processor issue constraints are imposed on the processor issue sequence defined in
Section 5.6.1.1.

For two accesses u and v issued by processor Pi, if u precedes v by processor issue
constraint, then u precedes v in BEFORE order. u and v on Pi are ordered by
processor issue constraint if any of the following applies:

1. The entry in Table 5–1 indicated by the access type of u (1st) and v (2nd) indicates
the accesses are ordered:

Table 5–1: Processor Issue Constraints

1st↓ 2nd → Pi:I<n=4>(y,b) Pi:R<n>(y,b) Pi:W<n>(y,b) Pi:MB Pi:IMB

Pi:I<m=4>(x,a) ⇐ if overlap ⇐ if overlap ⇐ (
Pi:R<m>(x,a) ⇐ if overlap ⇐ if overlap ⇐ (
Pi:W<m>(x,a) ⇐ if overlap ⇐ (
Pi:MB ⇐ ( ( (
Pi:IMB ⇐ ( ( ( (

Where ‘‘overlap’’ denotes the condition max(x,y) < min(x+m,y+n).

2. u and v are both writes to memory-like regions and there is a WMB between u
and v in processor issue sequence.

3. u and v are both writes to non-memory-like regions and there is a WMB between
u and v in processor issue sequence.

4. u is a TB fill that updates a PTE, for example, a PTE read in order to satisfy a
TB miss, and v is an I- or D-stream access using that PTE (see Sections 5.6.4.3,
and 5.6.4.4).

In Table 5–1, 1st and 2nd refer to the ordering of accesses in the processor issue
sequence. Note that Table 5–1 imposes no direct constraint on the ordering
relationship between nonoverlapping read/write accesses, though there may be
indirect constraints due to the transitivity of BEFORE (⇐). Conditions 2 through
4, above, impose ordering constraints on some pairs of nonoverlapping read/write
accesses.

Table 5–1 permits a read access Pi:R<n>(y,b) to be ordered BEFORE an overlapping
write access Pi:W<m>(x,a) that precedes the read access in processor issue order.
This asymmetry for reads allows reads to be satisfied by using data from an earlier
write in processor issue sequence by the same processor (for example, by hitting in
a write buffer) before the write completes. The write access remains ‘‘visible’’ to the
read access; ‘‘visibility’’ is described in Sections 5.6.1.5 and 5.6.1.6, and illustrated
in Litmus Test 11 in Section 5.6.2.11.

An I-fetch Pi:I<4>(y,b) may also be ordered BEFORE an overlapping write
Pi:W<m>(x,a) that precedes it in processor issue sequence. In that case, the write
may, but need not, be visible to the I-fetch. This asymmetry in Table 5–1 allows
writes to the I-stream to be incoherent until a CALL_PAL IMB is executed.
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Implementations are free to perform memory accesses from a single processor in any
sequence that is consistent with processor issue constraints.

5.6.1.4 Definition of Location Access Constraints

Location access constraints are imposed on overlapping read/write accesses. If u and
v are overlapping read/write accesses, at least one of which is a write, then u and v
must be comparable in the BEFORE (⇐) ordering, that is, either u ⇐ v or v ⇐ u.

There is no direct requirement that nonoverlapping accesses be comparable in the
BEFORE (⇐) ordering.

All writes accessing any given byte are totally ordered, and any read or I-fetch
accessing a given byte is ordered with respect to all writes accessing that byte.

5.6.1.5 Definition of Visibility

If u is a write access Pi:W<m>(x,a) and v is an overlapping read access Pj:R<n>(y,b),
u is visible to v only if:

u ⇐ v, or
u precedes v in processor issue sequence (possible only if Pi=Pj).

If u is a write access Pi:W<m>(x,a) and v is an overlapping instruction fetch
Pj:I<4>(y,b), there are the following rules for visibility:

1. If u ⇐ v, then u is visible to v.

2. If u precedes v in processor issue sequence, then:

a. If there is a write w such that:

u overlaps w and precedes w in processor issue sequence, and
w is visible to v,

then u is visible to v.

b. If there is an instruction fetch w such that:

u is visible to w, and
w overlaps v and precedes v in processor issue sequence,

then u is visible to v.

3. If u does not precede v in either processor issue sequence or BEFORE order, then
u is not visible to v.

Note that the rules of visibility for reads and instruction fetches are slightly different.
If a write u precedes an overlapping instruction fetch v in processor issue sequence,
but u is not BEFORE v, then u may or may not be visible to v.

5.6.1.6 Definition of Storage

The property of storage applies only to memory-like regions.

The value read from any byte by a read access or instruction fetch v, is the value
written by the latest (in BEFORE order) write u to that byte, that is visible to v.
More formally:
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If u is Pi:W<m>(x,a), and v is either Pj:I<4>(y,b) or Pj:R<n>(y,b), and z is a byte
accessed by both u and v, and u is visible to v; and there is no write that is
AFTER u, is visible to v, and accesses byte z; then the value of byte z read by v
is exactly the value written by u.

The only way to communicate information between different processors is for one to
write a shared location and the other to read the shared location and receive the
newly written value. (In this context, the sending of an interrupt from processor Pi
to Pj is modeled as Pi writing to a location INTij, and Pj reading from INTij.)

5.6.1.7 Definition of Dependence Constraints

The depends order (DP) is defined as follows. Given u and v issued by processor Pi,
where u is a read or an instruction fetch and v is a write, u precedes v in DP order
(written u DP v, that is, v depends on u) in either of the following situations:

1. u determines the execution of v, the location accessed by v, or the value written
by v.

2. u determines the execution or address or value of another memory access z
that precedes v or might precede v (that is, would precede v in some execution
path depending on the value read by u) by processor issue constraint (see
Section 5.6.1.3).

Eliminating Causal Loops
The following rule eliminates the possibility of ‘‘causal loops’’:

Given that:

u=R0 DP W1
W1 is visible to R1
R1 DP W2
W2 is visible to R2
R2 DP W3
...
Wn is visible to Rn ! Note that the last W is W0, closing the
Rn DP W0=v ! loop to correspond to the first R, R0

where:
n ≥ 1, Rn is a read or an instruction fetch, Wn is a write, and Rn,Wn overlap,
then:
u ⇐ v.

A simple example of a ‘‘causal loop’’ is when the execution of a write on Pi depends on
the execution of a write on Pj and vice versa, creating a circular dependence chain.
The following simple example of a ‘‘causal loop’’ is written in the style of the litmus
tests in Section 5.6.2, where initially x and y are 1:

Processor Pi executes:

LDQ R1,x
STQ R1,y

Processor Pj executes:
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LDQ R1,y
STQ R1,x

Representing those code sequences in the style of the litmus tests in Section 5.6.2,
it is impossible for the following sequence to result:

Pi Pj

[U1] Pi:R<8>(x,0) [V1] Pj:R<8>(y,0)

[U2] Pi:W<8>(y,0) [V2] Pj:W<8>(x,0)

Analysis:

<1> By the definitions of storage and visibility, U2 is visible to V1, and V2 is
visible to U1.

<2> By the definition of DP and examination of the code, U1 DP U2, and
V1 DP V2.

<3> Thus U1 DP U2 is visible to V1 DP V2 is visible to U1, which is forbidden
by the dependence constraint.

Given the initial condition x,y = 1, the access sequence above would also be
impossible if the code were:

Processor Pi’s program:

LDQ R1,x
BNE R1,done
STQ R31,y

done:

Processor Pj’s program:

LDQ R1,y
BNE R1,done
STQ R31,x

done:

5.6.1.8 Definition of Load-Locked and Store-Conditional

The property of load-locked and store-conditional applies only to memory-like
regions.

For each successful store-conditional v, there exists a load-locked u such that the
following are true:

1. u precedes v in the processor issue sequence.

2. There is no load-locked or store-conditional between u and v in the processor
issue sequence.

3. If u and v access within the same naturally aligned 16-byte physical and virtual
block in memory, then for every write w by a different processor that accesses
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within u’s lock range (where w is either a store or a successful store-conditional),
it must be true that w ⇐ u or v ⇐ w.

u’s lock range contains the region of physical memory that u accesses. See Sections
4.2.4 and 4.2.5, which define the lock range and conditions for success or failure of
a store conditional.

5.6.1.9 Timeliness

Even in the absence of a barrier after the write, no write by a processor may be
delayed indefinitely in the BEFORE ordering.

5.6.2 Litmus Tests

Many issues about writing and reading shared data can be cast into questions
about whether a write is before or after a read. These questions can be answered
by rigorously checking whether any ordering satisfies the rules in Sections 5.6.1.3
through Section 5.6.1.8.

In litmus tests 1–9 below, all initial quadword memory locations contain 1. In all
these litmus tests, it is assumed that initializations are performed by a write or
writes that are BEFORE all the explicitly listed accesses, that all relevant writes
other than the initializations are explicitly shown, and that all accesses shown are
to memory-like regions (so the definition of storage applies).

5.6.2.1 Litmus Test 1 (Impossible Sequence)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(x,2)

[V2]Pj:R<8>(x,1)

Analysis:

<1> By the definition of storage (Section 5.6.1.6), V1 reading 2 implies that U1
is visible to V1.

<2> By the rules for visibility (Section 5.6.1.5), U1 being visible to V1, but being
issued by a different processor, implies that U1 ⇐ V1.

<3> By the processor issue constraints (Section 5.6.1.3), V1 ⇐ V2.

<4> By the transitivity of the partial order ⇐, it follows from <2> and <3> that
U1 ⇐ V2.

<5> By the rules for visibility, it follows from U1 ⇐ V2 that U1 is visible to V2.

<6> Since U1 is AFTER the initialization of x, U1 is the latest (in the ⇐
ordering) write to x that is visible to V1.

<7> By the definition of storage, it follows that V2 should read the value written
by U1, in contradiction to the stated result.

Thus, once a processor reads a new value from a location, it must never see an old
value—time must not go backward. V2 must read 2.
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5.6.2.2 Litmus Test 2 (Impossible Sequence)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[V2]Pj:R<8>(x,2)

[V3]Pj:R<8>(x,3)

Analysis:

<1> Since V1 precedes V2 in processor issue sequence, V1 is visible to V2.

<2> V2 reading 2 implies U1 is the latest (in ⇐ order) write to x visible to V2.

<3> From <1> and <2>, V1 ⇐ U1.

<4> Since U1 is visible to V2, and they are issued by different processors,
U1 ⇐ V2.

<5> By the processor issue constraints, V2 ⇐ V3.

<6> From <4> and <5>, U1 ⇐ V3.

<7> From <6> and the visibility rules, U1 is visible to V3.

<8> Since both V1 and the initialization of x are BEFORE U1, U1 is the latest
write to x that is visible to V3.

<9> By the definition of storage, it follows that V3 should read the value written
by U1, in contradiction to the stated result.

Thus, once processor Pj reads a new value written by U1, any other writes that must
precede the read must also precede U1. V3 must read 2.

5.6.2.3 Litmus Test 3 (Impossible Sequence)

Pi Pj Pk

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3) [W1]Pk:R<8>(x,3)

[U2]Pi:R<8>(x,3) [W2]Pk:R<8>(x,2)

Analysis:

<1> U2 reading 3 implies V1 is the latest write to x visible to U2, therefore
U1 ⇐ V1.

<2> W1 reading 3 implies V1 is visible to W1, so V1 ⇐ W1 ⇐ W2, therefore V1
is also visible to W2.

<3> W2 reading 2 implies U1 is the latest write to x visible to W2, therefore
V1 ⇐ U1.

<4> From <1> and <3>, U1 ⇐ V1 ⇐ U1.

Again, time cannot go backwards. If V1 is ordered before U1, then processor Pk
cannot read first the later value 3 and then the earlier value 2. Alternatively, if V1
is ordered before U1, U2 must read 2.
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5.6.2.4 Litmus Test 4 (Sequence Okay)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

Analysis:

<1> V1 reading 2 implies U2 ⇐ V1, by storage and visibility.

<2> Since V2 does not read 2, there cannot be U1 ⇐ V2.

<3> By the access order constraints, it follows from <2> that V2 ⇐ U1.

There are no conflicts in the sequence. There are no violations of the definition of
BEFORE.

5.6.2.5 Litmus Test 5 (Sequence Okay)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[V2]Pj:MB

[U2]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

Analysis:

<1> V1 reading 2 implies U2 ⇐ V1, by storage and visibility.

<2> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<3> V3 reading 1 implies V3 ⇐ U1, by storage and visibility.

There is U2 ⇐ V1 ⇐ V2 ⇐ V3 ⇐ U1. There are no conflicts in this sequence. There
are no violations of the definition of BEFORE.

5.6.2.6 Litmus Test 6 (Sequence Okay)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB

[U3]Pi:W<8>(y,2) [V2]Pj:R<8>(x,1)

Analysis:

<1> U1 ⇐ U2 ⇐ U3, by processor issue constraints.

<2> V1 reading 2 implies U3 ⇐ V1, by storage and visibility.

<3> V2 reading 1 implies V2 ⇐ U1, by storage and visibility.

There is V2 ⇐ U1 ⇐ U2 ⇐ U3 ⇐ V1. There are no conflicts in this sequence. There
are no violations of the definition of BEFORE.
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In litmus tests 4, 5, and 6, writes to two different locations x and y are observed
(by another processor) to occur in the opposite order than that in which they were
performed. An update to y propagates quickly to Pj, but the update to x is delayed,
and Pi and Pj do not both have MBs.

5.6.2.7 Litmus Test 7 (Impossible Sequence)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:R<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:W<8>(y,2) [V3]Pj:R<8>(x,1)

Analysis:

<1> V3 reading 1 implies V3 ⇐ U1, by storage and visibility.

<2> V1 reading 2 implies U3 ⇐ V1, by storage and visibility.

<3> U1 ⇐ U2 ⇐ U3, by processor issue constraints.

<4> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<5> By <2>, <3>, and <4>, U1 ⇐ U2 ⇐ U3 ⇐ V1 ⇐ V2 ⇐ V3.

Both <1> and <5> cannot be true, so if V1 reads 2, then V3 must also read 2.

If both x and y are in memory-like regions, the sequence remains impossible if U2
is changed to a WMB. Similarly, if both x and y are in non-memory-like regions, the
sequence remains impossible if U2 is changed to a WMB.

5.6.2.8 Litmus Test 8 (Impossible Sequence)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(y,2)

[U2]Pi:MB [V2]Pj:MB

[U3]Pi:R<8>(y,1) [V3]Pj:R<8>(x,1)

Analysis:

<1> V3 reading 1 implies V3 ⇐ U1, by storage and visibility.

<2> U3 reading 1 implies U3 ⇐ V1, by storage and visibility.

<3> U1 ⇐ U2 ⇐ U3, by processor issue constraints.

<4> V1 ⇐ V2 ⇐ V3, by processor issue constraints.

<5> By <2>, <3>, and <4>, U1 ⇐ U2 ⇐ U3 ⇐ V1 ⇐ V2 ⇐ V3.

Both <1> and <5> cannot be true, so if U3 reads 1, then V3 must read 2, and vice
versa.

5–20 Alpha Architecture Handbook



5.6.2.9 Litmus Test 9 (Impossible Sequence)

Pi Pj

[U1]Pi:W<8>(x,2) [V1]Pj:W<8>(x,3)

[U2]Pi:R<8>(x,2) [V2]Pj:R<8>(x,3)

[U3]Pi:R<8>(x,3) [V3]Pj:R<8>(x,2)

Analysis:

<1> V3 reading 2 implies U1 is the latest write to x visible to V3, therefore
V1 ⇐ U1.

<2> U3 reading 3 implies V1 is the latest write to x visible to U3, therefore
U1 ⇐ V1.

Both <1> and <2> cannot be true. Time cannot go backwards. If V3 reads 2, then
U3 must read 2. Alternatively, if U3 reads 3, then V3 must read 3.

5.6.2.10 Litmus Test 10 (Sequence Okay)

For an aligned quadword location, x, initially 10000000116:

Pi Pj

[U1]Pi:W<4>(x,2) [V1]Pj:W<4>(x+4,2)

[U2]Pi:R<8>(x,10000000216) [V2]Pj:R<8>(x,20000000116)

Analysis:

<1> Since U2 reads 1 from x+4, V1 is not visible to U2. Thus U2 ⇐ V1.

<2> Similarly, V2 ⇐ U1.

<3> U1 is visible to U2, but since they are issued by the same processor, it is
not necessarily the case that U1 ⇐ U2.

<4> Similarly, it is not necessarily the case that V1 ⇐ V2.

There is no ordering cycle, so the sequence is permitted.

5.6.2.11 Litmus Test 11 (Impossible Sequence)

For an aligned quadword location, x, initially 10000000116:

Pi Pj

[U1]Pi:W<4>(x,2) [V1]Pj:R<8>(x,20000000116)

[U2]Pi:MB or WMB

[U3]Pi:W<4>(x+4,2)

Analysis:
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<1> V1 reading 20000000116 implies U3 ⇐ V1 ⇐ U1 by storage and visibility.

<2> U1 ⇐ U2 ⇐ U3, by processor issue constraints.

Both <1> and <2> cannot be true.

5.6.3 Implied Barriers

There are no implied barriers in Alpha. If an implied barrier is needed for
functionally correct access to shared data, it must be written as an explicit
instruction. (Software must explicitly include any needed MB, WMB, or CALL_
PAL IMB instructions.)

Alpha transitions such as the following have no built-in implied memory barriers:

• Entry to PALcode

• Sending and receiving interrupts

• Returning from exceptions, interrupts, or machine checks

• Swapping context

• Invalidating the Translation Buffer (TB)

Depending on implementation choices for maintaining cache coherency, some
PALcode/cache implementations may have an implied CALL_PAL IMB in the I-
stream TB fill routine, but this is transparent to the non-PALcode programmer.

5.6.4 Implications for Software

Software must explicitly include MB, WMB, or CALL_PAL IMB instructions
according to the following circumstances.

5.6.4.1 Single-Processor Data Stream

No barriers are ever needed. A read to physical address x will always return
the value written by the immediately preceding write to x in the processor issue
sequence.

5.6.4.2 Single-Processor Instruction Stream

An I-fetch from virtual or physical address x does not necessarily return the value
written by the immediately preceding write to x in the issue sequence. To make
the I-fetch reliably get the newly written instruction, a CALL_PAL IMB is needed
between the write and the I-fetch.
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5.6.4.3 Multiple-Processor Data Stream (Including Single Processor with DMA I/O)

Generally, the only way to reliably communicate shared data is to write the shared
data on one processor or DMA I/O device, execute an MB (or the logical equivalent1 if
it is a DMA I/O device), then write a flag (equivalently, send an interrupt) signaling
the other processor that the shared data is ready. Each receiving processor must
read the new flag (equivalently, receive the interrupt), execute an MB, then read or
update the shared data. In the special case in which data is communicated through
just one location in memory, memory barriers are not necessary.

Software Note:

Note that this section does not describe how to reliably communicate data from
a processor to a DMA device. See Section 5.6.4.7.

Leaving out the first MB removes the assurance that the shared data is written
before the flag is written.

Leaving out the second MB removes the assurance that the shared data is read or
updated only after the flag is seen to change; in this case, an early read could see
an old value, and an early update could be overwritten.

This implies that after a DMA I/O device has written some data to memory (such as
paging in a page from disk), the DMA device must logically execute an MB1 before
posting a completion interrupt, and the interrupt handler software must execute an
MB before the data is guaranteed to be visible to the interrupted processor. Other
processors must also execute MBs before they are guaranteed to see the new data.

An important special case occurs when a write is done (perhaps by an I/O device) to
some physical page frame, then an MB is executed, and then a previously invalid
PTE is changed to be a valid mapping of the physical page frame that was just
written. In this case, all processors that access virtual memory by using the newly
valid PTE must guarantee to deliver the newly written data after the TB miss, for
both I-stream and D-stream accesses.

5.6.4.4 Multiple-Processor Instruction Stream (Including Single Processor with DMA I/O)

The only way to update the I-stream reliably is to write the shared I-stream on
one processor or DMA I/O device, then execute a CALL_PAL IMB (or an MB if the
processor is not going to execute the new I-stream, or the logical equivalent of an MB
if it is a DMA I/O device), then write a flag (equivalently, send an interrupt) signaling
the other processor that the shared I-stream is ready. Each receiving processor must
read the new flag (equivalently, receive the interrupt), execute a CALL_PAL IMB,
then fetch the shared I-stream.

1 In this context, the logical equivalent of an MB for a DMA device is whatever is necessary under the applicable I/O
subsystem architecture to ensure that preceding writes will be BEFORE (see Section 5.6.1.2) the subsequent write of
a flag or transmission of an interrupt. Not all I/O devices behave exactly as required by the Alpha architecture. To
interoperate properly with those devices, some special action might be required by the program executing on the CPU.
For example, PCI bus devices require that after the CPU has received an interrupt, the CPU must read a CSR location
on the PCI device, execute an MB, then read or update the shared data. From the perspective of the Alpha architecture,
this CSR read can be regarded as a necessary assist to help the DMA I/O device complete its logical equivalent of an MB.
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Software Note:

Note that this section does not describe how to reliably communicate I-stream
from a processor to a DMA device. See Section 5.6.4.7.

Leaving out the first CALL_PAL IMB (or MB) removes the assurance that the shared
I-stream is written before the flag.

Leaving out the second CALL_PAL IMB removes the assurance that the shared I-
stream is read only after the flag is seen to change; in this case, an early read could
see an old value.

This implies that after a DMA I/O device has written some I-stream to memory (such
as paging in a page from disk), the DMA device must logically execute an MB1 before
posting a completion interrupt, and the interrupt handler software must execute a
CALL_PAL IMB before the I-stream is guaranteed to be visible to the interrupted
processor. Other processors must also execute CALL_PAL IMB instructions before
they are guaranteed to see the new I-stream.

An important special case occurs under the following circumstances:

1. A write (perhaps by an I/O device) is done to some physical page frame.

2. A CALL_PAL IMB (or MB) is executed.

3. A previously invalid PTE is changed to be a valid mapping of the physical page
frame that was written in step 1.

In this case, all processors that access virtual memory by using the newly valid PTE
must guarantee to deliver the newly written I-stream after the TB miss.

5.6.4.5 Multiple-Processor Context Switch

If a process migrates from executing on one processor to executing on another, the
context switch operating system code must include a number of barriers.

A process migrates by having its context stored into memory, then eventually having
that context reloaded on another processor. In between, some shared mechanism
must be used to communicate that the context saved in memory by the first processor
is available to the second processor. This could be done by using an interrupt, by
using a flag bit associated with the saved context, or by using a shared-memory
multiprocessor data structure, as follows:

First Processor Second Processor

:
Save state of current process.
MB [1]
Pass ownership of process context
data structure memory.

⇒ Pick up ownership of process context
data structure memory.
MB [2]
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First Processor Second Processor

Restore state of new process context data
structure memory.
Make I-stream coherent [3].
Make TB coherent [4].
:
Execute code for new process that
accesses memory that is not common to
all processes.

MB [1] ensures that the writes done to save the state of the current process happen
before the ownership is passed.

MB [2] ensures that the reads done to load the state of the new process happen
after the ownership is picked up and hence are reliably the values written by the
processor saving the old state. Leaving this MB out makes the code fail if an old
value of the context remains in the second processor’s cache and invalidates from
the writes done on the first processor are not delivered soon enough.

The TB on the second processor must be made coherent with any write to the page
tables that may have occurred on the first processor just before the save of the process
state. This must be done with a series of TB invalidate instructions to remove any
nonglobal page mapping for this process, or by assigning an ASN that is unused on
the second processor to the process. One of these actions must occur sometime before
starting execution of the code for the new process that accesses memory (instruction
or data) that is not common to all processes. A common method is to assign a new
ASN after gaining ownership of the new process and before loading its context, which
includes its ASN.

The D-cache on the second processor must be made coherent with any write to the D-
stream that may have occurred on the first processor just before the save of process
state. This is ensured by MB [2] and does not require any additional instructions.

The I-cache on the second processor must be made coherent with any write to the
I-stream that may have occurred on the first processor just before the save of process
state. This can be done with a CALL_PAL IMB sometime before the execution of
any code that is not common to all processes, More commonly, this can be done by
forcing a TB miss (via the new ASN or via TB invalidate instructions) and using the
TB-fill rule (see Section 5.6.4.3). This latter approach does not require any additional
instruction.
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Combining all these considerations gives:

First Processor Second Processor

:
Pick up ownership of process
context data structure memory.
MB
Assign new ASN or invalidate TBs.
Save state of current process.
Restore state of new process.
MB :
Pass ownership of process context
data structure memory.

⇒ Pickup ownership of new process context
data structure memory.

: MB
: Assign new ASN or invalidate TBs.

Save state of current process.
Restore state of new process.
MB
Pass ownership of old process context
data structure memory.
:
Execute code for new process that
accesses memory that is not common to
all processes.

On a single processor, there is no need for the barriers.

5.6.4.6 Multiple-Processor Send/Receive Interrupt

If one processor writes some shared data, then sends an interrupt to a second
processor, and that processor receives the interrupt, then accesses the shared data,
the sequence from Section 5.6.4.3 must be used:

First Processor Second Processor

:
Write data
MB
Send interrupt ⇒ Receive interrupt

MB
Access data
:

Leaving out the MB at the beginning of the interrupt-receipt routine causes the
code to fail if an old value of the context remains in the second processor’s cache,
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and invalidates from the writes done on the first processor are not delivered soon
enough.

5.6.4.7 Implications for Memory Mapped I/O

Sections 5.6.4.3 and 5.6.4.4 describe methods for communicating data from a
processor or DMA I/O device to another processor that work reliably in all Alpha
systems. Special considerations apply to the communication of data or I-stream
from a processor to a DMA I/O device. These considerations arise from the use of
bridges to connect to I/O buses with devices that are accessible by memory accesses
to non-memory-like regions of physical memory.

The following communication method works in all Alpha systems.

To reliably communicate shared data from a processor to an I/O device:

1. Write the shared data to a memory-like physical memory region on the
processor.

2. Execute an MB instruction.

3. Write a flag (equivalently, send an interrupt or write a register location
implemented in the I/O device).

The receiving I/O device must:

1. Read the flag (equivalently, detect the interrupt or detect the write to the
register location implemented in the I/O device).

2. Execute the equivalent of an MB1

3. Read the shared data.

As shown in Section 5.6.4.3, leaving out the memory barrier removes the assurance
that the shared data is written before the flag is. Unlike the case in Section 5.6.4.3,
writing the shared data to a non-memory-like physical memory region removes
the assurance that the I/O device will detect the writes of the shared data before
detecting the flag write, interrupt, or device register write.

This implies that after a processor has prepared a data buffer to be read from memory
by a DMA I/O device (such as writing a buffer to disk), the processor must execute
an MB before starting the I/O. The I/O device, after receiving the start signal, must
logically execute an MB before reading the data buffer, and the buffer must be located
in a memory-like physical memory region.

There are methods of communicating data that may work in some systems but are
not guaranteed in all systems. Two notable examples are:

1. If an Alpha processor writes a location implemented in a component located on
an I/O bus in the system, then executes a memory barrier, then writes a flag in
some memory location (in a memory-like or non-memory-like region), a device

1 In this context, the logical equivalent of an MB for a DMA device is whatever is necessary under the applicable I/O
subsystem architecture to ensure that preceding writes will be BEFORE (see Section 5.6.1.2) the subsequent reads of
shared data. Typically, this action is defined to be present between every read and write access done by the I/O device,
according to the applicable I/O subsystem architecture.
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on the I/O bus may be able to detect (via read access) the result of the flag in
memory write and the write of the location on the I/O bus out of order (that
is, in a different order than the order in which the Alpha processor wrote those
locations).

2. If an Alpha processor writes a location that is a control register within an I/O
device, then executes a memory barrier, then writes a location in memory (in a
memory-like or non-memory-like region), the I/O device may be able to detect
(via read access) the result of the memory write before receiving and responding
to the write of its own control register.

In almost every case, a mechanism that ensures the completion of writes to
control register locations within I/O devices is provided. The normal and strongly
recommended mechanism is to read a location after writing it, which guarantees
that the write is complete. In any case, all systems that use a particular I/O device
should provide the same mechanism for that device.

5.6.4.8 Multiple Processors Writing to a Single I/O Device

Generally, for multiple processors to cooperate in writing to a single I/O device, the
first processor must write to the device, execute an MB, then somehow notify other
processors. Another processor that intends to write the same I/O device after the
first processor must receive the notification, execute an MB, and then write to the
I/O device.

For example:

First Processor Second Processor

:
Write CSR_A
MB
Write flag (in memory) ⇒ Read flag (in memory)

MB
Write CSR_B
:

The MB on the first processor guarantees that the write to CSR_A precedes the write
to flag in memory, as perceived on other processors. (The MB does not guarantee
that the write to CSR_A has completed. See Section 5.6.4.7 for a discussion of how a
processor can guarantee that a write to an I/O device has completed at that device.)
The MB on the second processor guarantees that the write to CSR_B will reach the
I/O device after the write to CSR_A.

5.6.5 Implications for Hardware

The coherency point for physical address x is the place in the memory subsystem at
which accesses to x are ordered. It may be at a main memory board, or at a cache
containing x exclusively, or at the point of winning a common bus arbitration.
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The coherency point for x may move with time, as exclusive access to x migrates
between main memory and various caches.

MB and CALL_PAL IMB force all preceding writes to at least reach their respective
coherency points. This does not mean that main-memory writes have been done,
just that the order of the eventual writes is committed. For example, on the XMI
with retry, this means getting the writes acknowledged as received with good parity
at the inputs to memory board queues; the actual RAM write happens later.

MB and CALL_PAL IMB also force all queued cache invalidates to be delivered to
the local caches before starting any subsequent reads (that may otherwise cache hit
on stale data) or writes (that may otherwise write the cache, only to have the write
effectively overwritten by a late-delivered invalidate).

WMB ensures that the final order of writes to memory-like regions is committed and
that the final order of writes to non-memory-like regions is committed. This does not
imply that the final order of writes to memory-like regions relative to writes to non-
memory-like regions is committed. It also prevents writes that precede the WMB
from merging with writes that follow the WMB. For example, an implementation
with a write buffer might implement WMB by closing all valid write buffer entries
from further merging and then drain the write buffer entries in order.

Implementations may allow reads of x to hit (by physical address) on pending writes
in a write buffer, even before the writes to x reach the coherency point for x. If this
is done, it is still true that no earlier value of x may subsequently be delivered to
the processor that took the hit on the write buffer value.

Virtual data caches are allowed to deliver data before doing address translation, but
only if there cannot be a pending write under a synonym virtual address. Lack of a
write-buffer match on untranslated address bits is sufficient to guarantee this.

Virtual data caches must invalidate or otherwise become coherent with the new value
whenever a PALcode routine is executed that affects the validity, fault behavior,
protection behavior, or virtual-to-physical mapping specified for one or more pages.
Becoming coherent can be delayed until the next subsequent MB instruction or TB
fill (using the new mapping) if the implementation of the PALcode routine always
forces a subsequent TB fill.

5.7 Arithmetic Traps

Alpha implementations are allowed to execute multiple instructions concurrently
and to forward results from one instruction to another. Thus, when an arithmetic
trap is detected, the PC may have advanced an arbitrarily large number of
instructions past the instruction T (calculating result R) whose execution triggered
the trap.

When the trap is detected, any or all of these subsequent instructions may run to
completion before the trap is actually taken. Instruction T and the set of instructions
subsequent to T that complete before the trap is taken are collectively called the trap
shadow of T. The PC pushed on the stack when the trap is taken is the PC of the
first instruction past the trap shadow.
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The instructions in the trap shadow of T may use the UNPREDICTABLE result R
of T, they may generate additional traps, and they may completely change the PC
(branches, JSR).

Thus, by the time a trap is taken, the PC pushed on the stack may bear no
useful relationship to the PC of the trigger instruction T, and the state visible to
the programmer may have been updated using the UNPREDICTABLE result R. If
an instruction in the trap shadow of T uses R to calculate a subsequent register
value, that register value is UNPREDICTABLE, even though there may be no trap
associated with the subsequent calculation. Similarly:

• If an instruction in the trap shadow of T stores R or any subsequent
UNPREDICTABLE result, the stored value is UNPREDICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent
UNPREDICTABLE result as the basis of a conditional or calculated branch, the
branch target is UNPREDICTABLE.

• If an instruction in the trap shadow of T uses R or any subsequent
UNPREDICTABLE result as the basis of an address calculation, the memory
address actually accessed is UNPREDICTABLE.

Software that is intended to bound how far the PC may advance before taking a
trap, or how far an UNPREDICTABLE result may propagate, must insert TRAPB
instructions at appropriate points.

Software that is intended to continue from a trap by supplying a well-defined result
R within an arithmetic trap handler, can do so reliably by following the rules for
software completion code sequences given in Section 4.7.6.

5–30 Alpha Architecture Handbook



Chapter 6

Common PALcode Architecture (I)

6.1 PALcode

In a family of machines, both users and operating system implementors require
functions to be implemented consistently. When functions conform to a common
interface, the code that uses those functions can be used on several different
implementations without modification.

These functions range from the binary encoding of the instruction and data to the
exception mechanisms and synchronization primitives. Some of these functions can
be implemented cost effectively in hardware, but others are impractical to implement
directly in hardware. These functions include low-level hardware support functions
such as Translation Buffer miss fill routines, interrupt acknowledge, and vector
dispatch. They also include support for privileged and atomic operations that require
long instruction sequences.

In the VAX, these functions are generally provided by microcode. This is not seen as
a problem because the VAX architecture lends itself to a microcoded implementation.

One of the goals of Alpha architecture is to implement functions consistently without
microcode. However, it is still desirable to provide an architected interface to these
functions that will be consistent across the entire family of machines. The Privileged
Architecture Library (PALcode) provides a mechanism to implement these functions
without microcode.

6.2 PALcode Instructions and Functions

PALcode is used to implement the following functions:

• Instructions that require complex sequencing as an atomic operation

• Instructions that require VAX style interlocked memory access

• Privileged instructions

• Memory management control, including translation buffer (TB) management

• Context swapping

• Interrupt and exception dispatching

• Power-up initialization and booting

• Console functions

• Emulation of instructions with no hardware support
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The Alpha architecture lets these functions be implemented in standard machine
code that is resident in main memory. PALcode is written in standard machine
code with some implementation-specific extensions to provide access to low-level
hardware. This lets an Alpha implementation make various design trade-offs based
on the hardware technology being used to implement the machine. The PALcode
can abstract these differences and make them invisible to system software.

For example, in a MOS VLSI implementation, a small (32-entry) fully associative
TB can be the right match to the media, given that chip area is a costly resource.
In an ECL version, a large (1024 entry) direct-mapped TB can be used because it
will use RAM chips and does not have fast associative memories available. This
difference would be handled by implementation-specific versions of the PALcode on
the two systems, both versions providing transparent TB miss service routines. The
operating system code would not need to know there were any differences.

An Alpha Privileged Architecture Library (PALcode) of routines and environments
is supplied by Digital. Other systems may use a library supplied by Digital or
architect and implement a different library of routines. Alpha systems are required
to support the replacement of PALcode defined by Digital with an operating system-
specific version.

6.3 PALcode Environment

The PALcode environment differs from the normal environment in the following
ways:

• Complete control of the machine state.

• Interrupts are disabled.

• Implementation-specific hardware functions are enabled, as described below.

• I-stream memory management traps are prevented (by disabling I-stream
mapping, mapping PALcode with a permanent TB entry, or by other
mechanisms).

Complete control of the machine state allows all functions of the machine to be
controlled. Disabling interrupts allows the system to provide multi-instruction
sequences as atomic operations. Enabling implementation-specific hardware
functions allows access to low-level system hardware. Preventing I-stream memory
management traps allows PALcode to implement memory management functions
such as translation buffer fill.

6.4 Special Functions Required for PALcode

PALcode uses the Alpha instruction set for most of its operations. A small
number of additional functions are needed to implement the PALcode. Five opcodes
are reserved to implement PALcode functions: PAL19, PAL1B, PAL1D, PAL1E,
and PAL1F. These instructions produce an trap if executed outside the PALcode
environment.

6–2 Alpha Architecture Handbook



• PALcode needs a mechanism to save the current state of the machine and
dispatch into PALcode.

• PALcode needs a set of instructions to access hardware control registers.

• PALcode needs a hardware mechanism to transition the machine from the
PALcode environment to the non-PALcode environment. This mechanism loads
the PC, enables interrupts, enables mapping, and disables PALcode privileges.

An Alpha implementation may also choose to provide additional functions to simplify
or improve performance of some PALcode functions. The following are some
examples:

• An Alpha implementation may include a read/write virtual function that allows
PALcode to perform mapped memory accesses using the mapping hardware
rather than providing the virtual-to-physical translation in PALcode routines.
PALcode may provide a special function to do physical reads and writes and
have the Alpha loads and stores continue to operate on virtual address in the
PALcode environment.

• An Alpha implementation may include hardware assists for various functions,
such as saving the virtual address of a reference on a memory management error
rather than having to generate it by simulating the effective address calculation
in PALcode.

• An Alpha implementation may include private registers so it can function without
having to save and restore the native general registers.

6.5 PALcode Effects on System Code

PALcode will have one effect on system code. Because PALcode may reside in main
memory and maintain privileged data structures in main memory, the operating
system code that allocates physical memory cannot use all of physical memory.

The amount of memory PALcode requires is small, so the loss to the system is
negligible.

6.6 PALcode Replacement

Alpha systems are required to support the replacement of PALcode supplied by
Digital with an operating system-specific version. The following functions must be
implemented in PALcode, not directly in hardware, to facilitate replacement with
different versions.

1. Translation Buffer fill. Different operating systems will want to replace the
Translation Buffer (TB) fill routines. The replacement routines will use different
data structures. Page tables will not be present in these systems. Therefore, no
portion of the TB fill flow that would change with a change in page tables may
be placed in hardware, unless it is placed in a manner that can be overridden by
PALcode.
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2. Process structure. Different operating systems might want to replace the process
context switch routines. The replacement routines will use different data
structures. The HWPCB or PCB will not be present in these systems. Therefore,
no portion of the context switching flows that would change with a change in
process structure may be placed in hardware.

PALcode can be viewed as consisting of the following somewhat intertwined
components:

• Chip/architecture component

• Hardware platform component

• Operating system component

PALcode should be written modularly to facilitate the easy replacement or
conditional building of each component. Such a practice simplifies the integration
of CPU hardware, system platform hardware, console firmware, operating system
software, and compilers.

PALcode subsections that are commonly subject to modification include:

• Translation Buffer fill

• Process structure and context switch

• Interrupt and exception frame format and routine dispatch

• Privileged PALcode instructions

• Transitions to and from console I/O mode

• Power-up reset

6.7 Required PALcode Instructions

The PALcode instructions listed in Table 6–1 and Appendix C must be recognized
by mnemonic and opcode in all operating system implementations, but the effect of
each instruction is dependent on the implementation. Digital defines the operation
of these PALcode instructions for operating system implementations supplied by
Digital.

Table 6–1: PALcode Instructions that Require Recognition

Mnemonic Name

BPT Breakpoint trap

BUGCHK Bugcheck trap

CSERVE Console service

GENTRAP Generate trap

RDUNIQUE Read unique value
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Table 6–1 (Cont.): PALcode Instructions that Require Recognition

Mnemonic Name

SWPPAL Swap PALcode

WRUNIQUE Write unique value

The PALcode instructions listed in Table 6–2 and described in the following sections
must be supported by all Alpha implementations:

Table 6–2: Required PALcode Instructions

Mnemonic Type Operation

DRAINA Privileged Drain aborts

HALT Privileged Halt processor

IMB Unprivileged I-stream memory barrier
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6.7.1 Drain Aborts

Format:

CALL_PAL DRAINA !PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

{Stall instruction issuing until all prior
instructions are guaranteed to complete
without incurring aborts.}

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL DRAINA Drain Aborts

Description:

If aborts are deliberately generated and handled (such as nonexistent memory aborts
while sizing memory or searching for I/O devices), the DRAINA instruction forces
any outstanding aborts to be taken before continuing.

Aborts are necessarily implementation dependent. DRAINA stalls instruction issue
at least until all previously issued instructions have completed and any associated
aborts have been signaled, as follows:

• For operate instructions, this usually means stalling until the result register has
been written.

• For branch instructions, this usually means stalling until the result register and
PC have been written.

• For load instructions, this usually means stalling until the result register has
been written.

• For store instructions, this usually means stalling until at least the first level in
a potentially multilevel memory hierarchy has been written.

For load instructions, DRAINA does not necessarily guarantee that the unaccessed
portions of a cache block have been transferred error free before continuing.
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For store instructions, DRAINA does not necessarily guarantee that the ultimate
target location of the store has received error-free data before continuing.
An implementation-specific technique must be used to guarantee the ultimate
completion of a write in implementations that have multilevel memory hierarchies
or store-and-forward bus adapters.
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6.7.2 Halt

Format:

CALL_PAL HALT !PALcode format

Operation:

IF PS<CM> NE 0 THEN
{privileged instruction exception}

CASE {halt_action} OF
! Operating System or Platform dependent choice

halt: {halt}
restart/boot/halt: {restart/boot/halt}
boot/halt: {boot/halt}
debugger/halt: {debugger/halt}
restart/halt: {restart/halt}

ENDCASE

Exceptions:

Privileged Instruction

Instruction mnemonics:

CALL_PAL HALT Halt Processor

Description:

The HALT instruction stops normal instruction processing and initiates some other
operating system or platform-specific behavior, depending on the HALT action
setting. The choice of behavior typically includes the initiation of a restart sequence,
a system bootstrap, or entry into console mode. See Console Interface (III), Chapter
3.
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6.7.3 Instruction Memory Barrier

Format:

CALL_PAL IMB !PALcode format

Operation:

{Make instruction stream coherent with Data stream}

Exceptions:

None

Instruction mnemonics:

CALL_PAL IMB I-stream Memory Barrier

Description:

An IMB instruction must be executed after software or I/O devices write into the
instruction stream or modify the instruction stream virtual address mapping, and
before the new value is fetched as an instruction. An implementation may contain
an instruction cache that does not track either processor or I/O writes into the
instruction stream. The instruction cache and memory are made coherent by an
IMB instruction.

If the instruction stream is modified and an IMB is not executed before fetching an
instruction from the modified location, it is UNPREDICTABLE whether the old or
new value is fetched.

Software Note:

In a multiprocessor environment, executing an IMB on one processor does not
affect instruction caches on other processors. Thus, a single IMB on one processor
is insufficient to guarantee that all processors see a modification of the instruction
stream.

The cache coherency and sharing rules are described in Chapter 5.
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Chapter 7

Console Subsystem Overview (I)

On an Alpha system, underlying control of the system platform hardware is provided
by a console subsystem. The console subsystem:

1. Initializes, tests, and prepares the system platform hardware for Alpha system
software.

2. Bootstraps (loads into memory and starts the execution of) system software.

3. Controls and monitors the state and state transitions of each processor in a
multiprocessor system.

4. Provides services to system software that simplify system software control of and
access to platform hardware.

5. Provides a means for a console operator to monitor and control the system.

The console subsystem interacts with system platform hardware to accomplish the
first three tasks. The actual mechanisms of these interactions are specific to the
platform hardware; however, the net effects are common to all systems.

The console subsystem interacts with system software once control of the system
platform hardware has been transferred to that software.

The console subsystem interacts with the console operator through a virtual display
device or console terminal. The console operator may be a person or a management
application.
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Chapter 8

Input/Output Overview (I)

Conceptually, Alpha systems can consist of processors, memory, a processor-memory
interconnect (PMI), I/O buses, bridges, and I/O devices.

Figure 8–1 shows the Alpha system overview.

Figure 8–1: Alpha System Overview

Processor-Memory Interconnect

I/O Device Processor Memory

I/O Bus

I/O Device I/O Device

Bridge

As shown in Figure 8–1, processors, memory, and possibly I/O devices, are connected
by a PMI.

A bridge connects an I/O bus to the system, either directly to the PMI or through
another I/O bus. The I/O bus address space is available to the processor either
directly or indirectly. Indirect access is provided through either an I/O mailbox or
an I/O mapping mechanism. The I/O mapping mechanism includes provisions for
mapping between PMI and I/O bus addresses and access to I/O bus operations.

Alpha I/O operations can include:

• Accesses between the processor and an I/O device across the PMI

• Accesses between the processor and an I/O device across an I/O bus

• DMA accesses — I/O devices initiating reads and writes to memory

• Processor interrupts requested by devices

• Bus-specific I/O accesses

Input/Output Overview (I) 8–1





Chapter 9

OpenVMS Alpha

The following sections specify the Privileged Architecture Library (PALcode)
instructions, that are required to support an OpenVMS Alpha system.

9.1 Unprivileged OpenVMS Alpha PALcode Instructions

The unprivileged PALcode instructions provide support for system operations to all
modes of operation (kernel, executive, supervisor, and user).

Table 9–1 describes the unprivileged OpenVMS Alpha PALcode instructions.

Table 9–1: Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description

BPT Breakpoint

The BPT instruction is provided for program debugging. It switches the
processor to kernel mode and pushes R2..R7, the updated PC, and PS on
the kernel stack. It then dispatches to the address in the Breakpoint vector,
stored in a control block.

BUGCHK Bugcheck

The BUGCHK instruction is provided for error reporting. It switches the
processor to kernel mode and pushes R2..R7, the updated PC, and PS on the
kernel stack. It then dispatches to the address in the bugcheck vector, stored
in a control block.

CHME Change mode to executive

The CHME instruction allows a process to change its mode in a controlled
manner.

A change in mode also results in a change of stack pointers: the old pointer
is saved, the new pointer is loaded. Registers R2..R7, PS, and PC are pushed
onto the selected stack. The saved PC addresses the instruction following the
CHME instruction.

CHMK Change mode to kernel

The CHMK instruction allows a process to change its mode to kernel in a
controlled manner.

A change in mode also results in a change of stack pointers: the old pointer
is saved, the new pointer is loaded. R2..R7, PS, and PC are pushed onto the
kernel stack. The saved PC addresses the instruction following the CHMK
instruction.
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Table 9–1 (Cont.): Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description

CHMS Change mode to supervisor

The CHMS instruction allows a process to change its mode in a controlled
manner.

A change in mode also results in a change of stack pointers: the old pointer
is saved, the new pointer is loaded. R2..R7, PS, and PC are pushed onto the
selected stack. The saved PC addresses the instruction following the CHMS
instruction.

CHMU Change mode to user

The CHMU instruction allows a process to call a routine via the change mode
mechanism.

R2..R7, PS, and PC are pushed onto the current stack. The saved PC
addresses the instruction following the CHMU instruction.

CLRFEN Clear floating-point enable

The CLRFEN instruction writes a zero to the floating-point enable register.

GENTRAP Generate trap

The GENTRAP instruction is provided for reporting runtime software
conditions. It switches the processor to kernel mode and pushes registers
R2..R7, the updated PC, and the PS on the kernel stack. It then dispatches
to the address of the GENTRAP vector, stored in a control block.

IMB I-Stream memory barrier

The IMB instruction ensures that the contents of an instruction cache are
coherent after the instruction stream has been modified by software or I/O
devices.

If the instruction stream is modified and an IMB is not executed before
fetching an instruction from the modified location, it is UNPREDICTABLE
whether the old or new value is fetched.

INSQHIL Insert into longword queue at header, interlocked

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

INSQHILR Insert into longword queue at header, interlocked resident

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

This instruction requires that the queue be memory-resident and that the
queue header and elements are quadword-aligned.
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Table 9–1 (Cont.): Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description

INSQHIQ Insert into quadword queue at header, interlocked

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

INSQHIQR Insert into quadword queue at header, interlocked resident

The entry specified in R17 is inserted into the self-relative queue following
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

This instruction requires that the queue be memory-resident and that the
queue header and elements are octaword-aligned.

INSQTIL Insert into longword queue at tail, interlocked

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

INSQTILR Insert into longword queue at tail, interlocked resident

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

This instruction requires that the queue be memory-resident and that the
queue header and elements are quadword-aligned.

INSQTIQ Insert into quadword queue at tail, interlocked

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

INSQTIQR Insert into quadword queue at tail, interlocked resident

The entry specified in R17 is inserted into the self-relative queue preceding
the header specified in R16. The insertion is a noninterruptible operation.
The insertion is interlocked to prevent concurrent interlocked insertions or
removals at the head or tail of the same queue by another process, in a
multiprocessor environment.

This instruction requires that the queue be memory-resident and that the
queue header and elements are octaword-aligned.
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Table 9–1 (Cont.): Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description

INSQUEL Insert into longword queue

The entry specified in R17 is inserted into the absolute queue following
the entry specified by the predecessor addressed by R16 for INSQUEL, or
following the entry specified by the contents of the longword addressed by
R16 for INSQUEL/D. The insertion is a noninterruptible operation.

INSQUEQ Insert into quadword queue

The entry specified in R17 is inserted into the absolute queue following
the entry specified by the predecessor addressed by R16 for INSQUEQ, or
following the entry specified by the contents of the quadword addressed by
R16 for INSQUEQ/D. The insertion is a noninterruptible operation.

PROBE Probe read/write access

PROBE checks the read (PROBER) or write (PROBEW) accessibility of the
first and last byte specified by the base address and the signed offset; the
bytes in between are not checked. System software must check all pages
between the two bytes if they are to be accessed.

PROBE is only intended to check a single datum for accessibility.

RD_PS Read processor status

RD_PS writes the Processor Status (PS) to register R0.

READ_UNQ Read unique context

READ_UNQ reads the hardware process (thread) unique context value, if
previously written by WRITE_UNQ, and places that value in R0.

REI Return from exception or interrupt

The PS, PC, and saved R2..R7 are popped from the current stack and held in
temporary registers. The new PS is checked for validity and consistency. If
it is valid and consistent, the current stack pointer is then saved and a new
stack pointer is selected. Registers R2 through R7 are restored by using the
saved values held in the temporary registers. A check is made to determine
if an AST or interrupt is pending.

If the enabling conditions are present for an interrupt or AST at the
completion of this instruction, the interrupt or AST occurs before the next
instruction.

REMQHIL Remove from longword queue at header, interlocked

The self-relative queue entry following the header, pointed to by R16, is
removed from the queue, and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.
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Table 9–1 (Cont.): Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description

REMQHILR Remove from longword queue at header, interlocked resident

The queue entry following the header, pointed to by R16, is removed from
the self-relative queue, and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.

This instruction requires that the queue be memory-resident and that the
queue header and elements are quadword-aligned.

REMQHIQ Remove from quadword queue at header, interlocked

The self-relative queue entry following the header, pointed to by R16, is
removed from the queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.

REMQHIQR Remove from quadword queue at header, interlocked resident

The queue entry following the header, pointed to by R16, is removed from
the self-relative queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.

This instruction requires that the queue be memory-resident and that the
queue header and elements are octaword-aligned.

REMQTIL Remove from longword queue at tail, interlocked

The queue entry preceding the header, pointed to by R16, is removed from
the self-relative queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.

REMQTILR Remove from longword queue at tail, interlocked resident

The queue entry preceding the header, pointed to by R16, is removed from
the self-relative queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.

This instruction requires that the queue be memory-resident and that the
queue header and elements are quadword-aligned.

REMQTIQ Remove from quadword queue at tail, interlocked

The self-relative queue entry preceding the header, pointed to by R16, is
removed from the queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.
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Table 9–1 (Cont.): Unprivileged OpenVMS Alpha PALcode Instruction Summary

Mnemonic Operation and Description

REMQTIQR Remove from quadword queue at tail, interlocked resident

The queue entry preceding the header, pointed to by R16, is removed from
the self-relative queue and the address of the removed entry is returned in
R1. The removal is interlocked to prevent concurrent interlocked insertions
or removals at the head or tail of the same queue by another process, in a
multiprocessor environment. The removal is a noninterruptible operation.

This instruction requires that the queue be memory-resident and that the
queue header and elements are octaword-aligned.

REMQUEL Remove from longword queue

The queue entry addressed by R16 for REMQUEL or the entry addressed
by the longword addressed by R16 for REMQUEL/D is removed from the
longword absolute queue, and the address of the removed entry is returned
in R1. The removal is a noninterruptible operation.

REMQUEQ Remove from quadword queue

The queue entry addressed by R16 for REMQUEQ or the entry addressed
by the quadword addressed by R16 for REMQUEL/D is removed from the
quadword absolute queue, and the address of the removed entry removed is
returned in R1. The removal is a noninterruptible operation.

RSCC Read system cycle counter

Register R0 is written with the value of the system cycle counter. This counter
is an unsigned 64-bit integer that increments at the same rate as the process
cycle counter.

The system cycle counter is suitable for timing a general range of intervals to
within 10% error and may be used for detailed performance characterization.

SWASTEN Swap AST enable

SWASTEN swaps the AST enable bit for the current mode. The new state for
the enable bit is supplied in register R16<0> and previous state of the enable
bit is returned, zero-extended, in R0.

A check is made to determine if an AST is pending. If the enabling conditions
are present for an AST at the completion of this instruction, the AST occurs
before the next instruction.

WRITE_UNQ Write unique context

WRITE_UNQ writes the hardware process (thread) unique context value
passed in R16 to internal storage or to the hardware privileged context block.

WR_PS_SW Write processor status software field

WR_PS_SW writes the Processor Status software field (PS<SW>) with the
low-order three bits of R16<2:0>.
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9.2 Privileged OpenVMS Alpha Palcode Instructions

The privileged PALcode instructions can be called in kernel mode only.

Table 9–2 describes the privileged OpenVMS Alpha PALcode instructions.

Table 9–2: Privileged OpenVMS Alpha PALcode Instructions Summary

Mnemonic Operation and Description

CFLUSH Cache flush

At least the entire physical page specified by a page frame number in R16
is flushed from any data caches associated with the current processor. After
doing a CFLUSH, the first subsequent load on the same processor to an
arbitrary address in the target page is fetched from physical memory.

CSERVE Console service

CSERVE is specific to each PALcode and console implementation and is not
intended for operating system use.

DRAINA Drain aborts

DRAINA stalls instruction issuing until all prior instructions are guaranteed
to complete without incurring aborts.

HALT Halt processor

The HALT instruction stops normal instruction processing.

LDQP Load quadword physical

The quadword-aligned memory operand, whose physical address is in R16, is
fetched and written to R0.

If the operand address in R16 is not quadword-aligned, the result is
UNPREDICTABLE.

MFPR Move from processor register

The internal processor register specified by the PALcode function field is
written to R0.

MTPR Move to processor register

The source operands in integer registers R16 (and R17, reserved for future
use) are written to the internal processor register specified by the PALcode
function field. The effect of loading a processor register is guaranteed to be
active on the next instruction.

STQP Store quadword physical

The quadword contents of R17 are written to the memory location whose
physical address is in R16.

If the operand address in R16 is not quadword-aligned, the result is
UNPREDICTABLE.
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Table 9–2 (Cont.): Privileged OpenVMS Alpha PALcode Instructions Summary

Mnemonic Operation and Description

SWPCTX Swap privileged context

The SWPCTX instruction returns ownership of the data structure that
contains the current hardware privileged context (the HWPCB) to the
operating system and passes ownership of the new HWPCB to the processor.

SWPPAL Swap PALcode image

SWPPAL causes the current PALcode to be replaced by the specified new
PALcode image. Intended for use by operating systems only during bootstraps
and by consoles during transitions to console I/O mode.

WTINT Wait for interrupt

The WTINT instruction requests that, if possible, the PALcode wait for the
first of either of the following conditions before returning: any interrupt other
than a clock tick; or, the first clock tick after a specified number of clock ticks
has been skipped.
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Chapter 10

Digital UNIX

The following sections specifiy the Privileged Architecture Library (PALcode)
instructions that are required to support a Digital UNIX system.

10.1 Unprivileged Digital UNIX PALcode Instructions

Table 10–1 describes the unprivileged Digital UNIX PALcode instructions.

Table 10–1: Unprivileged Digital UNIX PALcode Instruction Summary

Mnemonic Operation and Description

bpt Break point trap

The bpt instruction switches mode to kernel, builds a stack frame on the
kernel stack, and dispatches to the breakpoint code.

bugchk Bugcheck

The bugchk instruction switches mode to kernel, builds a stack frame on
the kernel stack, and dispatches to the breakpoint code.

callsys System call

The callsys instruction switches mode to kernel, builds a callsys stack
frame, and dispatches to the system call code.

clrfen Clear floating-point enable

The clrfen instruction writes a zero to the floating-point enable register.

gentrap Generate trap

The gentrap instruction switches mode to kernel, builds a stack frame on
the kernel stack, and dispatches to the gentrap code.

imb I-stream memory barrier

The imb instruction makes the I-cache coherent with main memory.

rdunique Read unique

The rdunique instruction returns the process unique value.

urti Return from user mode trap

The urti instruction pops from the user stack the registers a0 through a2,
the global pointer, the new user assembler temporary register, the stack
pointer, the program counter, and the processor status register.

wrunique Write unique

The wrunique instruction sets the process unique register.

Digital UNIX 10–1



10.2 Privileged Digital UNIX PALcode Instructions

The privileged PALcode instructions can be called only from kernel mode. They
provide an interface to control the privileged state of the machine.

Table 10–2 describes the privileged Digital UNIX PALcode instructions.

Table 10–2: Privileged Digital UNIX PALcode Instruction Summary

Mnemonic Operation and Description

cflush Cache flush

The cflush instruction flushes an entire physical page pointed to by the
specified page frame number (PFN) from any data caches associated with
the current processor. All processors must implement this instruction.

cserve Console service

This instruction is specific to each PALcode and console implementation
and is not intended for operating system use.

draina Drain aborts

The draina instruction stalls instruction issuing until all prior instructions
are guaranteed to complete without incurring aborts.

halt Halt processor

The halt instruction stops normal instruction processing. Depending on
the halt action setting, the processor can either enter console mode or the
restart sequence.

rdmces Read machine check error summary

The rdmces instruction returns the MCES register in v0.

rdps Read processor status

The rdps instruction returns the current PS.

rdusp Read user stack pointer

The rdusp instruction reads the user stack pointer while in kernel mode
and returns it.

rdval Read system value

The rdval instruction reads a 64-bit per-processor value and returns it.

retsys Return from system call

The retsys instruction pops the return address, the user stack pointer, and
the user global pointer from the kernel stack. It then saves the kernel stack
pointer, sets mode to user, enables interrupts, and jumps to the address
popped off the stack.

rti Return from trap, fault or interrupt

The rti instruction pops certain registers from the kernel stack. If the new
mode is user, the kernel stack is saved and the user stack restored.
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Table 10–2 (Cont.): Privileged Digital UNIX PALcode Instruction Summary

Mnemonic Operation and Description

swpctx Swap privileged context

The swpctx instruction saves the current process data in the current
process control block (PCB). Then swpctx switches to the PCB and loads
the new process context.

swpipl Swap IPL

The swpipl instruction returns the current value IPL and sets the IPL.

swppal Swap PALcode image

The swppal instruction causes the current PALcode to be replaced by the
specified new PALcode image. Intended only for use by operating systems
during bootstraps and by consoles during transitions to console I/O mode.

tbi TB invalidate

The tbi instruction removes entries from the instruction and data
translation buffers when the mapping entries change.

whami Who_Am_I

The whami instruction returns the processor number for the current
processor. The processor number is in the range 0 to the number of
processors minus one (0..numproc–1) that can be configured in the system.

wrent Write system entry address

The wrent instruction sets the virtual address of the system entry points.

wrfen Write floating-point enable

The wrfen instruction writes a bit to the floating-point enable register.

wripr Write interprocessor interrupt request

The wripr instruction generates an interprocessor interrupt on the
processor number passed as an input parameter. The interrupt request
is recorded on the target processor and initiated when the proper enabling
conditions are present.

wrkgp Write kernel global pointer

The wrkgp instruction writes the kernel global pointer internal register.

wrmces Write machine check error summary

The wrmces instructions clears the machine check in progress bit and
clears the processor- or system-correctable error in progress bit in the
MCES register. The instruction also sets or clears the processor- or system-
correctable error reporting enable bit in the MCES register.

wrperfmon Performance monitoring function

The wrperfmon instruction alerts any performance monitoring software
/hardware in the system to monitor the performance of this process.
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Table 10–2 (Cont.): Privileged Digital UNIX PALcode Instruction Summary

Mnemonic Operation and Description

wrusp Write user stack pointer

The wrusp instruction writes a value to the user stack pointer while in
kernel mode.

wrval Write system value

The wrval instruction writes a 64-bit per-processor value.

wrvptptr Write virtual page table pointer

The wrvptptr instruction writes a pointer to the virtual page table pointer
(vptptr).

wtint Wait for interrupt

The wtint instruction requests that, if possible, the PALcode wait for the
first of either of the following conditions before returning: any interrupt
other than a clock tick; or, the first clock tick after a specified number of
clock ticks has been skipped.
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Chapter 11

Windows NT Alpha

The following sections specify the Privileged Architecture Library (PALcode)
instructions that are required to support a Windows NT Alpha system.

11.1 Unprivileged Windows NT Alpha PALcode Instructions

The unprivileged PALcode instuctions provide support for system operations and
may be called from both kernel and user modes.

Table 11–1: Unprivileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

bpt Breakpoint trap (standard user-mode breakpoint)

The bpt instruction raises a breakpoint general exception to the
kernel, setting a USER_BREAKPOINT breakpoint type.

callkd Call kernel debugger

The callkd instruction raises a breakpoint general exception to the
kernel, setting the breakpoint type with the value supplied as an
input parameter.

callsys System service call

The callsys instruction raises a system service call exception to the
kernel. Callsys switches to kernel mode if necessary, builds a trap
frame on the kernel stack, and then enters the kernel at the kernel
system service exception handler.

gentrap Generate a trap

The gentrap instruction generates a software general exception that
raises an exception code to the current thread. The exception code is
generated from a trap number that is specified as an input parameter.
Gentrap is used to raise software-detected exceptions such as bound
check errors or overflow conditions.

imb Instruction memory barrier

The imb instruction guarantees that all subsequent instruction
stream fetches are coherent with respect to main memory. Imb must
be issued before executing code in memory that has been modified
(either by stores from the processor or DMA from an I/O processor).
User-mode code that modifies the I-stream must call the appropriate
Windows NT API to ensure I-cache coherency.
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Table 11–1 (Cont.): Unprivileged Windows NT Alpha PALcode Instruction
Summary

Mnemonic Operation and description

kbpt Kernel breakpoint trap

The kbpt instruction raises a breakpoint general exception to the
kernel, setting a KERNEL_BREAKPOINT breakpoint type.

rdteb Read thread environment block pointer

The rdteb instruction returns the contents of the TEB internal
processor register for the currently executing thread (the base address
of the thread environment block).

11.2 Privileged Windows NT Alpha PALcode Instruction Summary

The privileged PALcode instuctions provide support for system operations and may
be called from only kernel mode.

Table 11–2: Privileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

csir Clear software interrupt request

The csir instruction clears the specified bit in the SIRR internal
processor register.

di Disable all interrupts

The di instruction disables all interrupts by clearing the interrupt
enable (IE) bit in the PSR internal processor register. The IRQL field
is unaffected. Interrupts may be re-enabled via the ei instruction.

draina Drain all aborts including machine checks

The draina instruction drains all aborts, including machine checks,
from the current processor. Draina guarantees that no abort is
signaled for an instruction issued before the draina while any
instruction issued subsequent to the draina is executing.

dtbis Data translation buffer invalidate single

The dtbis instruction invalidates a single data stream translation.
The translation for the virtual address must be invalidated in all
data translation buffers and in all virtual data caches.

ei Enable interrupts

The ei instruction enables interrupts for the IRQL set in the PSR
internal processor register by setting the interrupt enable (IE) bit in
the PSR.

halt Halt the operating system by forcing illegal instruction trap

The halt instruction forces an illegal instruction exception.
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Table 11–2 (Cont.): Privileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

initpal Initialize PALcode data structures with operating system values

The initpal instruction is called early in the kernel initialization
sequence to establish values for internal processor registers (IPRs)
that are needed for trap and fault handling. The KGP and PCR
registers are initialized once and persist throughout the run time
of the operating system.

rdirql Read the current IRQL from the PSR

The rdirql instruction returns the contents of the interrupt request
level (IRQL) field of the PSR internal processor register.

rdksp Read initial kernel stack pointer for the current thread

The rdksp instruction returns the contents of the IKSP (initial kernel
stack pointer) internal processor register for the currently executing
thread.

rdmces Read the machine check error summary register

The rdmces instruction returns the contents of the machine check
error summary (MCES) internal processor register.

rdpcr Read the processor control region base address

The rdpcr instruction returns the contents of the PCR internal
processor register (the base address value of the processor control
region).

rdpsr Read the current processor status register (PSR)

The rdpsr instruction returns the contents of the current PSR
(Processor Status Register) internal processor register.

rdthread Read the thread value for the current thread

The rdthread instruction returns the contents of the THREAD
internal processor register (the value of the currently executing
thread).

reboot Transfer to console firmware

The reboot instruction stops the operating system from executing and
returns execution to the boot environment. Reboot is responsible
for completing the ARC restart block before returning to the boot
environment.

restart Restart the operating system from the restart block

The restart instruction restores saved processor state and resumes
execution of the operating system.
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Table 11–2 (Cont.): Privileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

retsys Return from system service call exception

The retsys instruction returns from a system service call exception
by unwinding the trap frame and returning to the code stream that
was executing when the original exception was initiated. In addition,
retsys accepts a parameter to set software interrupt requests that
became pending while the exception was handled.

rfe Return from trap or interrupt

The rfe instruction returns from exceptions by unwinding the trap
frame and returning to the code stream that was executing when the
original exception was initiated. In addition, rfe accepts a parameter
to set software interrupt requests that became pending while the
exception was handled.

ssir Set software interrupt request

The ssir instruction sets software interrupt requests by setting the
appropriate bits in the SIRR internal processor register.

swpctx Swap thread context

The swpctx instruction swaps the privileged portions of thread
context. Thread context is swapped by establishing the new IKSP,
THREAD, and TEB internal processor register values.

swpirql Swap the current interrupt request level

The swpirql instruction swaps the current IRQL field in the PSR
internal processor register by setting the processor so that only
permitted interrupts are enabled for the new IRQL. Swpirql updates
the IRQL field and returns the previous IRQL.

swpksp Swap the initial kernel stack pointer for the current thread

The swpksp instruction returns the value of the previous IKSP
internal processor register and writes a new IKSP for the currently
executing thread.

swppal Swap the currently executing PALcode

The swppal instruction swaps the currently executing PALcode by
transferring to the base address of the new PALcode image in the
PALcode environment.

swpprocess Swap process context (swap address space)

The swpprocess instruction swaps the privileged process context by
changing the address space for the currently executing thread.

tbia Translation buffer invalidate all

The tbia instruction invalidates all translations and virtual cache
blocks within the processor.
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Table 11–2 (Cont.): Privileged Windows NT Alpha PALcode Instruction Summary

Mnemonic Operation and description

tbis Translation buffer invalidate single

The tbis instruction invalidates a single virtual translation. The
translation for the passed virtual address must be invalidated in all
processor translation buffers and virtual caches.

tbisasn Translation buffer invalidate single for ASN

The tbisasn instruction invalidates a single virtual translation for
a specified address space. The translation for the passed virtual
address must be invalidated in all processor translation buffers and
virtual caches.

wrentry Write kernel exception entry routine

The wrentry instruction provides the registry of exception handling
routines for the exception classes. The kernel must use wrentry to
register an exception handler for each of the exception classes.

wrmces Write the machine check error summary register

The wrmces instruction writes new values for the MCES internal
processor register and returns the previous values of that register.

wrperfmon Write performance counter interrupt control information

The wrperfmon instruction writes control information for the two
processor performance counters. One parameter identifies the
selected performance counter, while another controls whether the
selected performance counter is enabled or disabled. The instruction
returns the previous enable state for the selected performance
counter.
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Appendix A

Software Considerations

A.1 Hardware-Software Compact

The Alpha architecture, like all RISC architectures, depends on careful attention to
data alignment and instruction scheduling to achieve high performance.

Since there will be various implementations of the Alpha architecture, it is not
obvious how compilers can generate high-performance code for all implementations.
This chapter gives some scheduling guidelines that, if followed by all compilers and
respected by all implementations, will result in good performance. As such, this
section represents a good-faith compact between hardware designers and software
writers. It represents a set of common goals, not a set of architectural requirements.
Thus, an Appendix, not a Chapter.

Many of the performance optimizations discussed below are advantageous only for
frequently executed code. For rarely executed code, they may produce a bigger
program that is not any faster. Some of the branching optimizations also depend on
good prediction of which path from a conditional branch is more frequently executed.
These optimizations are best done by using an execution profile, either an estimate
generated by compiler heuristics, or a real profile of a previous run, such as that
gathered by PC-sampling in PCA.

Each computer architecture has a ‘‘natural word size.’’ For the PDP–11, it is 16 bits;
for VAX, 32 bits; and for Alpha , 64 bits. Other architectures also have a natural word
size that varies between 16 and 64 bits. Except for very low-end implementations,
ALU data paths, cache access paths, chip pin buses, and main memory data paths
are all usually the natural word size.

As an architecture becomes commercially successful, high-end implementations
inevitably move to double-width data paths that can transfer an aligned (at an even
natural word address) pair of natural words in one cycle. For Alpha , this means 128-
bit wide data paths will eventually be implemented. It is difficult to get much speed
advantage from paired transfers unless the code being executed has instructions and
data appropriately aligned on aligned octaword boundaries. Since this is difficult to
retrofit to old code, the following sections sometimes encourage ‘‘over-aligning’’ to
octaword boundaries in anticipation of high-speed Alpha implementations.

In some cases, there are performance advantages to aligning instructions or data
to cache-block boundaries, or putting data whose use is correlated into the same
cache block, or trying to avoid cache conflicts by not having data whose use is
correlated placed at addresses that are equal modulo the cache size. Since the
Alpha architecture will have many implementations, an exact cache design cannot
be outlined here. Nonetheless, some expected bounds can be stated.
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1. Small (first-level) cache sizes will likely be in the range 2 KB to 64 KB

2. Small cache block sizes will likely be 16, 32, 64, or 128 bytes

3. Large (second- or third-level) cache sizes will likely be in the range 128 KB to
8 MB

4. Large cache block sizes will likely be 32, 64, 128, or 256 bytes

5. TB sizes will likely be in the range 16 to 1024 entries

Thus, if two data items need to go in different cache blocks, it is desirable to
make them at least 128 bytes apart (modulo 2 KB). Doing so creates a high
probability of allowing both items to be in a small cache simultaneously for all Alpha
implementations.

In each case below, the performance implication is given by an order-of-magnitude
number: 1, 3, 10, 30, or 100. A factor of 10 means that the performance difference
being discussed will likely range from 3 to 30 across all Alpha implementations.

A.2 Instruction-Stream Considerations

The following sections describe considerations for the instruction stream.

A.2.1 Instruction Alignment

Code PSECTs should be octaword aligned. Targets of frequently taken branches
should be at least quadword aligned, and octaword aligned for very frequent loops.
Compilers could use execution profiles to identify frequently taken branches.

Most Alpha implementations will fetch aligned quadwords of instruction stream
(two instructions), and many will waste an instruction-issue cycle on a branch
to an odd longword. High-end implementations may eventually fetch aligned
octawords, and waste up to three issue cycles on a branch to an odd longword.
Some implementations may only be able to fetch wide chunks of instructions every
other CPU cycle. Fetching four instructions from an aligned octaword can get at
most one cache miss, while fetching them from an odd longword address can get two
or even three cache misses.

Quadword I-fetch implementors should give first priority to executing aligned
quadwords quickly. Octaword-fetch implementors should give first priority to
executing aligned octawords quickly, and second priority to executing aligned
quadwords quickly. Dual-issue implementations should give first priority to issuing
both halves of an aligned quadword in one cycle, and second priority to buffering
and issuing other combinations.

A.2.2 Multiple Instruction Issue — Factor of 3

Some Alpha implementations will issue multiple instructions in a single cycle. To
improve the odds of multiple-issue, compilers should choose pairs of instructions to
put in aligned quadwords. Pick one from column A and one from column B (but only
a total of one load/store/branch per pair).
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Column A Column B

Integer Operate Floating Operate

Floating Load/Store Integer Load/Store

Floating Branch Integer Branch

BR/BSR/JSR

Implementors of multiple-issue machines should give first priority to dual-issuing at
least the above pairs, and second priority to multiple-issue of other combinations.

In general, the above rules will give a good hardware-software match, but compilers
may want to implement model-specific switches to generate code tuned more exactly
to a specific implementation.

A.2.3 Branch Prediction and Minimizing Branch-Taken — Factor of 3

In many Alpha implementations, an unexpected change in I-stream address will
result in about 10 lost instruction times. ‘‘Unexpected’’ may mean any branch-taken
or may mean a mispredicted branch. In many implementations, even a correctly
predicted branch to a quadword target address will be slower than straight-line
code.

Compilers should follow these rules to minimize unexpected branches:

1. Implementations will predict all forward conditional branches as not-taken,
and all backward conditional branches as taken. Based on execution profiles,
compilers should physically rearrange code so that it has matching behavior.

2. Make basic blocks as big as possible. A good goal is 20 instructions on average
between branch-taken. This means unrolling loops so that they contain at least
20 instructions, and putting subroutines of less than 20 instructions directly in
line. It also means using execution profiles to rearrange code so that the frequent
case of a conditional branch falls through. For very high-performance loops, it
will be profitable to move instructions across conditional branches to fill otherwise
wasted instruction issue slots, even if the instructions moved will not always do
useful work. Note that the Conditional Move instructions can sometimes be used
to avoid breaking up basic blocks.

3. In an if-then-else construct whose execution profile is skewed even slightly away
from 50%-50% (51-49 is enough), put the infrequent case completely out of line,
so that the frequent case encounters zero branch-takens, and the infrequent case
encounters two branch-takens. If the infrequent case is rare (5%), put it far
enough away that it never comes into the I-cache. If the infrequent case is
extremely rare (error message code), put it on a page of rarely executed code and
expect that page never to be paged in.

4. There are two functionally identical branch-format opcodes, BSR and BR.
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031 21 20

Displacement Branch Format

Branch FormatDisplacement

BSR Ra

RaBR

26 25

Compilers should use the first one for subroutine calls, and the second for GOTOs.
Some implementations may push a stack of predicted return addresses for BSR
and not push the stack for BR. Failure to compile the correct opcode will result
in mispredicted return addresses, and hence make subroutine returns slow.

5. The memory-format JSR instruction has 16 unused bits. These should be used
by the compilers to communicate a hint about expected branch-target behavior
(see Common Architecture, Chapter 4).

031 16 15

JSR Ra Rb Memory Format

If the JSR is used for a computed GOTO or a CASE statement, compile bits
<15:14> as 00, and bits <13:0> such that (updated PC+Instr<13:0>*4) <15:0>
equals (likely_target_addr) <15:0>. In other words, pick the low 14 bits so that
a normal PC+displacement*4 calculation will match the low 16 bits of the most
likely target longword address. (Implementations will likely prefetch from the
matching cache block.)

If the JSR is used for a computed subroutine call, compile bits <15:14> as 01,
and bits <13:0> as above. Some implementations will prefetch the call target
using the prediction and also push updated PC on a return-prediction stack.

If the JSR is used as a subroutine return, compile bits <15:14> as 10. Some
implementations will pop an address off a return-prediction stack.

If the JSR is used as a coroutine linkage, compile bits <15:14> as 11. Some
implementations will pop an address off a return-prediction stack and also push
updated PC on the return-prediction stack.

Implementors should give first priority to executing straight-line code with no
branch-takens as quickly as possible, second priority to predicting conditional
branches based on the sign of the displacement field (backward taken, forward not-
taken), and third priority to predicting subroutine return addresses by running a
small prediction stack. (VAX traces show a stack of two to four entries correctly
predicts most branches.)
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A.2.4 Improving I-Stream Density — Factor of 3

Compilers should try to use profiles to make sure almost 100% of the bytes brought
into an I-cache are actually executed. This means aligning branch targets and
putting rarely executed code out of line. Doing so would consistently make an I-
cache appear about two times larger, compared to current VAX practice.

The example below shows the bytes actually brought into a VAX cache (from part of
an address trace of a DLINPAC). The dots represent bytes brought into the cache
but never executed. They occupy about half of the cache.

Each line shows the use of an aligned 64-byte I-cache block. A portion of DLINPAC
and a portion of OpenVMS Alpha 4.x are shown. Uppercase I is the first byte of
an instruction, and lowercase i marks subsequent bytes. Period ( . ) shows a byte
brought into the cache but never executed.

I-fetch Byte 0 Byte 63

-------- ----------------------------------------------------------------
000268C0 ........................IiiiIiiIiiIiiiiiiiiiIiii................
00026900 ................................................IiiiiIiiiiiiiiii
00026940 IiIiiIiIiiIiIiIiIiiiIiIiiIiIiiiiiiiIiiIiii......................
00026980 ........................................IiiiIiiIiiIiiIiiIiIiiIii
000269C0 I..............IiiiiIiiIiiiiIiIiiiiIiiiIIiIiIiiIiIiiiIiIiii.....
00026A00 ............................IiIiiiiiiiiiiiiiIiiIiiiIiii.........
00026A40 .................................IiiiiiiiiiIiiiiiiiiIiIiiiIiiIii
00026A80 IiIiiiiIiIiIiiiIiIiIiIiiiiiiiiIiiIiiiIiii.................IiiIii
00026AC0 IiiIiii.........................................................

80004440 .............................................IiiiIiIiii.........
80004680 ....IiiiiiIiii..................................................
80004900 ................IiiIiiIiiIiiiiIiIiiIiiIiiIiiiIiIiiiiIiIiiiIiiiiI
80004940 IiiiiIiiiIiiIiIiii.............IiiiiIiii........................
80004A00 .................................................IiiiiiIiiIiiiii
80004A40 IiIiiIiiiiIiiiIiiiIiiiIiii............IiiiiiIIiiiiiIiiiiIiiIiiiI
80004A80 IiiiiIiiiIiiIiiIiii....IiiIiiIiii...............................
80004F40 .............................IiiiiiIiiiiiiIiiiIiiiiiiIiii.......
80004F80 .......................IiiiIiiiiiiiIiiIiIiiiIiiiiiiiiiiiiiiIiiiI
80004FC0 IIiiiiiIiiiIiIiiiIiii.....IiiiiIiIiii...........................
80008A40 ........................................................IiiiIiii
80008A80 IIiiIiiiIiiIiIiiiIiIiIiiiIiIiiIiiiiiIiiIiiIiiIiiiiiiiIiIiiiIiii.

A.2.5 Instruction Scheduling — Factor of 3

The performance of Alpha programs is sensitive to how carefully the code is
scheduled to minimize instruction-issue delays.

‘‘Result latency’’ is defined as the number of CPU cycles that must elapse between an
instruction that writes a result register and one that uses that register, if execution-
time stalls are to be avoided. Thus, a latency of zero means that the instruction
writes a result register and the instruction that uses that register can be multiple-
issued in the same cycle. A latency of 2 means that if the writing instruction is issued
at cycle N, the reading instruction can issue no earlier than cycle N+2. Latency is
implementation specific.

Most Alpha instructions have a non-zero result latency. Compilers should schedule
code so that a result is not used too soon, at least in frequently executed code (inner
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loops, as identified by execution profiles). In general, this will require loop unrolling
and short procedure inlining.

Assume that implementations can dual-issue instructions. Assume that Load and
JSR instructions have a latency of 3, shifts and byte manipulation a latency of 2,
integer multiply a latency of 10, and other integer operates a latency of 1. Assume
floating multiply has a latency of 5, floating divide a latency of 10, and other floating
operates a latency of 4. Scheduling to these latencies gives at least reasonable
performance on current implementations.

Compilers should try to schedule code to match the above latency rules and also to
match the multiple-issue rules. If doing both is impractical for a particular sequence
of code, the latency rules are more important (since they apply even in single-issue
implementations).

Implementors should give first priority to minimizing the latency of back-to-back
integer operations, of address calculations immediately followed by load/store, of load
immediately followed by branch, and of compare immediately followed by branch.
Second priority should be given to minimizing latencies in general.

A.3 Data-Stream Considerations

The following sections describe considerations for the data stream.

A.3.1 Data Alignment — Factor of 10

Data PSECTs should be at least octaword aligned, so that aggregates (arrays, some
records, subroutine stack frames) can be allocated on aligned octaword boundaries
to take advantage of any implementations with aligned octaword data paths, and to
decrease the number of cache fills in almost all implementations.

Aggregates (arrays, records, common blocks, and so forth) should be allocated on
at least aligned octaword boundaries whenever language rules allow. In some
implementations, a series of writes that completely fill a cache block may be a factor
of 10 faster than a series of writes that partially fill a cache block, when that cache
block would give a read miss. This is true of write-back caches that read a partially
filled cache block from memory, but optimize away the read for completely filled
blocks.

For such implementations, long strings of sequential writes will be faster if they
start on a cache-block boundary (a multiple of 128 bytes will do well for most, if not
all, Alpha implementations). This applies to array results that sweep through large
portions of memory, and also to register-save areas for context switching, graphics
frame buffer accesses, and other places where exactly 8, 16, 32, or more quadwords
are stored sequentially. Allocating the targets at multiples of 8, 16, 32, or more
quadwords, respectively, and doing the writes in order of increasing address will
maximize the write speed.

Items within aggregates that are forced to be unaligned (records, common blocks)
should generate compile-time warning messages and inline byte extract/insert code.
Users must be educated that the warning message means that they are taking a
factor of 30 performance hit.
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Compilers should consider supplying a switch that allows the compiler to pad
aggregates to avoid unaligned data.

Compiled code for parameters should assume that the parameters are aligned.
Unaligned actuals will therefore cause run-time alignment traps and very slow
fixups. The fixup routine, if invoked, should generate warning messages to the
user, preferably giving the first few statement numbers that are doing unaligned
parameter access, and at the end of a run the total number of alignment traps (and
perhaps an estimate of the performance improvement if the data were aligned).
Again, users must be educated that the trap routine warning message means they
are taking a factor of 30 performance hit.

Frequently used scalars should reside in registers. Each scalar datum allocated
in memory should normally be allocated an aligned quadword to itself, even if the
datum is only a byte wide. This allows aligned quadword loads and stores and avoids
partial-quadword writes (which may be half as fast as full-quadword writes, due to
such factors as read-modify-write a quadword to do quadword ECC calculation).

Implementors should give first priority to fast reads of aligned octawords and second
priority to fast writes of full cache blocks. Partial-quadword writes need not have a
fast repetition rate.

A.3.2 Shared Data in Multiple Processors — Factor of 3

Software locks are aligned quadwords and should be allocated to large cache blocks
that either contain no other data, or read-mostly data whose usage is correlated with
the lock.

Whenever there is high contention for a lock, one processor will have the lock and
be using the guarded data, while other processors will be in a read-only spin loop on
the lock bit. Under these circumstances, any write to the cache block containing the
lock will likely cause excess bus traffic and cache fills, thus having a performance
impact on all processors that are involved, and the buses between them. In some
decomposed FORTRAN programs, refills of the cache blocks containing one or two
frequently used locks can account for a third of all the bus bandwidth the program
consumes.

Whenever there is almost no contention for a lock, one processor will have the lock
and be using the guarded data. Under these circumstances, it might be desirable to
keep the guarded data in the same cache block as the lock.

For the high-sharing case, compilers should assume that almost all accesses to
shared data result in cache misses all the way back to main memory, for each distinct
cache block used. Such accesses will likely be a factor of 30 slower than cache hits.
It is helpful to pack correlated shared data into a small number of cache blocks. It is
helpful also to segregate blocks written by one processor from blocks read by others.

Therefore, accesses to shared data, including locks, should be minimized. For
example, a four-processor decomposition of some manipulation of a 1000-row array
should avoid accessing lock variables every row, but instead might access a lock
variable every 250 rows.
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Array manipulation should be partitioned across processors so that cache blocks do
not thrash between processors. Having each of four processors work on every fourth
array element severely impairs performance on any implementation with a cache
block of four elements or larger. The processors all contend for copies of the same
cache blocks and use only one quarter of the data in each block. Writes in one
processor severely impair cache performance on all processors.

A better decomposition is to give each processor the largest possible contiguous
chunk of data to work on (N/4 consecutive rows for four processors and row-major
array storage; N/4 columns for column-major storage). With the possible exception
of three cache blocks at the partition boundaries, this decomposition will result in
each processor caching data that is touched by no other processor.

Operating-system scheduling algorithms should attempt to minimize process
migration from one processor to another. Any time migration occurs, there are likely
to be a large number of cache misses on the new processor.

Similarly, operating-system scheduling algorithms should attempt to enforce some
affinity between a given device’s interrupts and the processor on which the interrupt-
handler runs. I/O control data structures and locks for different devices should be
disjoint. Doing both of these allows higher cache hit rates on the corresponding I/O
control data structures.

Implementors should give first priority to an efficient (low-bandwidth) way of
transferring isolated lock values and other isolated, shared write data between
processors.

Implementors should assume that the amount of shared data will continue to
increase, so over time the need for efficient sharing implementations will also
increase.

A.3.3 Avoiding Cache/TB Conflicts — Factor of 1

Occasionally, programs that run with a direct-mapped cache or TB will thrash,
taking excessive cache or TB misses. With some work, thrashing can be minimized
at compile time.

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same aligned 64-byte block, or differ in bits VA<10:6>. For loops
that go through arrays in a common direction with a common stride, this means
allocating the arrays, checking that the first-iteration addresses differ, and if not,
inserting up to 64 bytes of padding between the arrays. This rule will avoid thrashing
in small direct-mapped data caches with block sizes up to 64 bytes and total sizes
of 2K bytes or more.

Example:

REAL*4 A(1000),B(1000)
DO 60 i=1,1000

60 A(i) = f(B(i))
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BAD allocation (A and B thrash in 8 KB direct-mapped cache):

A B

0 4K 8K 16K12K

BETTER allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of
B can be in cache simultaneously):

A B

0 4K 8K+64 16K12K

BEST allocation (A and B offset by 64 mod 2 KB, so 16 elements of A and 16 of B
can be in cache simultaneously, and both arrays fit entirely in 8 KB or bigger cache):

A B

0 4K-64 8K 16K12K

In a frequently executed loop, compilers could allocate the data items accessed from
memory so that, on each loop iteration, all of the memory addresses accessed are
either in exactly the same 8 KB page, or differ in bits VA<17:13>. For loops that go
through arrays in a common direction with a common stride, this means allocating
the arrays, checking that the first-iteration addresses differ, and if not, inserting
up to 8K bytes of padding between the arrays. This rule will avoid thrashing in
direct-mapped TBs and in some large direct-mapped data caches, with total sizes of
32 pages (256 KB) or more.

Usually, this padding will mean zero extra bytes in the executable image, just a skip
in virtual address space to the next-higher page boundary.

For large caches, the rule above should be applied to the I-stream, in addition to
all the D-stream references. Some implementations will have combined I-stream
/D-stream large caches.

Both of the rules above can be satisfied simultaneously, thus often eliminating
thrashing in all anticipated direct-mapped cache/TB implementations.

A.3.4 Sequential Read/Write — Factor of 1

All other things being equal, sequences of consecutive reads or writes should use
ascending (rather than descending) memory addresses. Where possible, the memory
address for a block of 2**Kbytes should be on a 2**K boundary, since this minimizes
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the number of different cache blocks used and minimizes the number of partially
written cache blocks.

To avoid overrunning memory bandwidth, sequences of more than eight quadword
load or store instructions should be broken up with intervening instructions (if there
is any useful work to be done).

For consecutive reads, implementors should give first priority to prefetching
ascending cache blocks, and second priority to absorbing up to eight consecutive
quadword load instructions (aligned on a 64-byte boundary) without stalling.

For consecutive writes, implementors should give first priority to avoiding read
overhead for fully written aligned cache blocks, and second priority to absorbing
up to eight consecutive quadword store instructions (aligned on a 64-byte boundary)
without stalling.

A.3.5 Prefetching — Factor of 3

To use FETCH and FETCH_M effectively, software should follow this programming
model:

1. Assume that at most two FETCH instructions can be outstanding at once,
and that there are two prefetch address registers, PREa and PREb, to hold
prefetching state. FETCH instructions alternate between loading PREa and
PREb. Each FETCH instruction overwrites any previous prefetching state, thus
terminating any previous prefetch that is still in progress in the register that is
loaded. The order of fetching within a block and the order between PREa and
PREb are UNPREDICTABLE.

Implementation Note:
Implementations are encouraged to alternate at convenient intervals between
PREa and PREb.

2. Assume, for maximum efficiency, that there should be about 64 unrelated memory
access instructions (load or store) between a FETCH and the first actual data
access to the prefetched data.

3. Assume, for instruction-scheduling purposes in a multilevel cache hierarchy, that
FETCH does not prefetch data to the innermost cache level, but rather one level
out. Schedule loads to bury the last level of misses.

4. Assume that FETCH is worthwhile if, on average, at least half the data in a
block will be accessed. Assume that FETCH_M is worthwhile if, on average, at
least half the data in a block will be modified.

5. Treat FETCH as a vector load. If a piece of code could usefully prefetch four
operands, launch the first two prefetches, do about 128 memory references
worth of work, then launch the next two prefetches, do about 128 more memory
references worth of work, then start using the four sets of prefetched data.

6. Treat FETCH as having the same effect on a cache as a series of 64 quadword
loads. If the loads would displace useful data, so will FETCH. If two sets of loads
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from specific addresses will thrash in a direct-mapped cache, so will two FETCH
instructions using the same pair of addresses.

Implementation Note:

Hardware implementations are expected to provide either no support for
FETCHx or support that closely matches this model.

A.4 Code Sequences

The following section describes code sequences.

A.4.1 Aligned Byte/Word Memory Accesses

The instruction sequences given in Common Architecture, Chapter 4, for byte and
word accesses are worst-case code. Further, they do not reflect the instructions
available with the BWX extension, described in the Preface and Appendix D. If the
BWX extension instructions are available, it is wise to consider them rather than the
sequences that follow; the following sequences are appropriate if the BWX extension
instructions are not available.

In the common case of accessing a byte or aligned word field at a known offset from
a pointer that is expected to be at least longword aligned, the common-case code is
much shorter.

‘‘Expected’’ means that the code should run fast for a longword-aligned pointer and
trap for unaligned. The trap handler may at its option fix up the unaligned reference.

For access at a known offset D from a longword-aligned pointer Rx, let D.lw be D
rounded down to a multiple of 4 ((D div 4)*4), and let D.mod be D mod 4.

In the common case, the intended sequence for loading and zero-extending an aligned
word is:

LDL R1,D.lw(Rx) ! Traps if unaligned
EXTWL R1,#D.mod,R1 ! Picks up word at byte 0 or byte 2

In the common case, the intended sequence for loading and sign-extending an aligned
word is:

LDL R1,D.lw(Rx) ! Traps if unaligned
SLL R1,#48-8*D.mod,R1 ! Aligns word at high end of R1
SRA R1,#48,R1 ! SEXT to low end of R1

Note:

The shifts often can be combined with shifts that might surround subsequent
arithmetic operations (for example, to produce word overflow from the high end
of a register).

In the common case, the intended sequence for loading and zero-extending a byte is:

LDL R1,D.lw(Rx) !
EXTBL R1,#D.mod,R1 !
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In the common case, the intended sequence for loading and sign-extending a byte is:

LDL R1,D.lw(Rx) !
SLL R1,#56-8*D.mod,R1 !
SRA R1,#56,R1 !

In the common case, the intended sequence for storing an aligned word R5 is:

LDL R1,D.lw(Rx) !
INSWL R5,#D.mod,R3 !
MSKWL R1,#D.mod,R1 !
BIS R3,R1,R1 !
STL R1,D.lw(Rx) !

In the common case, the intended sequence for storing a byte R5 is:

LDL R1,D.lw(Rx) !
INSBL R5,#D.mod,R3 !
MSKBL R1,#D.mod,R1 !
BIS R3,R1,R1 !
STL R1,D.lw(Rx) !

A.4.2 Division

In all implementations, floating-point division is likely to have a substantially longer
result latency than floating-point multiply; in addition, in many implementations
multiplies will be pipelined and divides will not.

Thus, any division by a constant power of two should be compiled as a multiply
by the exact reciprocal, if it is representable without overflow or underflow. If
language rules or surrounding context allow, other divisions by constants can be
closely approximated via multiplication by the reciprocal.

Integer division does not exist as a hardware opcode. Division by a constant can
always be done via UMULH of another appropriate constant, followed by a right
shift. General quadword division by true variables can be done via a subroutine.
The subroutine could test for small divisors (less than about 1000 in absolute value)
and for those, do a table lookup on the exact constant and shift count for an UMULH
/shift sequence. For the remaining cases, a table lookup on about a 1000-entry table
and a multiply can give a linear approximation to 1/divisor that is accurate to 16
bits.

Using this approximation, a multiply and a back-multiply and a subtract can
generate one 16-bit quotient ‘‘digit’’ plus a 48-bit new partial dividend. Three more
such steps can generate the full quotient. Having prior knowledge of the possible
sizes of the divisor and dividend, normalizing away leading bytes of zeros, and
performing an early-out test can reduce the average number of multiplies to about
five (compared to a best case of one and a worst case of nine).

A.4.3 Byte Swap

When it is necessary to swap all the bytes of a datum, perhaps because the datum
originated on a machine of the opposite byte numbering convention, the simplest
sequence is to use the VAX floating-point load instruction to swap words, followed
by an integer sequence to swap four pairs of bytes. Assume as shown below that an
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aligned quadword datum is in memory at location X and is to be left in R1 after byte-
swapping; temp is an aligned quadword temporary, and ‘‘.’’ (period) in the comments
stands for a byte of zeros. Similar sequences can be used for data in registers,
sometimes doing the byte swaps first and word swap second:

; X = ABCD EFGH
LDG F0,X ; F0 = GHEF CDAB
STT F0,temp
LDQ R1,temp ; R1 = GHEF CDAB
SLL R1,#8,R2 ; R2 = HEFC DAB.
SRL R1,#8,R1 ; R1 = .GHE FCDA
ZAP R2,#55(hex),R2 ; R2 = H.F. D.B.
ZAP R1,#AA(hex),R1 ; R1 = .G.E .C.A
OR R1,R2,R1 ; R1 = HGFE DCBA

For bulk swapping of arrays, this sequence can be usefully unrolled about four times
and scheduled, using four different aligned quadword memory temps.

A.4.4 Stylized Code Forms

Using the same stylized code form for a common operation makes compiler output
a little more readable and makes it more likely that an implementation will speed
up the stylized form.

A.4.4.1 NOP

The universal NOP form is:

UNOP == LDQ_U R31,0(Rx)

In most implementations, UNOP should encounter no operand issue delays,
no destination issue delay, and no functional unit issue delays. (In some
implementations, it may encounter an operand issue delay for Rx.) Implementations
are free to optimize UNOP into no action and zero execution cycles.

If the actual instruction is encoded as LDQ_U Rn,0(Rx), where n is other than
31, and such an instruction generates a memory-management exception, it is
UNPREDICTABLE whether UNOP would generate the same exception. On most
implementations, UNOP does not generate memory management exceptions.

The standard NOP forms are:

NOP == BIS R31,R31,R31
FNOP == CPYS F31,F31,F31

These generate no exceptions. In most implementations, they should encounter no
operand issue delays and no destination issue delay. Implementations are free to
optimize these into no action and zero execution cycles.

A.4.4.2 Clear a Register

The standard clear register forms are:

CLR == BIS R31,R31,Rx
FCLR == CPYS F31,F31,Fx
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These generate no exceptions. In most implementations, they should encounter no
operand issue delays, and no functional unit issue delay.

A.4.4.3 Load Literal

The standard load integer literal (ZEXT 8-bit) form is:

MOV #lit8,Ry == BIS R31, lit8, Ry

The Alpha literal construct in Operate instructions creates a canonical longword
constant for values 0..255.

A longword constant stored in an Alpha 64-bit register is in canonical form when
bits <63:32>=bit <31>.

A canonical 32-bit literal can usually be generated with one or two instructions, but
sometimes three instructions are needed. Use the following procedure to determine
the offset fields of the instructions:

val = <sign-extended, 32-bit value>

low = val<15:0>
tmp1 = val - SEXT(low) ! Account for LDA instruction

high = tmp1<31:16>
tmp2 = tmp1 - SHIFT_LEFT( SEXT(high,16) )

if tmp2 NE 0 then
! original val was in range 7FFF8000 16..7FFFFFFF 16

extra = 4000 16
tmp1 = tmp1 - 40000000 16
high = tmp1<31:16>

else
extra = 0

endif

The general sequence is:

LDA Rdst, low(R31)
LDAH Rdst, extra(Rdst) ! Omit if extra=0
LDAH Rdst, high(Rdst) ! Omit if high=0

A.4.4.4 Register-to-Register Move

The standard register move forms are:

MOV RX,RY == BIS RX,RX,RY
FMOV FX,FY == CPYS FX,FX,FY

These generate no exceptions. In most implementations, these should encounter no
functional unit issue delay.

A.4.4.5 Negate

The standard register negate forms are:

NEGz Rx,Ry == SUBz R31,Rx,Ry ! z = L or Q
NEGz Fx,Fy == SUBz F31,Fx,Fy ! z = F G S or T
FNEGz Fx,Fy == CPYSN Fx,Fx,Fy ! z = F G S or T
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The integer subtract generates no Integer Overflow trap if Rx contains the largest
negative number (SUBz/V would trap). The floating subtract generates a floating-
point exception for a non-finite value in Fx. The CPYSN form generates no
exceptions.

A.4.4.6 NOT

The standard integer register NOT form is:

NOT Rx,Ry == ORNOT R31,Rx,Ry

This generates no exceptions. In most implementations, this should encounter no
functional unit issue delay.

A.4.4.7 Booleans

The standard alternative to BIS is:

OR Rx,Ry,Rz == BIS Rx,Ry,Rz

The standard alternative to BIC is:

ANDNOT Rx,Ry,Rz == BIC Rx,Ry,Rz

The standard alternative to EQV is:

XORNOT Rx,Ry,Rz == EQV Rx,Ry,Rz

A.4.5 Trap Barrier

The TRAPB instruction guarantees that it and any following instructions do not
issue until all possible preceding traps have been signaled. This does not mean that
all preceding instructions have necessarily run to completion (for example, a Load
instruction may have passed all the fault checks but not yet delivered data from a
cache miss).

A.4.6 Pseudo-Operations (Stylized Code Forms)

This section summarizes the pseudo-operations for the Alpha architecture that may
be used by various software components in an Alpha system. Most of these forms
are discussed in preceding sections.

In the context of this section, pseudo-operations all represent a single underlying
machine instruction. Each pseudo-operation represents a particular instruction
with either replicated fields (such as FMOV), or hard-coded zero fields. Since the
pattern is distinct, these pseudo-operations can be decoded by instruction decode
mechanisms.

In Table A–1, the pseudo-operation codes can be viewed as macros with parameters.
The formal form is listed in the left column, and the expansion in the code stream
listed in the right column.

Some instruction mnemonics have synonyms. These are different from pseudo-
operations in that each synonym represents the same underlying instruction with
no special encoding of operand fields. As a result, synonyms cannot be distinquished
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from each other. They are not listed in the table that follows. Examples of synonyms
are: BIC/ANDNOT, BIS/OR, and EQV/XORNOT.

Table A–1: Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

No-exception generic floating absolute value:
FABS Fx, Fy CPYS F31, Fx, Fy

Branch to target (21-bit signed displacement):
BR target BR R31, target

Clear integer register:
CLR Rx BIS R31, R31, Rx

Clear a floating-point register:
FCLR Fx CPYS F31, F31, Fx

Floating-point move:
FMOV Fx, Fy CPYS Fx, Fx, Fy

No-exception generic floating negation:
FNEG Fx, Fy CPYSN Fx, Fx, Fy

Floating-point no-op:
FNOP CPYS F31, F31, F31

Move Rx/8-bit zero-extended literal to Ry:
MOV {Rx/Lit8}, Ry BIS R31, {Rx/Lit8}, Ry

Move 16-bit sign-extended literal to Rx:
MOV Lit, Rx LDA Rx, lit(R31)

Move to FPCR:
MT_FPCR Fx MT_FPCR Fx, Fx, Fx

Move from FPCR:
MF_FPCR Fx MF_FPCR Fx, Fx, Fx

Negate F_floating:
NEGF Fx, Fy SUBF F31, Fx, Fy

Negate F_floating, semi-precise:
NEGF/S Fx, Fy SUBF/S F31, Fx, Fy

Negate G_floating:
NEGG Fx, Fy SUBG F31, Fx, Fy

Negate G_floating, semi-precise:
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Table A–1 (Cont.): Decodable Pseudo-Operations (Stylized Code Forms)

Pseudo-Operation in Listing Actual Instruction Encoding

NEGG/S Fx, Fy SUBG/S F31, Fx, Fy

Negate longword:
NEGL {Rx/Lit8}, Ry SUBL R31, {Rx/Lit}, Ry

Negate longword with overflow detection:
NEGL/V {Rx/Lit8}, Ry SUBL/V R31, {Rx/Lit}, Ry

Negate quadword:
NEGQ {Rx/Lit8}, Ry SUBQ R31, {Rx/Lit}, Ry

Negate quadword with overflow detection:
NEGQ/V {Rx/Lit8}, Ry SUBQ/V R31, {Rx/Lit}, Ry

Negate S_floating:
NEGS Fx, Fy SUBS F31, Fx, Fy

Negate S_floating, software with underflow detection:
NEGS/SU Fx, Fy SUBS/SU F31, Fx, Fy

Negate S_floating, software with underflow and inexact result detection:
NEGS/SUI Fx, Fy SUBS/SUI F31, Fx, Fy

Negate T_floating:
NEGT Fx, Fy SUBT F31, Fx, Fy

Negate T_floating, software with underflow detection:
NEGT/SU Fx, Fy SUBT/SU F31, Fx, Fy

Negate T_floating, software with underflow and inexact result detection:
NEGT/SUI SUBT/SUI F31, Fx, Fy

Integer no-op:
NOP BIS R31, R31, R31

Logical NOT of Rx/8-bit zero-extended literal storing results in Ry:
NOT {Rx/Lit8}, Ry ORNOT R31, {Rx/Lit}, Ry

Longword sign-extension of Rx storing results in Ry:
SEXTL {Rx/Lit8}, Ry ADDL R31, {Rx/Lit}, Ry

Universal NOP for both integer and floating-point code:
UNOP LDQ_U R31,0(Rx)
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A.5 Timing Considerations: Atomic Sequences

A sufficiently long instruction sequence between LDx_L and STx_C will never
complete, because periodic timer interrupts will always occur before the sequence
completes. The following rules describe sequences that will eventually complete in
all Alpha implementations:

1. At most 40 operate or conditional-branch (not taken) instructions executed in the
sequence between LDx_L and STx_C.

2. At most two I-stream TB-miss faults. Sequential instruction execution
guarantees this.

3. No other exceptions triggered during the last execution of the sequence.

Implementation Note:

On all expected implementations, this allows for about 50 �sec of execution time,
even with 100 percent cache misses. This should satisfy any requirement for a
1 msec timer interrupt rate.

A–18 Alpha Architecture Handbook



Appendix B

IEEE Floating-Point Conformance

A subset of IEEE Standard for Binary Floating-Point Arithmetic (754-1985) is
provided in the Alpha floating-point instructions. This appendix describes how to
construct a complete IEEE implementation.

The order of presentation parallels the order of the IEEE specification.

B.1 Alpha Choices for IEEE Options

Alpha supports IEEE single, double, and optionally (in software) extended double
formats. There is no hardware support for the optional extended double format.

Alpha hardware supports normal and chopped IEEE rounding modes. IEEE plus
infinity and minus infinity rounding modes can be implemented in hardware or
software.

Alpha hardware does not support optional IEEE software trap enable/disable modes;
see the following discussion about software support.

Alpha hardware supports add, subtract, multiply, divide, convert between floating
formats, convert between floating and integer formats, and compare. Software
routines support square root, remainder, round to integer in floating-point format,
and convert binary to/from decimal.

In the Alpha architecture, copying without change of format is not considered an
operation. (LDx, CPYSx, and STx do not check for non-finite numbers; an operation
would.) Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Optional operations for differing formats are not provided.

The Alpha choice is that the accuracy provided by conversions between decimal
strings and binary floating-point numbers will meet or exceed IEEE standard
requirements. It is implementation dependent whether the software binary/decimal
conversions beyond 9 or 17 digits treat any excess digits as zeros.

Overflow and underflow, NaNs, and infinities encountered during software binary to
decimal conversion return strings that specify the conditions. Such strings can be
truncated to their shortest unambiguous length.

Alpha hardware supports comparisons of same-format numbers. Software supports
comparisons of different-format numbers.

In the Alpha architecture, results are true-false in response to a predicate.

Alpha hardware supports the required six predicates and the optional unordered
predicate. The other 19 optional predicates can be constructed from sequences of
two comparisons and two branches.
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Except for the compare instructions (CMPTyy) and the Overflow Disable (OVFD)
option, Alpha hardware supports infinity arithmetic by trapping. That is the case
when an infinity operand is encountered and when an infinity is to be created from
finite operands by overflow or division by zero. A software trap handler (interposed
between the hardware and the IEEE user) provides correct infinity arithmetic.

Except for the Invalid Operation Disable (INVD) option, Alpha hardware supports
NaNs by trapping when a NaN operand is encountered and when a NaN is to be
created. A software trap handler (interposed between the hardware and the IEEE
user) provides correct Signaling and Quiet NaN behavior.

In the Alpha architecture, Quiet NaNs do not afford retrospective diagnostic
information.

In the Alpha architecture, copying a Signaling NaN without a change of format does
not signal an invalid exception (LDx, CPYSx, and STx do not check for non-finite
numbers). Compilers may generate ADDx F31,Fx,Fy to get the opposite effect.

Alpha hardware fully supports negative zero operands, and follows the IEEE rules
for creating negative zero results.

Except for the optional trap disable bits in the FPCR, Alpha hardware does not
supply IEEE exception trap behavior; the hardware traps are a superset of the IEEE-
required conditions. A software trap handler (interposed between the hardware and
the IEEE user) provides correct IEEE exception behavior.

In the Alpha architecture, tininess is detected by hardware after rounding, and loss
of accuracy is detected by software as an inexact result.

In the Alpha architecture, user trap handlers are supported by compilers and a
software trap handler (interposed between the hardware and the IEEE user), as
described in the next section.

B.2 Alpha Hardware Support of Software Exception Handlers

Except for the optional trap disable bits in the FPCR, the hardware trap behavior
of Alpha instructions is determined at compile time; short of recompiling, there are
no dynamic facilities for changing hardware trap behavior.

B.2.1 Choosing Degrees of IEEE Compliance

There is an essential disparity between the Alpha design goal of fast execution and
the IEEE design goal of exact trap behavior. The Alpha hardware architecture
provides means for users to choose various degrees of IEEE compliance, at
appropriate performance cost.

Instructions compiled without the /Software modifier cannot produce IEEE-
compliant trap or status bit behavior, nor can they provide IEEE-compliant non-
finite arithmetic. Trapping and stopping on non-finite operands or results (rather
than the IEEE default of continuing with NaNs propagated) is an Alpha value-added
behavior that some users prefer.
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Instructions compiled without the /Underflow hardware trap enable modifier cannot
produce IEEE-compliant underflow trap or status bit behavior, nor can they provide
IEEE-compliant denormal results. They are fast and provide true zero (not minus
zero) results whenever underflow occurs. This is an Alpha value-added behavior
that some users prefer.

Instructions compiled without the /Inexact hardware trap enable modifier cannot
produce IEEE-compliant inexact trap or status bit behavior. Except when the Inexact
Disable (INED) option is implemented, trapping on inexact is painfully slow. Few
users appear to prefer enabling inexact trapping, but they can get it if they really
want it.

Except when the optional Overflow Disable (OVFD), Division by Zero Disable
(DZED), or Invalid Operation Disable (INVD) bits in the FPCR are set, IEEE
floating-point instructions compiled with the /Software enable modifier produce
hardware traps and unpredictable values for overflow, division by zero, or invalid
operation. A software trap handler may then produce the chosen IEEE-required
behavior. The software trap handler reports an enabled IEEE exception to the user
application as a fault, rather than as a trap. Because the exception is reported as a
fault, the reported PC points to the trigger instruction, rather than to a point after
the trigger instruction.

Regardless of whether or not an enabled fault occurs, the software completion
handler sets the result register and the status flags to the IEEE standard
nontrapping result, as further defined in the IEEE Standard section in Common
Architecture, Chapter 4.

Except when the optional Underflow Disable (UNFD) bit in the FPCR is set, IEEE
floating-point instructions compiled with the /Software enable and /Underflow enable
modifiers produce hardware traps and true zero values for underflow; a software
trap handler may then produce all IEEE-required behavior. Such instructions with
/Software and /Underflow enabled, but without an underflow condition that produce
zero value results, always have the correct sign.

IEEE floating-point instructions compiled with the /Inexact enable modifier produce
hardware traps that allow a software trap handler to produce all IEEE-required
behavior.

Thus, to get full IEEE compliance of all the required features of the standard, users
must compile with all three options enabled.

To get the optional full IEEE user trap handler behavior, a software trap handler
must be provided that implements the five exception flags, dynamic user trap handler
disabling, handler saving and restoring, default behavior for disabled user trap
handlers, and linkages that allow a user handler to return a substitute result.

The software trap handler uses the FP_Control quadword, along with the floating-
point control register (FPCR), to provide various levels of IEEE-compliant behavior.
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B.2.2 IEEE Floating-Point Control (FP_C) Quadword

Operating system implementations provide the following support for an IEEE
floating-point control quadword (FP_C), illustrated in Figure B–1 and described in
Table B–1.

Figure B–1: IEEE Floating-Point Control (FP_C) Quadword
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• The operating system software completion mechanism maintains the FP_C.
Therefore, the FP_C affects (and is affected by) only those instructions with the
/Software enable modifier.

• The FP_C quadword is context switched when the operating system switches the
thread context. (The FP_C can be placed in a currently switched data structure.)

• Although the operating system can keep the FP_C in a user mode memory
location, user code may not directly access the FP_C.

• Integer overflow (IOV) exceptions are controlled by the INVE enable mask bit
(FP_C<1>), as allowed by the IEEE standard. Implementation software is
responsible for setting the INVS status bit (FP_C<17>) when a CVTTQ or CVTQL
instruction traps into the integer overflow software completion mechanism.

• At process creation, all trap enable flags in the FP_C are clear. The setting of
other FP_C bits, defined in Table B–1 as reserved for implementation software,
are defined by operating system software.

At other events such as forks or thread creation, and at asynchronous routine calls
such as traps and signals, the operating system controls all assigned FP_C bits and
those defined as reserved for implementation software.

Table B–1: Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

63–48 Reserved for implementation software.

47–22 Reserved for future architecture definition.

21 Inexact Result Status (INES)

A floating arithmetic or conversion operation gave a result that differed from the
mathematically exact result.
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Table B–1 (Cont.): Floating-Point Control (FP_C) Quadword Bit Summary

Bit Description

20 Underflow Status (UNFS)

A floating arithmetic or conversion operation underflowed the destination
exponent.

19 Overflow Status (OVFS)

A floating arithmetic or conversion operation overflowed the destination exponent.

18 Division by Zero Status (DZES)

An attempt was made to perform a floating divide operation with a divisor of zero.

17 Invalid Operation Status (INVS)

An attempt was made to perform a floating arithmetic, conversion, or comparison
operation, and one or more of the operand values were illegal.

16–12 Reserved for implementation software.

11–6 Reserved for future architecture definition.

5 Inexact Result Enable (INEE)

Initiate an INE exception if a floating arithmetic or conversion operation gives a
result that differs from the mathematically exact result.

4 Underflow Enable (UNFE)

Initiate a UNF exception if a floating arithmetic or conversion operation underflows
the destination exponent.

3 Overflow Enable (OVFE)

Initiate an OVF exception if a floating arithmetic or conversion operation overflows
the destination exponent.

2 Division by Zero Enable (DZEE)

Initiate a DZE exception if an attempt is made to perform a floating divide
operation with a divisor of zero.

1 Invalid Operation Enable (INVE)

Initiate an INV exception if an attempt is made to perform a floating arithmetic,
conversion, or comparison operation, and one or more of the operand values is
illegal.

0 Reserved for implementation software.

B.3 Mapping to IEEE Standard

There are five IEEE exceptions, each of which can be ‘‘IEEE software trap-enabled’’
or disabled (the default condition). Implementing the IEEE software trap-enabled
mode is optional in the IEEE standard.

Our assumption, therefore, is that the only access to IEEE-specified software trap-
enabled results will be generated in assembly language code. The following design
allows this, but only if such assembly language code has TRAPB instructions after
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each floating-point instruction, and generates the IEEE-specified scaled result in a
trap handler by emulating the instruction that was trapped by hardware overflow
/underflow detection, using the original operands.

There is a set of detailed IEEE-specified result values, both for operations that are
specified to raise IEEE traps and those that do not. This behavior is created on
Alpha by four layers of hardware, PALcode, the operating-system trap handler, and
the user IEEE trap handler, as shown in Figure B–2.

Figure B–2: IEEE Trap Handling Behavior

Hardware

PALcode

Optional System

User Condition Handler

Traps to PALcode

Traps to Operating System

Traps to User IEEE Trap Handler
(IEEE Standard)

The IEEE-specified trap behavior occurs only with respect to the user IEEE trap
handler (the last layer in Figure B–2); any trap-and-fixup behavior in the first three
layers is outside the scope of the IEEE standard.

The IEEE number system is divided into finite and non-finite numbers:

• The finites are normal numbers:

–MAX..–MIN, –0, 0, +MIN..+MAX

• The non-finites are:

Denormals, +/– Infinity, Signaling NaN, Quiet NaN

Alpha hardware must treat minus zero operands and results as special cases, as
required by the IEEE standard.

Table B–2 specifies, for the IEEE /Software modes, which layer does each piece of
trap handling. See Common Architecture, Chapter 4, for more detail on the hardware
instruction descriptions.
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Table B–2: IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

FBEQ FBNE FBLT FBLE FBGT
FBGE

Bits Only—No Exceptions

LDS LDT Bits Only—No Exceptions

STS STT Bits Only—No Exceptions

CPYS CPYSN Bits Only—No Exceptions

FCMOVx Bits Only—No Exceptions

ADDx SUBx INPUT Exceptions

Denormal operand Trap Trap Supply
sum

–

+/-Inf operand Trap Trap Supply
sum

–

QNaN operand Trap Trap Supply
QNaN

–

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

+Inf + –Inf Trap Trap Supply
QNaN

[Invalid Op]

ADDx SUBx OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow]
Scale by
bias adjust

Exponent underflow
and disabled

Supply
+0

– – –1

Exponent underflow
and enabled

Supply
+0 and
trap

Trap Supply
+/–MIN
denorm
+/–0

[Underflow]
Scale by
bias adjust

Inexact and disabled – – – –

Inexact and enabled Supply
sum and
trap

Trap – [Inexact]

1An implementation could choose instead to trap to PALcode and have the PALcode supply a zero result on all
underflows.
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Table B–2 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

MULx INPUT Exceptions

Denormal operand Trap Trap Supply
prod.

–

+/-Inf operand Trap Trap Supply
prod.

–

QNaN operand Trap Trap Supply
QNaN

–

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

0 * Inf Trap Trap Supply
QNaN

[Invalid Op]

MULx OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow]
Scale by
bias adjust

Exponent underflow
and disabled

Supply
+0

– – –

Exponent underflow
and enabled

Supply
+0 and
Trap

Trap Supply
+/–MIN
denorm
+/–0

[Underflow]
Scale by
bias adjust

Inexact and disabled – – – –

Inexact and enabled Supply
prod. and
trap

Trap – [Inexact]

DIVx INPUT Exceptions

Denormal operand Trap Trap Supply
quot.

–

+/-Inf operand Trap Trap Supply
quot.

–

QNaN operand Trap Trap Supply
QNaN

–

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]
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Table B–2 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

DIVx INPUT Exceptions

0/0 or Inf/Inf Trap Trap Supply
QNaN

[Invalid Op]

A/0 Trap Trap Supply
+/–Inf

[Div. Zero]

DIVx OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow]
Scale by
bias adjust

Exponent underflow
and disabled

Supply
+0

– – –

Exponent underflow
and enabled

Supply
+0 and
trap

Trap Supply
+/–MIN
denorm
+/–0

[Underflow]
Scale by
bias adjust

Inexact and disabled – – – –

Inexact and enabled Supply
quot. and
trap

Trap – [Inexact]

CMPTEQ CMPTUN INPUT Exceptions

Denormal operand Trap Trap Supply
(=)

–

QNaN operand Trap Trap Supply
False
for EQ, True
for UN

–

SNaN operand Trap Trap Supply
False/
True

[Invalid Op]

CMPTLT CMPTLE INPUT Exceptions

Denormal operand Trap Trap Supply
≤ or <

—

QNaN operand Trap Trap Supply
False

[Invalid Op]
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Table B–2 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

CMPTLT CMPTLE INPUT Exceptions

SNaN operand Trap Trap Supply
False

[Invalid Op]

CVTfi INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

–

+/-Inf operand Trap Trap Supply 0 [Invalid Op]

QNaN operand Trap Trap Supply 0 –

SNaN operand Trap Trap Supply 0 [Invalid Op]

CVTfi OUTPUT Exceptions

Inexact and disabled – – – –

Inexact and enabled Supply
Cvt and
trap

Trap – [Inexact]

Integer overflow Supply
Trunc.
result
and trap
if enabled

Trap – [Invalid Op]2

CVTif OUTPUT Exceptions

Inexact and disabled – – – –

Inexact and enabled Supply
Cvt and
trap

Trap – [Inexact]

CVTff INPUT Exceptions

Denormal operand Trap Trap Supply
Cvt

–

+/-Inf operand Trap Trap Supply
Cvt

–

2An implementation could choose instead to trap to PALcode on extreme values and have the PALcode supply a
truncated result on all overflows.
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Table B–2 (Cont.): IEEE Floating-Point Trap Handling

Alpha Instructions Hardware PAL

OS
Trap
Handler

User
Software
Handler

CVTff INPUT Exceptions

QNaN operand Trap Trap Supply
QNaN

–

SNaN operand Trap Trap Supply
QNaN

[Invalid Op]

CVTff OUTPUT Exceptions

Exponent overflow Trap Trap Supply
+/–Inf
+/–MAX

[Overflow]
Scale by
bias adjust

Exponent underflow
and disabled

Supply
+0

– – –

Exponent underflow
and enabled

Supply
+0 and
trap

Trap Supply
+/–MIN
denorm
+/–0

[Underflow]
Scale by
bias adjust

Inexact and disabled – – – –

Inexact and enabled Supply
Cvt and
trap

Trap – [Inexact]

Other IEEE operations (software subroutines or sequences of instructions), are listed
here for completeness:

Remainder
SQRT
Round float to integer-valued float
Convert binary to/from decimal
Compare, other combinations than the four above
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Table B–3 shows the IEEE standard charts.

Table B–3: IEEE Standard Charts

Exception

IEEE Software
TRAP Disabled
( IEEE Default)

IEEE Software
TRAP Enabled
(Optional )

Invalid Operation

(1) Input signaling NaN Quiet NaN

(2) Mag. subtract Inf. Quiet NaN

(3) 0 * Inf. Quiet NaN

(4) 0/0 or Inf/Inf Quiet NaN

(5) x REM 0 or Inf REM y Quiet NaN

(6) SQRT(negative non-zero) Quiet NaN

(7) Cvt to int(ovfl) Low-order bits

(8) Cvt to int(Inv, NaN) 0

(9) Compare unordered Quiet NaN

Division by Zero

x/0, x finite <>0 +/–Inf

Overflow

Round nearest +/–Inf. Res/2**192 or 1536

Round to zero +/–MAX Res/2**192 or 1536

Round to –Inf +MAX/–Inf Res/2**192 or 1536

Round to +Inf +Inf/–MAX Res/2**192 or 1536

Underflow

Underflow 0/denorm Res*2**192 or 1536

Inexact

Inexact Rounded Res
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Appendix C

Instruction Summary

This appendix contains a summary of all instructions and opcodes in the Alpha
architecture. All values are in hexadecimal radix.

C.1 Common Architecture Instruction Summary

This section contains a summary of all common Alpha instructions. Table C–1
describes the contents of the Format and Opcode columns in Table C–2.

Table C–1: Instruction Format and Opcode Notation

Instruction
Format

Format
Symbol

Opcode
Notation Meaning

Branch Bra oo oo is the 6-bit opcode field

Floating-
point

F-P oo.fff oo is the 6-bit opcode field
fff is the 11-bit function code field

Memory Mem oo oo is the 6-bit opcode field

Memory/
func code

Mfc oo.ffff oo is the 6-bit opcode field
ffff is the 16-bit function code in the displacement
field

Memory/
branch

Mbr oo.h oo is the 6-bit opcode field
h is the high-order two bits of the displacement field

Operate Opr oo.ff oo is the 6-bit opcode field
ff is the 7-bit function code field

PALcode Pcd oo oo is the 6-bit opcode field; the particular PALcode
instruction is specified in the 26-bit function code
field

Qualifiers for operate format instructions are shown in Table C–2. Qualifiers for
IEEE and VAX floating-point instructions are shown in Sections C–3 and C–4,
respectively.

Table C–2: Common Architecture Instructions

Mnemonic Format Opcode Description

ADDF F-P 15.080 Add F_floating
ADDG F-P 15.0A0 Add G_floating
ADDL Opr 10.00 Add longword
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Table C–2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

ADDL/V 10.40
ADDQ Opr 10.20 Add quadword
ADDQ/V 10.60
ADDS F-P 16.080 Add S_floating
ADDT F-P 16.0A0 Add T_floating
AMASK Opr 11.61 Architecture mask
AND Opr 11.00 Logical product
BEQ Bra 39 Branch if = zero
BGE Bra 3E Branch if ≥ zero
BGT Bra 3F Branch if > zero
BIC Opr 11.0 Bit clear
BIS Opr 11.20 Logical sum
BLBC Bra 38 Branch if low bit clear
BLBS Bra 3C Branch if low bit set
BLE Bra 3B Branch if ≤ zero
BLT Bra 3A Branch if < zero
BNE Bra 3D Branch if ≠ zero
BR Bra 30 Unconditional branch
BSR Mbr 34 Branch to subroutine
CALL_PAL Pcd 00 Trap to PALcode
CMOVEQ Opr 11.24 CMOVE if = zero
CMOVGE Opr 11.46 CMOVE if ≥ zero
CMOVGT Opr 11.66 CMOVE if > zero
CMOVLBC Opr 11.16 CMOVE if low bit clear
CMOVLBS Opr 11.14 CMOVE if low bit set
CMOVLE Opr 11.64 CMOVE if ≤ zero
CMOVLT Opr 11.44 CMOVE if < zero
CMOVNE Opr 11.26 CMOVE if ≠ zero
CMPBGE Opr 10.0F Compare byte
CMPEQ Opr 10.2D Compare signed quadword equal
CMPGEQ F-P 15.0A5 Compare G_floating equal
CMPGLE F-P 15.0A7 Compare G_floating less than or equal
CMPGLT F-P 15.0A6 Compare G_floating less than
CMPLE Opr 10.6D Compare signed quadword less than or equal
CMPLT Opr 10.4D Compare signed quadword less than
CMPTEQ F-P 16.0A5 Compare T_floating equal
CMPTLE F-P 16.0A7 Compare T_floating less than or equal
CMPTLT F-P 16.0A6 Compare T_floating less than
CMPTUN F-P 16.0A4 Compare T_floating unordered
CMPULE Opr 10.3D Compare unsigned quadword less than or equal
CMPULT Opr 10.1D Compare unsigned quadword less than
CPYS F-P 17.020 Copy sign
CPYSE F-P 17.022 Copy sign and exponent
CPYSN F-P 17.021 Copy sign negate
CTLZ Opr 1C.32 Count leading zero
CTPOP Opr 1C.30 Count population
CTTZ Opr 1C.33 Count trailing zero
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Table C–2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

CVTDG F-P 15.09E Convert D_floating to G_floating
CVTGD F-P 15.0AD Convert G_floating to D_floating
CVTGF F-P 15.0AC Convert G_floating to F_floating
CVTGQ F-P 15.0AF Convert G_floating to quadword
CVTLQ F-P 17.010 Convert longword to quadword
CVTQF F-P 15.0BC Convert quadword to F_floating
CVTQG F-P 15.0BE Convert quadword to G_floating
CVTQL F-P 17.030 Convert quadword to longword
CVTQS F-P 16.0BC Convert quadword to S_floating
CVTQT F-P 16.0BE Convert quadword to T_floating
CVTST F-P 16.2AC Convert S_floating to T_floating
CVTTQ F-P 16.0AF Convert T_floating to quadword
CVTTS F-P 16.0AC Convert T_floating to S_floating
DIVF F-P 15.083 Divide F_floating
DIVG F-P 15.0A3 Divide G_floating
DIVS F-P 16.083 Divide S_floating
DIVT F-P 16.0A3 Divide T_floating
ECB Mfc 18.E800 Evict cache block
EQV Opr 11.48 Logical equivalence
EXCB Mfc 18.0400 Exception barrier
EXTBL Opr 12.06 Extract byte low
EXTLH Opr 12.6A Extract longword high
EXTLL Opr 12.26 Extract longword low
EXTQH Opr 12.7A Extract quadword high
EXTQL Opr 12.36 Extract quadword low
EXTWH Opr 12.5A Extract word high
EXTWL Opr 12.16 Extract word low
FBEQ Bra 31 Floating branch if = zero
FBGE Bra 36 Floating branch if ≥ zero
FBGT Bra 37 Floating branch if > zero
FBLE Bra 33 Floating branch if ≤ zero
FBLT Bra 32 Floating branch if < zero
FBNE Bra 35 Floating branch if ≠zero
FCMOVEQ F-P 17.02A FCMOVE if = zero
FCMOVGE F-P 17.02D FCMOVE if ≥ zero
FCMOVGT F-P 17.02F FCMOVE if > zero
FCMOVLE F-P 17.02E FCMOVE if ≤ zero
FCMOVLT F-P 17.02C FCMOVE if < zero
FCMOVNE F-P 17.02B FCMOVE if ≠ zero
FETCH Mfc 18.8000 Prefetch data
FETCH_M Mfc 18.A000 Prefetch data, modify intent
FTOIS F-P 1C.78 Floating to integer move, S_floating
FTOIT F-P 1C.70 Floating to integer move, T_floating
IMPLVER Opr 11.6C Implementation version
INSBL Opr 12.0B Insert byte low
INSLH Opr 12.67 Insert longword high
INSLL Opr 12.2B Insert longword low
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Table C–2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

INSQH Opr 12.77 Insert quadword high
INSQL Opr 12.3B Insert quadword low
INSWH Opr 12.57 Insert word high
INSWL Opr 12.1B Insert word low
ITOFF F-P 14.014 Integer to floating move, F_floating
ITOFS F-P 14.004 Integer to floating move, S_floating
ITOFT F-P 14.024 Integer to floating move, T_floating
JMP Mbr 1A.0 Jump
JSR Mbr 1A.1 Jump to subroutine
JSR_COROUTINE Mbr 1A.3 Jump to subroutine return
LDA Mem 08 Load address
LDAH Mem 09 Load address high
LDBU Mem 0A Load zero-extended byte
LDWU Mem 0C Load zero-extended word
LDF Mem 20 Load F_floating
LDG Mem 21 Load G_floating
LDL Mem 28 Load sign-extended longword
LDL_L Mem 2A Load sign-extended longword locked
LDQ Mem 29 Load quadword
LDQ_L Mem 2B Load quadword locked
LDQ_U Mem 0B Load unaligned quadword
LDS Mem 22 Load S_floating
LDT Mem 23 Load T_floating
MAXSB8 Opr 1C.3E Vector signed byte maximum
MAXSW4 Opr 1C.3F Vector signed word maximum
MAXUB8 Opr 1C.3C Vector unsigned byte maximum
MAXUW4 Opr 1C.3D Vector unsigned word maximum
MB Mfc 18.4000 Memory barrier
MF_FPCR F-P 17.025 Move from FPCR
MINSB8 Opr 1C.38 Vector signed byte minimum
MINSW4 Opr 1C.39 Vector signed word minimum
MINUB8 Opr 1C.3A Vector unsigned byte minimum
MINUW4 Opr 1C.3B Vector unsigned word minimum
MSKBL Opr 12.02 Mask byte low
MSKLH Opr 12.62 Mask longword high
MSKLL Opr 12.22 Mask longword low
MSKQH Opr 12.72 Mask quadword high
MSKQL Opr 12.32 Mask quadword low
MSKWH Opr 12.52 Mask word high
MSKWL Opr 12.12 Mask word low
MT_FPCR F-P 17.024 Move to FPCR
MULF F-P 15.082 Multiply F_floating
MULG F-P 15.0A2 Multiply G_floating
MULL Opr 13.00 Multiply longword
MULL/V 13.40
MULQ Opr 13.20 Multiply quadword
MULQ/V 13.60
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Table C–2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

MULS F-P 16.082 Multiply S_floating
MULT F-P 16.0A2 Multiply T_floating
ORNOT Opr 11.28 Logical sum with complement
PERR Opr 1C.31 Pixel error
PKLB Opr 1C.37 Pack longwords to bytes
PKWB Opr 1C.36 Pack words to bytes
RC Mfc 18.E000 Read and clear
RET Mbr 1A.2 Return from subroutine
RPCC Mfc 18.C000 Read process cycle counter
RS Mfc 18.F000 Read and set
S4ADDL Opr 10.02 Scaled add longword by 4
S4ADDQ Opr 10.22 Scaled add quadword by 4
S4SUBL Opr 10.0B Scaled subtract longword by 4
S4SUBQ Opr 10.2B Scaled subtract quadword by 4
S8ADDL Opr 10.12 Scaled add longword by 8
S8ADDQ Opr 10.32 Scaled add quadword by 8
S8SUBL Opr 10.1B Scaled subtract longword by 8
S8SUBQ Opr 10.3B Scaled subtract quadword by 8
SEXTB Opr 1C.00 Sign extend byte
SEXTW Opr 1C.01 Sign extend word
SLL Opr 12.39 Shift left logical
SQRTF F-P 14.08A Square root F_floating
SQRTG F-P 14.0AA Square root G_floating
SQRTS F-P 14.08B Square root S_floating
SQRTT F-P 14.0AB Square root T_floating
SRA Opr 12.3C Shift right arithmetic
SRL Opr 12.34 Shift right logical
STB Mem 0E Store byte
STF Mem 24 Store F_floating
STG Mem 25 Store G_floating
STS Mem 26 Store S_floating
STL Mem 2C Store longword
STL_C Mem 2E Store longword conditional
STQ Mem 2D Store quadword
STQ_C Mem 2F Store quadword conditional
STQ_U Mem 0F Store unaligned quadword
STT Mem 27 Store T_floating
STW Mem 0D Store word
SUBF F-P 15.081 Subtract F_floating
SUBG F-P 15.0A1 Subtract G_floating
SUBL Opr 10.09 Subtract longword
SUBL/V 10.49
SUBQ Opr 10.29 Subtract quadword
SUBQ/V 10.69
SUBS F-P 16.081 Subtract S_floating
SUBT F-P 16.0A1 Subtract T_floating
TRAPB Mfc 18.0000 Trap barrier
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Table C–2 (Cont.): Common Architecture Instructions

Mnemonic Format Opcode Description

UMULH Opr 13.30 Unsigned multiply quadword high
UNPKBL Opr 1C.35 Unpack bytes to longwords
UNPKBW Opr 1C.34 Unpack bytes to words
WH64 Mfc 18.F800 Write hint - 64 bytes
WMB Mfc 18.4400 Write memory barrier
XOR Opr 11.40 Logical difference
ZAP Opr 12.30 Zero bytes
ZAPNOT Opr 12.31 Zero bytes not
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C.2 IEEE Floating-Point Instructions

Table C–3 lists the hexadecimal value of the 11-bit function code field for the IEEE
floating-point instructions, with and without qualifiers. The opcode for the following
instructions is 1616, except for SQRTS and SQRTT, which are opcode 1416.

Table C–3: IEEE Floating-Point Instruction Function Codes

None /C /M /D /U /UC /UM /UD

ADDS 080 000 040 0C0 180 100 140 1C0
ADDT 0A0 020 060 0E0 1A0 120 160 1E0
CMPTEQ 0A5
CMPTLT 0A6
CMPTLE 0A7
CMPTUN 0A4
CVTQS 0BC 03C 07C 0FC
CVTQT 0BE 03E 07E 0FE
CVTST See below
CVTTQ See below
CVTTS 0AC 02C 06C 0EC 1AC 12C 16C 1EC
DIVS 083 003 043 0C3 183 103 143 1C3
DIVT 0A3 023 063 0E3 1A3 123 163 1E3
MULS 082 002 042 0C2 182 102 142 1C2
MULT 0A2 022 062 0E2 1A2 122 162 1E2
SQRTS 08B 00B 04B 0CB 18B 10B 14B 1CB
SQRTT 0AB 02B 06B 0EB 1AB 12B 16B 1EB
SUBS 081 001 041 0C1 181 101 141 1C1
SUBT 0A1 021 061 0E1 1A1 121 161 1E1

/SU /SUC /SUM /SUD /SUI /SUIC /SUIM /SUID

ADDS 580 500 540 5C0 780 700 740 7C0
ADDT 5A0 520 560 5E0 7A0 720 760 7E0
CMPTEQ 5A5
CMPTLT 5A6
CMPTLE 5A7
CMPTUN 5A4
CVTQS 7BC 73C 77C 7FC
CVTQT 7BE 73E 77E 7FE
CVTTS 5AC 52C 56C 5EC 7AC 72C 76C 7EC
DIVS 583 503 543 5C3 783 703 743 7C3
DIVT 5A3 523 563 5E3 7A3 723 763 7E3
MULS 582 502 542 5C2 782 702 742 7C2
MULT 5A2 522 562 5E2 7A2 722 762 7E2
SQRTS 58B 50B 54B 5CB 78B 70B 74B 7CB
SQRTT 5AB 52B 56B 5EB 7AB 72B 76B 7EB
SUBS 581 501 541 5C1 781 701 741 7C1
SUBT 5A1 521 561 5E1 7A1 721 761 7E1
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Table C–3 (Cont.): IEEE Floating-Point Instruction Function Codes

None /S

CVTST 2AC 6AC

None /C /V /VC /SV /SVC /SVI /SVIC

CVTTQ 0AF 02F 1AF 12F 5AF 52F 7AF 72F

D /VD /SVD /SVID /M /VM /SVM /SVIM

CVTTQ 0EF 1EF 5EF 7EF 06F 16F 56F 76F

Programming Note:

In order to use CMPTxx with software completion trap handling, it is necessary
to specify the /SU IEEE trap mode, even though an underflow trap is not possible.

In order to use CVTQS or CVTQT with software completion trap handling, it is
necessary to specify the /SUI IEEE trap mode, even though an underflow trap is
not possible.
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C.3 VAX Floating-Point Instructions

Table C–4 lists the hexadecimal value of the 11-bit function code field for the VAX
floating-point instructions. The opcode for the following instructions is 1516, except
for SQRTF and SQRTG, which are opcode 1416.

Table C–4: VAX Floating-Point Instruction Function Codes

None /C /U /UC /S /SC /SU /SUC

ADDF 080 000 180 100 480 400 580 500
CVTDG 09E 01E 19E 11E 49E 41E 59E 51E
ADDG 0A0 020 1A0 120 4A0 420 5A0 520
CMPGEQ 0A5 4A5
CMPGLT 0A6 4A6
CMPGLE 0A7 4A7
CVTGF 0AC 02C 1AC 12C 4AC 42C 5AC 52C
CVTGD 0AD 02D 1AD 12D 4AD 42D 5AD 52D
CVTGQ See below
CVTQF 0BC 03C
CVTQG 0BE 03E
DIVF 083 003 183 103 483 403 583 503
DIVG 0A3 023 1A3 123 4A3 423 5A3 523
MULF 082 002 182 102 482 402 582 502
MULG 0A2 022 1A2 122 4A2 422 5A2 522
SQRTF 08A 00A 18A 10A 48A 40A 58A 50A
SQRTG 0AA 02A 1AA 12A 4AA 42A 5AA 52A
SUBF 081 001 181 101 481 401 581 501
SUBG 0A1 021 1A1 121 4A1 421 5A1 521

None /C /V /VC /S /SC /SV /SVC

CVTGQ 0AF 02F 1AF 12F 4AF 42F 5AF 52F

C.4 Independent Floating-Point Instructions

Table C–5 lists the hexadecimal value of the 11-bit function code field for the floating-
point instructions that are not directly tied to IEEE or VAX floating point. The opcode
for the following instructions is 1716.

Table C–5: Independent Floating-Point Instruction Function Codes

None /V /SV

CPYS 020
CPYSE 022
CPYSN 021
CVTLQ 010
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Table C–5 (Cont.): Independent Floating-Point Instruction Function Codes

None /V /SV

CVTQL 030 130 530
FCMOVEQ 02A
FCMOVGE 02D
FCMOVGT 02F
FCMOVLE 02E
FCMOVLT 02C
MF_FPCR 025
MT_FPCR 024
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C.5 Opcode Summary

Table C–6 lists all Alpha opcodes from 00 (CALL_PAL) through 3F (BGT). In the
table, the column headings that appear over the instructions have a granularity of
816. The rows beneath the leftmost column supply the individual hex number to
resolve that granularity.

If an instruction column has a 0 (zero) in the right (low) hex digit, replace that 0 with
the number to the left of the backslash in the leftmost column on the instruction’s
row. If an instruction column has an 8 in the right (low) hexadecimal digit, replace
that 8 with the number to the right of the backslash in the leftmost column.

For example, the third row (2/A) under the 10 column contains the symbol INTS*,
representing all the integer shift instructions. The opcode for those instructions
would then be 1216 because the 0 in 10 is replaced by the 2 in the leftmost column.
Likewise, the third row under the 18 column contains the symbol JSR*, representing
all jump instructions. The opcode for those instructions is 1A because the 8 in the
heading is replaced by the number to the right of the backslash in the leftmost
column.

The instruction format is listed under the instruction symbol.

The symbols in Table C–6 are explained in Table C–7.
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Table C–6: Opcode Summary

00 08 10 18 20 28 30 38

0/8 PAL*
(pal)

LDA
(mem)

INTA*
(op)

MISC*
(mem)

LDF
(mem)

LDL
(mem)

BR
(br)

BLBC
(br)

1/9 Res LDAH
(mem)

INTL*
(op)

\PAL\ LDG
(mem)

LDQ
(mem)

FBEQ
(br)

BEQ
(br)

2/A Res Res INTS*
(op)

JSR*
(mem)

LDS
(mem)

LDL_L
(mem)

FBLT
(br)

BLT
(br)

3/B Res LDQ_U
(mem)

INTM*
(op)

\PAL\ LDT
(mem)

LDQ_L
(mem)

FBLE
(br)

BLE
(br)

4/C Res Res ITFP* FPTI* STF
(mem)

STL
(mem)

BSR
(br)

BLBS
(br)

5/D Res STW FLTV*
(op)

\PAL\ STG
(mem)

STQ
(mem)

FBNE
(br)

BNE
(br)

6/E Res STB FLTI*
(op)

\PAL\ STS
(mem)

STL_C
(mem)

FBGE
(br)

BGE
(br)

7/F Res STQ_U
(mem)

FLTL*
(op)

\PAL\ STT
(mem)

STQ_C
(mem)

FBGT
(br)

BGT
(br)

Table C–7: Key to Opcode Summary (Table C–6)

Symbol Meaning

FLTI* IEEE floating-point instruction opcodes

FLTL* Floating-point Operate instruction opcodes

FLTV* VAX floating-point instruction opcodes

FPTI* Floating-point to integer register move opcodes

INTA* Integer arithmetic instruction opcodes

INTL* Integer logical instruction opcodes

INTM* Integer multiply instruction opcodes

INTS* Integer shift instruction opcodes

ITFP* Integer to floating point register move opcodes

JSR* Jump instruction opcodes

MISC* Miscellaneous instruction opcodes

PAL* PALcode instruction (CALL_PAL) opcodes

\PAL\ Reserved for PALcode

Res Reserved for Digital
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C.6 Common Architecture Opcodes in Numerical Order

Table C–8: Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

00 CALL_PAL 11.26 CMOVNE 14.014 ITOFF
01 OPC01 11.28 ORNOT 14.024 ITOFT
02 OPC02 11.40 XOR 14.02A SQRTG/C
03 OPC03 11.44 CMOVLT 14.02B SQRTT/C
04 OPC04 11.46 CMOVGE 14.04B SQRTS/M
05 OPC05 11.48 EQV 14.06B SQRTT/M
06 OPC06 11.61 AMASK 14.08A SQRTF
07 OPC07 11.64 CMOVLE 14.08B SQRTS
08 LDA 11.66 CMOVGT 14.0AA SQRTG
09 LDAH 11.6C IMPLVER 14.0AB SQRTT
0A LDBU 12.02 MSKBL 14.0CB SQRTS/D
0B LDQ_U 12.06 EXTBL 14.0EB SQRTT/D
0C LDWU 12.0B INSBL 14.10A SQRTF/UC
0D STW 12.12 MSKWL 14.10B SQRTS/UC
0E STB 12.16 EXTWL 14.12A SQRTG/UC
0F STQ_U 12.1B INSWL 14.12B SQRTT/UC
10.00 ADDL 12.22 MSKLL 14.14B SQRTS/UM
10.02 S4ADDL 12.26 EXTLL 14.16B SQRTT/UM
10.09 SUBL 12.2B INSLL 14.18A SQRTF/U
10.0B S4SUBL 12.30 ZAP 14.18B SQRTS/U
10.0F CMPBGE 12.31 ZAPNOT 14.1AA SQRTG/U
10.12 S8ADDL 12.32 MSKQL 14.1AB SQRTT/U
10.1B S8SUBL 12.34 SRL 14.1CB SQRTS/UD
10.1D CMPULT 12.36 EXTQL 14.1EB SQRTT/UD
10.20 ADDQ 12.39 SLL 14.40A SQRTF/SC
10.22 S4ADDQ 12.3B INSQL 14.42A SQRTG/SC
10.29 SUBQ 12.3C SRA 14.48A SQRTF/S
10.2B S4SUBQ 12.52 MSKWH 14.4AA SQRTG/S
10.2D CMPEQ 12.57 INSWH 14.50A SQRTF/SUC
10.32 S8ADDQ 12.5A EXTWH 14.50B SQRTS/SUC
10.3B S8SUBQ 12.62 MSKLH 14.52A SQRTG/SUC
10.3D CMPULE 12.67 INSLH 14.52B SQRTT/SUC
10.40 ADDL/V 12.6A EXTLH 14.54B SQRTS/SUM
10.49 SUBL/V 12.72 MSKQH 14.56B SQRTT/SUM
10.4D CMPLT 12.77 INSQH 14.58A SQRTF/SU
10.60 ADDQ/V 12.7A EXTQH 14.58B SQRTS/SU
10.69 SUBQ/V 13.00 MULL 14.5AA SQRTG/SU
10.6D CMPLE 13.20 MULQ 14.5AB SQRTT/SU
11.00 AND 13.30 UMULH 14.5CB SQRTS/SUD
11.08 BIC 13.40 MULL/V 14.5EB SQRTT/SUD
11.14 CMOVLBS 13.60 MULQ/V 14.70B SQRTS/SUIC
11.16 CMOVLBC 14.004 ITOFS 14.72B SQRTT/SUIC
11.20 BIS 14.00A SQRTF/C 14.74B SQRTS/SUIM
11.24 CMOVEQ 14.00B SQRTS/C 14.76B SQRTT/SUIM
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Table C–8 (Cont.): Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

14.78B SQRTS/SUI 15.12F CVTGQ/VC 15.521 SUBG/SUC
14.7AB SQRTT/SUI 15.180 ADDF/U 15.522 MULG/SUC
14.7CB SQRTS/SUID 15.181 SUBF/U 15.523 DIVG/SUC
14.7EB SQRTT/SUID 15.182 MULF/U 15.52C CVTGF/SUC
15.000 ADDF/C 15.183 DIVF/U 15.52D CVTGD/SUC
15.001 SUBF/C 15.19E CVTDG/U 15.52F CVTGQ/SVC
15.002 MULF/C 15.1A0 ADDG/U 15.580 ADDF/SU
15.003 DIVF/C 15.1A1 SUBG/U 15.581 SUBF/SU
15.01E CVTDG/C 15.1A2 MULG/U 15.582 MULF/SU
15.020 ADDG/C 15.1A3 DIVG/U 15.583 DIVF/SU
15.021 SUBG/C 15.1AC CVTGF/U 15.59E CVTDG/SU
15.022 MULG/C 15.1AD CVTGD/U 15.5A0 ADDG/SU
15.023 DIVG/C 15.1AF CVTGQ/V 15.5A1 SUBG/SU
15.02C CVTGF/C 15.400 ADDF/SC 15.5A2 MULG/SU
15.02D CVTGD/C 15.401 SUBF/SC 15.5A3 DIVG/SU
15.02F CVTGQ/C 15.402 MULF/SC 15.5AC CVTGF/SU
15.03C CVTQF/C 15.403 DIVF/SC 15.5AD CVTGD/SU
15.03E CVTQG/C 15.41E CVTDG/SC 15.5AF CVTGQ/SV
15.080 ADDF 15.420 ADDG/SC 16.000 ADDS/C
15.081 SUBF 15.421 SUBG/SC 16.001 SUBS/C
15.082 MULF 15.422 MULG/SC 16.002 MULS/C
15.083 DIVF 15.423 DIVG/SC 16.003 DIVS/C
15.09E CVTDG 15.42C CVTGF/SC 16.020 ADDT/C
15.0A0 ADDG 15.42D CVTGD/SC 16.021 SUBT/C
15.0A1 SUBG 15.42F CVTGQ/SC 16.022 MULT/C
15.0A2 MULG 15.480 ADDF/S 16.023 DIVT/C
15.0A3 DIVG 15.481 SUBF/S 16.02C CVTTS/C
15.0A5 CMPGEQ 15.482 MULF/S 16.02F CVTTQ/C
15.0A6 CMPGLT 15.483 DIVF/S 16.03C CVTQS/C
15.0A7 CMPGLE 15.49E CVTDG/S 16.03E CVTQT/C
15.0AC CVTGF 15.4A0 ADDG/S 16.040 ADDS/M
15.0AD CVTGD 15.4A1 SUBG/S 16.041 SUBS/M
15.0AF CVTGQ 15.4A2 MULG/S 16.042 MULS/M
15.0BC CVTQF 15.4A3 DIVG/S 16.043 DIVS/M
15.0BE CVTQG 15.4A5 CMPGEQ/S 16.060 ADDT/M
15.100 ADDF/UC 15.4A6 CMPGLT/S 16.061 SUBT/M
15.101 SUBF/UC 15.4A7 CMPGLE/S 16.062 MULT/M
15.102 MULF/UC 15.4AC CVTGF/S 16.063 DIVT/M
15.103 DIVF/UC 15.4AD CVTGD/S 16.06C CVTTS/M
15.11E CVTDG/UC 15.4AF CVTGQ/S 16.06F CVTTQ/M
15.120 ADDG/UC 15.500 ADDF/SUC 16.07C CVTQS/M
15.121 SUBG/UC 15.501 SUBF/SUC 16.07E CVTQT/M
15.122 MULG/UC 15.502 MULF/SUC 16.080 ADDS
15.123 DIVG/UC 15.503 DIVF/SUC 16.081 SUBS
15.12C CVTGF/UC 15.51E CVTDG/SUC 16.082 MULS
15.12D CVTGD/UC 15.520 ADDG/SUC 16.083 DIVS
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Table C–8 (Cont.): Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

16.0A0 ADDT 16.182 MULS/U 16.5A3 DIVT/SU
16.0A1 SUBT 16.183 DIVS/U 16.5A4 CMPTUN/SU
16.0A2 MULT 16.1A0 ADDT/U 16.5A5 CMPTEQ/SU
16.0A3 DIVT 16.1A1 SUBT/U 16.5A6 CMPTLT/SU
16.0A4 CMPTUN 16.1A2 MULT/U 16.5A7 CMPTLE/SU
16.0A5 CMPTEQ 16.1A3 DIVT/U 16.5AC CVTTS/SU
16.0A6 CMPTLT 16.1AC CVTTS/U 16.5AF CVTTQ/SV
16.0A7 CMPTLE 16.1AF CVTTQ/V 16.5C0 ADDS/SUD
16.0AC CVTTS 16.1C0 ADDS/UD 16.5C1 SUBS/SUD
16.0AF CVTTQ 16.1C1 SUBS/UD 16.5C2 MULS/SUD
16.0BC CVTQS 16.1C2 MULS/UD 16.5C3 DIVS/SUD
16.0BE CVTQT 16.1C3 DIVS/UD 16.5E0 ADDT/SUD
16.0C0 ADDS/D 16.1E0 ADDT/UD 16.5E1 SUBT/SUD
16.0C1 SUBS/D 16.1E1 SUBT/UD 16.5E2 MULT/SUD
16.0C2 MULS/D 16.1E2 MULT/UD 16.5E3 DIVT/SUD
16.0C3 DIVS/D 16.1E3 DIVT/UD 16.5EC CVTTS/SUD
16.0E0 ADDT/D 16.1EC CVTTS/UD 16.5EF CVTTQ/SVD
16.0E1 SUBT/D 16.1EF CVTTQ/VD 16.6AC CVTST/S
16.0E2 MULT/D 16.2AC CVTST 16.700 ADDS/SUIC
16.0E3 DIVT/D 16.500 ADDS/SUC 16.701 SUBS/SUIC
16.0EC CVTTS/D 16.501 SUBS/SUC 16.702 MULS/SUIC
16.0EF CVTTQ/D 16.502 MULS/SUC 16.703 DIVS/SUIC
16.0FC CVTQS/D 16.503 DIVS/SUC 16.720 ADDT/SUIC
16.0FE CVTQT/D 16.520 ADDT/SUC 16.721 SUBT/SUIC
16.100 ADDS/UC 16.521 SUBT/SUC 16.722 MULT/SUIC
16.101 SUBS/UC 16.522 MULT/SUC 16.723 DIVT/SUIC
16.102 MULS/UC 16.523 DIVT/SUC 16.72C CVTTS/SUIC
16.103 DIVS/UC 16.52C CVTTS/SUC 16.72F CVTTQ/SVIC
16.120 ADDT/UC 16.52F CVTTQ/SVC 16.73C CVTQS/SUIC
16.121 SUBT/UC 16.540 ADDS/SUM 16.73E CVTQT/SUIC
16.122 MULT/UC 16.541 SUBS/SUM 16.740 ADDS/SUIM
16.123 DIVT/UC 16.542 MULS/SUM 16.741 SUBS/SUIM
16.12C CVTTS/UC 16.543 DIVS/SUM 16.742 MULS/SUIM
16.12F CVTTQ/VC 16.560 ADDT/SUM 16.743 DIVS/SUIM
16.140 ADDS/UM 16.561 SUBT/SUM 16.760 ADDT/SUIM
16.141 SUBS/UM 16.562 MULT/SUM 16.761 SUBT/SUIM
16.142 MULS/UM 16.563 DIVT/SUM 16.762 MULT/SUIM
16.143 DIVS/UM 16.56C CVTTS/SUM 16.763 DIVT/SUIM
16.160 ADDT/UM 16.56F CVTTQ/SVM 16.76C CVTTS/SUIM
16.161 SUBT/UM 16.580 ADDS/SU 16.76F CVTTQ/SVIM
16.162 MULT/UM 16.581 SUBS/SU 16.77C CVTQS/SUIM
16.163 DIVT/UM 16.582 MULS/SU 16.77E CVTQT/SUIM
16.16C CVTTS/UM 16.583 DIVS/SU 16.780 ADDS/SUI
16.16F CVTTQ/VM 16.5A0 ADDT/SU 16.781 SUBS/SUI
16.180 ADDS/U 16.5A1 SUBT/SU 16.782 MULS/SUI
16.181 SUBS/U 16.5A2 MULT/SU 16.783 DIVS/SUI
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Table C–8 (Cont.): Common Architecture Opcodes in Numerical Order

Opcode Opcode Opcode

16.7A0 ADDT/SUI 18.4000 MB 1F PAL1F
16.7A1 SUBT/SUI 18.4400 WMB 20 LDF
16.7A2 MULT/SUI 18.8000 FETCH 21 LDG
16.7A3 DIVT/SUI 18.A000 FETCH_M 22 LDS
16.7AC CVTTS/SUI 18.C000 RPCC 23 LDT
16.7AF CVTTQ/SVI 18.E000 RC 24 STF
16.7BC CVTQS/SUI 18.E800 ECB 25 STG
16.7BE CVTQT/SUI 18.F000 RS 26 STS
16.7C0 ADDS/SUID 18.F800 WH64 27 STT
16.7C1 SUBS/SUID 19 PAL19 28 LDL
16.7C2 MULS/SUID 1A.0 JMP 29 LDQ
16.7C3 DIVS/SUID 1A.1 JSR 2A LDL_L
16.7E0 ADDT/SUID 1A.2 RET 2B LDQ_L
16.7E1 SUBT/SUID 1A.3 JSR_COROUTINE 2C STL
16.7E2 MULT/SUID 1B PAL1B 2D STQ
16.7E3 DIVT/SUID 1C.00 SEXTB 2E STL_C
16.7EC CVTTS/SUID 1C.01 SEXTW 2F STQ_C
16.7EF CVTTQ/SVID 1C.30 CTPOP 30 BR
16.7FC CVTQS/SUID 1C.31 PERR 31 FBEQ
16.7FE CVTQT/SUID 1C.32 CTLZ 32 FBLT
17.010 CVTLQ 1C.33 CTTZ 33 FBLE
17.020 CPYS 1C.34 UNPKBW 34 BSR
17.021 CPYSN 1C.35 UNPKBL 35 FBNE
17.022 CPYSE 1C.36 PKWB 36 FBGE
17.024 MT_FPCR 1C.37 PKLB 37 FBGT
17.025 MF_FPCR 1C.38 MINSB8 38 BLBC
17.02A FCMOVEQ 1C.39 MINSW4 39 BEQ
17.02B FCMOVNE 1C.3A MINUB8 3A BLT
17.02C FCMOVLT 1C.3B MINUW4 3B BLE
17.02D FCMOVGE 1C.3C MAXUB8 3C BLBS
17.02E FCMOVLE 1C.3D MAXUW4 3D BNE
17.02F FCMOVGT 1C.3E MAXSB8 3E BGE
17.030 CVTQL 1C.3F MAXSW4 3F BGT
17.130 CVTQL/V 1C.70 FTOIT
17.530 CVTQL/SV 1C.78 FTOIS
18.0000 TRAPB 1D PAL1D
18.0400 EXCB 1E PAL1E
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C.7 OpenVMS Alpha PALcode Instruction Summary

Table C–9: OpenVMS Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

AMOVRM 00.00A1 Atomic move from register to memory
AMOVRR 00.00A0 Atomic move from register to register
BPT 00.0080 Breakpoint
BUGCHK 00.0081 Bugcheck
CHMK 00.0083 Change mode to kernel
CHME 00.0082 Change mode to executive
CHMS 00.0084 Change mode to supervisor
CHMU 00.0085 Change mode to user
CLRFEN 00.00AE Clear floating-point enable
GENTRAP 00.00AA Generate software trap
IMB 00.0086 I-stream memory barrier
INSQHIL 00.0087 Insert into longword queue at head interlocked
INSQHILR 00.00A2 Insert into longword queue at head interlocked resident
INSQHIQ 00.0089 Insert into quadword queue at head interlocked
INSQHIQR 00.00A4 Insert into quadword queue at head interlocked resident
INSQTIL 00.0088 Insert into longword queue at tail interlocked
INSQTILR 00.00A3 Insert into longword queue at tail interlocked resident
INSQTIQ 00.008A Insert into quadword queue at tail interlocked
INSQTIQR 00.00A5 Insert into quadword queue at tail interlocked resident
INSQUEL 00.008B Insert entry into longword queue
INSQUEL/D 00.008D Insert entry into longword queue deferred
INSQUEQ 00.008C Insert entry into quadword queue
INSQUEQ/D 00.008E Insert entry into quadword queue deferred
PROBER 00.008F Probe for read access
PROBEW 00.0090 Probe for write access
RD_PS 00.0091 Move processor status
READ_UNQ 00.009E Read unique context
REI 00.0092 Return from exception or interrupt
REMQHIL 00.0093 Remove from longword queue at head interlocked
REMQHILR 00.00A6 Remove from longword queue at head interlocked resident
REMQHIQ 00.0095 Remove from quadword queue at head interlocked
REMQHIQR 00.00A8 Remove from quadword queue at head interlocked resident
REMQTIL 00.0094 Remove from longword queue at tail interlocked
REMQTILR 00.00A7 Remove from longword queue at tail interlocked resident
REMQTIQ 00.0096 Remove from quadword queue at tail interlocked
REMQTIQR 00.00A9 Remove from quadword queue at tail interlocked resident
REMQUEL 00.0097 Remove entry from longword queue
REMQUEL/D 00.0099 Remove entry from longword queue deferred
REMQUEQ 00.0098 Remove entry from quadword queue
REMQUEQ/D 00.009A Remove entry from quadword queue deferred
RSCC 00.009D Read system cycle counter
SWASTEN 00.009B Swap AST enable for current mode
WRITE_UNQ 00.009F Write unique context
WR_PS_SW 00.009C Write processor status software field
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Table C–10: OpenVMS Alpha Privileged PALcode Instructions

Mnemonic Opcode Description

CFLUSH 00.0001 Cache flush
CSERVE 00.0009 Console service
DRAINA 00.0002 Drain aborts
HALT 00.0000 Halt processor
LDQP 00.0003 Load quadword physical
MFPR_ASN 00.0006 Move from processor register ASN
MFPR_ESP 00.001E Move from processor register ESP
MFPR_FEN 00.000B Move from processor register FEN
MFPR_IPL 00.000E Move from processor register IPL
MFPR_MCES 00.0010 Move from processor register MCES
MFPR_PCBB 00.0012 Move from processor register PCBB
MFPR_PRBR 00.0013 Move from processor register PRBR
MFPR_PTBR 00.0015 Move from processor register PTBR
MFPR_SCBB 00.0016 Move from processor register SCBB
MFPR_SISR 00.0019 Move from processor register SISR
MFPR_SSP 00.0020 Move from processor register SSP
MFPR_TBCHK 00.001A Move from processor register TBCHK
MFPR_USP 00.0022 Move from processor register USP
MFPR_VPTB 00.0029 Move from processor register VPTB
MFPR_WHAMI 00.003F Move from processor register WHAMI
MTPR_ASTEN 00.0026 Move to processor register ASTEN
MTPR_ASTSR 00.0027 Move to processor register ASTSR
MTPR_DATFX 00.002E Move to processor register DATFX
MTPR_ESP 00.001F Move to processor register ESP
MTPR_FEN 00.000B Move to processor register FEN
MTPR_IPIR 00.000D Move to processor register IPRI
MTPR_IPL 00.000E Move to processor register IPL
MTPR_MCES 00.0011 Move to processor register MCES
MTPR_PERFMON 00.002B Move to processor register PERFMON
MTPR_PRBR 00.0014 Move to processor register PRBR
MTPR_SCBB 00.0017 Move to processor register SCBB
MTPR_SIRR 00.0018 Move to processor register SIRR
MTPR_SSP 00.0021 Move to processor register SSP
MTPR_TBIA 00.001B Move to processor register TBIA
MTPR_TBIAP 00.001C Move to processor register TBIAP
MTPR_TBIS 00.001D Move to processor register TBIS
MTPR_TBISD 00.0024 Move to processor register TBISD
MTPR_TBISI 00.0025 Move to processor register TBISI
MTPR_USP 00.0023 Move to processor register USP
MTPR_VPTB 00.002A Move to processor register VPTB
STQP 00.0004 Store quadword physical
SWPCTX 00.0005 Swap privileged context
SWPPAL 00.000A Swap PALcode image
WTINT 00.003E Wait for interrupt
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C.8 Digital UNIX PALcode Instruction Summary

Table C–11: Digital UNIX Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap
bugchk 00.0081 Bugcheck
callsys 00.0083 System call
clrfen 00.00AE Clear floating-point enable
gentrap 00.00AA Generate software trap
imb 00.0086 I-stream memory barrier
rdunique 00.009E Read unique value
urti 00.0092 Return from user mode trap
wrunique 00.009F Write unique value

Table C–12: Digital UNIX Privileged PALcode Instructions

Mnemonic Opcode Description

cflush 00.0001 Cache flush
cserve 00.0009 Console service
draina 00.0002 Drain aborts
halt 00.0000 Halt the processor
rdmces 00.0010 Read machine check error summary register
rdps 00.0036 Read processor status
rdusp 00.003A Read user stack pointer
rdval 00.0032 Read system value
retsys 00.003D Return from system call
rti 00.003F Return from trap or interrupt
swpctx 00.0030 Swap privileged context
swpipl 00.0035 Swap interrupt priority level
swppal 00.000A Swap PALcode image
tbi 00.0033 Translation buffer invalidate
whami 00.003C Who am I
wrent 00.0034 Write system entry address
wrfen 00.002B Write floating-point enable
wripir 00.000D Write interprocessor interrupt request
wrkgp 00.0037 Write kernel global pointer
wrmces 00.0011 Write machine check error summary register
wrperfmon 00.0039 Performance monitoring function
wrusp 00.0038 Write user stack pointer
wrval 00.0031 Write system value
wrvptptr 00.002D Write virtual page table pointer
wtint 00.003E Wait for interrupt
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C.9 Windows NT Alpha Instruction Summary

Table C–13: Windows NT Alpha Unprivileged PALcode Instructions

Mnemonic Opcode Description

bpt 00.0080 Breakpoint trap
callkd 00.00AD Call kernel debugger
callsys 00.0083 Call system service
gentrap 00.00AA Generate trap
imb 00.0086 Instruction memory barrier
kbpt 00.00AC Kernel breakpoint trap
rdteb 00.00AB Read TEB internal processor register

Table C–14: Windows NT Alpha Privileged PALcode instructions

Mnemonic Opcode Description

csir 00.000D Clear software interrupt request
di 00.0008 Disable interrupts
draina 00.0002 Drain aborts
dtbis 00.0016 Data translation buffer invalidate single
ei 00.0009 Enable interrupts
halt 00.0000 Trap to illegal instruction
initpal 00.0004 Initialize the PALcode
rdcounters 00.0030 Read PALcode event counters
rdirql 00.0007 Read current IRQL
rdksp 00.0018 Read initial kernel stack
rdmces 00.0012 Read machine check error summary
rdpcr 00.001C Read PCR (processor control registers)
rdpsr 00.001A Read processor status register
rdstate 00.0031 Read internal processor state
rdthread 00.001E Read the current thread value
reboot 00.0002 Transfer to console firmware
restart 00.0001 Restart the processor
retsys 00.000F Return from system service call
rfe 00.000E Return from exception
swpirql 00.0006 Swap IRQL
swpksp 00.0019 Swap initial kernel stack
swppal 00.000A Swap PALcode
swpprocess 00.0011 Swap privileged process context
swpctx 00.0010 Swap privileged thread context
ssir 00.000C Set software interrupt request
tbia 00.0014 Translation buffer invalidate all
tbis 00.0015 Translation buffer invalidate single
tbisasn 00.0017 Translation buffer invalidate single ASN
wrentry 00.0005 Write system entry
wrmces 00.0013 Write machine check error summary
wrperfmon 00.0020 Write performance monitoring values
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Opcodes 00.003816 through 00.003F16 are reserved for processor implementation-
specific PALcode instructions. All other opcodes are reserved for use by Digital.

Instruction Summary C–21



C.10 PALcode Opcodes in Numerical Order

Table C–15: PALcode Opcodes in Numerical Order

Opcode16 Opcode10 OpenVMS Alpha Digital UNIX Windows NT Alpha

00.0000 00.0000 HALT halt halt
00.0001 00.0001 CFLUSH cflush restart
00.0002 00.0002 DRAINA draina draina
00.0003 00.0003 LDQP — reboot
00.0004 00.0004 STQP — initpal
00.0005 00.0005 SWPCTX — wrentry
00.0006 00.0006 MFPR_ASN — swpirql
00.0007 00.0007 MTPR_ASTEN — rdirql
00.0008 00.0008 MTPR_ASTSR — di
00.0009 00.0009 CSERVE cserve ei
00.000A 00.0010 SWPPAL swppal swppal
00.000B 00.0011 MFPR_FEN — —
00.000C 00.0012 MTPR_FEN — ssir
00.000D 00.0013 MTPR_IPIR wripir csir
00.000E 00.0014 MFPR_IPL — rfe
00.000F 00.0015 MTPR_IPL — retsys
00.0010 00.0016 MFPR_MCES rdmces swpctx
00.0011 00.0017 MTPR_MCES wrmces swpprocess
00.0012 00.0018 MFPR_PCBB — rdmes
00.0013 00.0019 MFPR_PRBR — wrmces
00.0014 00.0020 MTPR_PRBR — tbia
00.0015 00.0021 MFPR_PTBR — tbis
00.0016 00.0022 MFPR_SCBB — dtbis
00.0017 00.0023 MTPR_SCBB — tbisasn
00.0018 00.0024 MTPR_SIRR — rdksp
00.0019 00.0025 MFPR_SISR — swpksp
00.001A 00.0026 MFPR_TBCHK — rdpsr
00.001B 00.0027 MTPR_TBIA — —
00.001C 00.0028 MTPR_TBIAP — rdpcr
00.001D 00.0029 MTPR_TBIS — —
00.001E 00.0030 MFPR_ESP — rdthread
00.001F 00.0031 MTPR_ESP — —
00.0020 00.0032 MFPR_SSP — wrperfmon
00.0021 00.0033 MTPR_SSP — —
00.0022 00.0034 MFPR_USP — —
00.0023 00.0035 MTPR_USP — —
00.0024 00.0036 MTPR_TBISD — —
00.0025 00.0037 MTPR_TBISI — —
00.0026 00.0038 MFPR_ASTEN — —
00.0027 00.0039 MFPR_ASTSR — —
00.0029 00.0041 MFPR_VPTB — —
00.002A 00.0042 MTPR_VPTB — —
00.002B 00.0043 MTPR_PERFMON wrfen —
00.002D 00.0045 — wrvptptr —
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Table C–15 (Cont.): PALcode Opcodes in Numerical Order

Opcode16 Opcode10 OpenVMS Alpha Digital UNIX Windows NT Alpha

00.002E 00.0046 MTPR_DATFX — —
00.0030 00.0048 — swpctx rdcounters
00.0031 00.0049 — wrval rdstate
00.0032 00.0050 — rdval —
00.0033 00.0051 — tbi —
00.0034 00.0052 — wrent —
00.0035 00.0053 — swpipl —
00.0036 00.0054 — rdps —
00.0037 00.0055 — wrkgp —
00.0038 00.0056 — wrusp —
00.0039 00.0057 — wrperfmon —
00.003A 00.0058 — rdusp —
00.003C 00.0060 — whami —
00.003D 00.0061 — retsys —
00.003E 00.0062 WTINT wtint —
00.003F 00.0063 MFPR_WHAMI rti —
00.0080 00.0128 BPT bpt bpt
00.0081 00.0129 BUGCHK bugchk —
00.0082 00.0130 CHME — —
00.0083 00.0131 CHMK callsys callsys
00.0084 00.0132 CHMS — —
00.0085 00.0133 CHMU — —
00.0086 00.0134 IMB imb imb
00.0087 00.0135 INSQHIL — —
00.0088 00.0136 INSQTIL — —
00.0089 00.0137 INSQHIQ — —
00.008A 00.0138 INSQTIQ — —
00.008B 00.0139 INSQUEL — —
00.008C 00.0140 INSQUEQ — —
00.008D 00.0141 INSQUEL/D — —
00.008E 00.0142 INSQUEQ/D — —
00.008F 00.0143 PROBER — —
00.0090 00.0144 PROBEW — —
00.0091 00.0145 RD_PS — —
00.0092 00.0146 REI urti —
00.0093 00.0147 REMQHIL — —
00.0094 00.0148 REMQTIL — —
00.0095 00.0149 REMQHIQ — —
00.0096 00.0150 REMQTIQ — —
00.0097 00.0151 REMQUEL — —
00.0098 00.0152 REMQUEQ — —
00.0099 00.0153 REMQUEL/D —
00.009A 00.0154 REMQUEQ/D — —
00.009B 00.0155 SWASTEN — —
00.009C 00.0156 WR_PS_SW — —
00.009D 00.0157 RSCC — —
00.009E 00.0158 READ_UNQ rdunique —

Instruction Summary C–23



Table C–15 (Cont.): PALcode Opcodes in Numerical Order

Opcode16 Opcode10 OpenVMS Alpha Digital UNIX Windows NT Alpha

00.009F 00.0159 WRITE_UNQ wrunique —
00.00A0 00.0160 AMOVRR — —
00.00A1 00.0161 AMOVRM — —
00.00A2 00.0162 INSQHILR — —
00.00A3 00.0163 INSQTILR — —
00.00A4 00.0164 INSQHIQR — —
00.00A5 00.0165 INSQTIQR — —
00.00A6 00.0166 REMQHILR — —
00.00A7 00.0167 REMQTILR — —
00.00A8 00.0168 REMQHIQR — —
00.00A9 00.0169 REMQTIQR — —
00.00AA 00.0170 GENTRAP gentrap gentrap
00.00AB 00.0171 — — rdteb
00.00AC 00.0172 — — kbpt
00.00AD 00.0173 — — callkd
00.00AE 00.0174 CLRFEN clrfen
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C.11 Required PALcode Function Codes

The opcodes listed in Table C–16 are required for all Alpha implementations. The
notation used is oo.ffff, where oo is the hexadecimal 6-bit opcode and ffff is the
hexadecimal 26-bit function code.

Table C–16: Required PALcode Function Codes

Mnemonic Type Function Code

DRAINA Privileged 00.0002

HALT Privileged 00.0000

IMB Unprivileged 00.0086

C.12 Opcodes Reserved to PALcode

The opcodes listed in Table C–17 are reserved for use in implementing PALcode.

Table C–17: Opcodes Reserved for PALcode

Mnemonic Mnemonic Mnemonic

PAL19 19 PAL1B 1B PAL1D 1D
PAL1E 1E PAL1F 1F

C.13 Opcodes Reserved to Digital

The opcodes listed in Table C–18 are reserved to Digital.

Table C–18: Opcodes Reserved for Digital

Mnemonic Mnemonic Mnemonic

OPC01 01 OPC02 02 OPC03 03
OPC04 04 OPC05 05 OPC06 06
OPC07 07

Programming Note:

The code points 18.4800 and 18.4C00 are reserved for adding weaker memory
barrier instructions. Those code points must operate as a Memory Barrier
instruction (MB 18.4000) for implementations that precede their definition as
weaker memory barrier instructions. Software must use the 18.4000 code point
for MB.
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C.14 Unused Function Code Behavior

Unused function codes for all opcodes assigned (not reserved) in the Version 5
Alpha architecture specification (May 1992) produce UNPREDICTABLE but not
UNDEFINED results; they are not security holes.

Unused function codes for opcodes defined as reserved in the Version 5 Alpha
architecture specification produce an illegal instruction trap. Those opcodes are
01, 02, 03, 04, 05, 06, 07, 0A, 0C, 0D, 0E, 14, 19, 1B, 1C, 1D, 1E, and 1F. Unused
function codes for those opcodes reserved to PALcode produce an illegal instruction
trap only if not used in the PALcode environment.
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C.15 ASCII Character Set

This section contains the 7-bit ASCII character set and the corresponding
hexadecimal value for each character.

Table C–19: ASCII Character Set

Char
Hex
Code Char

Hex
Code Char

Hex
Code Char

Hex
Code

NUL 0 SP 20 @ 40 ‘ 60
SQH 1 ! 21 A 41 a 61
STX 2 " 22 B 42 b 62
ETX 3 # 23 C 43 c 63
EOT 4 $ 24 D 44 d 64
ENQ 5 % 25 E 45 e 65
ACK 6 & 26 F 46 f 66
BEL 7 ’ 27 G 47 g 67
BS 8 ( 28 H 48 h 68
HT 9 ) 29 I 49 i 69
LF A * 2A J 4A j 6A
VT B + 2B K 4B k 6B
FF C , 2C L 4C l 6C
CR D - 2D M 4D m 6D
SO E . 2E N 4E n 6E
SI F / 2F O 4F o 6F
DLE 10 0 30 P 50 p 70
DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72
DC3 13 3 33 S 53 s 73
DC4 14 4 34 T 54 t 74
NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 v 76
ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 x 78
EM 19 9 39 Y 59 y 79
SUB 1A : 3A Z 5A z 7A
ESC 1B ; 3B [ 5B { 7B
FS 1C < 3C \ 5C | 7C
GS 1D = 3D ] 5D } 7D
RS 1E > 3E ^ 5E ~ 7E
US 1F ? 3F _ 5F DEL 7F
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Appendix D

Registered System and Processor Identifiers

This appendix contains a table of the processor type assignments and the
architecture mask (AMASK) and implementation value (IMPLVER) assignments.

D.1 Processor Type Assignments

The following processor types are defined.

Table D–1: Processor Type Assignments

Major Type Minor Type

1 = EV3
2 = EV4 (21064) 0 = Pass 2 or 2.1

1 = Pass 3 (also EV4s)
3 = Simulation
4 = LCA Family:

LCA4s (21066)
LCA4s embedded (21068)
LCA45 (21066A, 21068A)

0 = Reserved
1 = Pass 1 or 1.1 (21066)
2 = Pass 2 (21066)
3 = Pass 1 or 1.1 (21068)
4 = Pass 2 (21068)
5 = Pass 1 (21066A)
6 = Pass 1 (21068A)

5 = EV5 (21164) 0 = Reserved (Pass 1)
1 = Pass 2, 2.2 (rev BA, CA)
2 = Pass 2.3 (rev DA, EA)
3 = Pass 3
4 = Pass 3.2
5 = Pass 4

6 = EV45 (21064A) 0 = Reserved
1 = Pass 1
2 = Pass 1.1
3 = Pass 2

7 = EV56 (21164A) 0 = Reserved
1 = Pass 1
2 = Pass 2

8 = EV6 (21264) 0 = Reserved
1 = Pass 1

9 = PCA56 (21164PC) 0 = Reserved

Registered System and Processor Identifiers D–1



Table D–1 (Cont.): Processor Type Assignments

Major Type Minor Type

1 = Pass 1

For OpenVMS Alpha and Digital UNIX, the processor types are stored in the Per-
CPU Slot Table (SLOT[176]), pointed to by HWRPB[160].

D.2 Architecture Mask and Implementation Value Assignments

The following bits are defined for the AMASK instruction.

Table D–2: AMASK Bit Assignments

Bit Meaning

0 Support for the byte/word extension (BWX)

The instructions that comprise the BWX extension are LDBU, LDWU, SEXTB,
SEXTW, STB, and STW.

1 Support for the count extension (CIX)

The instructions that comprise the CIX extension are CTLZ, CTPOP, CTTZ, FTOIS,
FTOIT, ITOFF, ITOFS, ITOFT, SQRTF, SQRTG, SQRTS, and SQRTT.

8 Support for the multimedia extension (MAX)

The instructions that comprise the MAX extension are MAXSB8, MAXSW4,
MAXUB8, MAXUW4, MINSB8, MINSW4, MINUB8, MINUW4, PERR, PKLB,
PKWB, UNPKBL, and UNPKBW.

The following values are defined for the IMPLVER instruction.

Table D–3: IMPLVER Value Assignments

Value Meaning

0 21064 (EV4)
21064A (EV45)
21066A/21068A (LCA45)

1 21164 (EV5)
21164A (EV56)
21164PC (PCA56)

2 21264 (EV6)
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Index

21064/21064A processors, IMPLVER values
for, D–1

21066/21066A processors, IMPLVER values
for, D–1

21164/21164A processors, IMPLVER values
for, D–1

21164PC processor, IMPLVER values for, D–1
21264 processor, IMPLVER values for, D–1
A
Aborts, forcing, 6–6
ACCESS(x,y) operator, 3–6
ADDF instruction, 4–104
ADDG instruction, 4–104
Add instructions

See also Floating-point operate
add longword, 4–26
add quadword, 4–28
add scaled longword, 4–27
add scaled quadword, 4–29

ADDL instruction, 4–26
ADDQ instruction, 4–28
Address space match (ASM)

virtual cache coherency, 5–4
Address space number (ASN) register

virtual cache coherency, 5–4
ADDS instruction, 4–105
ADDT instruction, 4–105
AFTER, defined for memory access, 5–12
Aligned byte/word memory accesses, A–11
ALIGNED data objects, 1–9
Alignment

atomic byte, 5–2
atomic longword, 5–2
atomic quadword, 5–2
data considerations, A–6
double-width data paths, A–1
D_floating, 2–6
F_floating, 2–4
G_floating, 2–5
instruction, A–2
longword, 2–2
longword integer, 2–12
memory accesses, A–11
quadword, 2–3
quadword integer, 2–13
S_floating, 2–9
T_floating, 2–10

Alignment (cont’d)
X_floating, 2–11

Alpha architecture
See also Conventions
addressing, 2–1
overview, 1–1
porting operating systems to, 1–1
programming implications, 5–1
registers, 3–1
security, 1–7

Alpha privileged architecture library
See PALcode

AMASK (Architecture mask) instruction,
4–132

bit assignments for, D–1
IMPLVER compared to, 4–140

AND instruction, 4–43
AND operator, 3–6
Architecture extensions, D–1

AMASK with, 4–132
Arithmetic instructions, 4–25

See also specific arithmetic instructions
Arithmetic left shift instruction, 4–42
Arithmetic traps

disabling, 4–73
division by zero, 4–72, 4–75
division by zero, disabling, 4–75
division by zero, enabling, B–5
division by zero, status of, B–5
dynamic rounding mode, 4–75
enabling, B–4
inexact result, 4–72, 4–75
inexact result, disabling, 4–74
inexact result, enabling, B–5
inexact result, status of, B–4
integer overflow, 4–73, 4–75
integer overflow, disabling, B–4
integer overflow, enabling, B–4
invalid operation, 4–71, 4–75
invalid operation, disabling, 4–75
invalid operation, enabling, B–5
invalid operation, status of, B–5
overflow, 4–72, 4–75
overflow, disabling, 4–75
overflow, enabling, B–5
overflow, status of, B–5
programming implications for, 5–29
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Arithmetic traps (cont’d)
TRAPB instruction with, 4–143
underflow, 4–72
underflow, disabling, 4–74
underflow, enabling, B–5
underflow, status of, B–5
underflow to zero, disabling, 4–74

ARITH_RIGHT_SHIFT(x,y) operator, 3–6
ASCII character set, C–18
Atomic access, 5–3
Atomic operations

accessing longword datum, 5–2
accessing quadword datum, 5–2
updating shared data structures, 5–7
using load locked and store conditional,

5–7
Atomic sequences, A–18

B
BEFORE, defined for memory access, 5–12
BEQ instruction, 4–20
BGE instruction, 4–20
BGT instruction, 4–20
BIC instruction, 4–43
Big-endian addressing, 2–14

byte operation examples, 4–55
byte swapping for, A–12
extract byte with, 4–52
insert byte with, 4–56
load F_floating with, 4–85
load long/quad locked with, 4–9
load long/quad with, 4–6
load S_floating with, 4–87
mask byte with, 4–58
store byte/word with, 4–15
store F_floating with, 4–89
store long/quad conditional with, 4–12
store long/quad with, 4–15
store S_floating with, 4–91

BIS instruction, 4–43
BLBC instruction, 4–20
BLBS instruction, 4–20
BLE instruction, 4–20
BLT instruction, 4–20
BNE instruction, 4–20
Boolean instructions, 4–42

logical functions, 4–43
Boolean stylized code forms, A–15
bpt (PALcode) instruction, 10–1, 11–1

required recognition of, 6–4
BPT (PALcode) instruction, 9–1

required recognition of, 6–4

Branch instructions, 4–19
See also Control instructions
backward conditional, 4–20
conditional branch, 4–20
displacement, 4–21
floating-point, summarized, 4–93
format of, 3–11
forward conditional, 4–20
opcodes and format summarized, C–1
unconditional branch, 4–22
with trap shadow, 4–71

Branch prediction model, 4–18
Branch prediction stack, with BSR

instruction, 4–22
BR instruction, 4–22
BSR instruction, 4–22
bugchk (PALcode) instruction, 10–1

required recognition of, 6–4
BUGCHK (PALcode) instruction, 9–1

required recognition of, 6–4
BWX extension

See also the Preface
AMASK instruction with, D–1

Byte data type, 2–1
atomic access of, 5–2

Byte manipulation, 1–2
Byte manipulation instructions, 4–48

LDBU, 4–6
Byte swapping, A–12
BYTE_ZAP(x,y) operator, 3–6

C
Cache coherency

barrier instructions for, 5–25
defined, 5–2
in multiprocessor environment, 5–6

Caches
design considerations, A–1
I-stream considerations, A–5
MB and IMB instructions with, 5–25
requirements for, 5–5
translation buffer conflicts, A–8
with powerfail/recovery, 5–5

callkd (PALcode) instruction, 11–1
callsys (PALcode) instruction, 10–1
CALL_PAL (call privileged architecture

library) instruction, 4–134
Canonical form, 4–63
CASE operator, 3–7
Causal loops, 5–15
cflush (PALcode) instruction, 10–2
CFLUSH (PALcode) instruction, 9–7

ECB compared with, 4–136
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Changed datum, 5–6
CHME (PALcode) instruction, 9–1
CHMK (PALcode) instruction, 9–1
CHMS (PALcode) instruction, 9–2
CHMU (PALcode) instruction, 9–2
CIX extension

See also the Preface
AMASK instruction with, D–1

Clear a register, A–13
clrfen (PALcode) instruction, 10–1
CLRFEN (PALcode) instruction, 9–2
CMOVEQ instruction, 4–44
CMOVGE instruction, 4–44
CMOVGT instruction, 4–44
CMOVLBC instruction, 4–44
CMOVLBS instruction, 4–44
CMOVLE instruction, 4–44
CMOVLT instruction, 4–44
CMOVNE instruction, 4–44
CMPBGE instruction, 4–50
CMPEQ instruction, 4–30
CMPGEQ instruction, 4–106
CMPGLE instruction, 4–106
CMPGLT instruction, 4–106
CMPLE instruction, 4–30
CMPLT instruction, 4–30
CMPTEQ instruction, 4–107
CMPTLE instruction, 4–107
CMPTLT instruction, 4–107
CMPTUN instruction, 4–107
CMPULE instruction, 4–31
CMPULT instruction, 4–31
Code forms, stylized, A–13

Boolean, A–15
load literal, A–14
negate, A–14
NOP, A–13
NOT, A–15
register, clear, A–13
register-to-register move, A–14

Code scheduling
IMPLVER instruction with, 4–140

Code sequences, A–11
Coherency

cache, 5–2
memory, 5–1

Compare instructions
See also Floating-point operate
compare byte, 4–50
compare integer signed, 4–30
compare integer unsigned, 4–31

Conditional move instructions, 4–44
See also Floating-point operate
with trap shadow, 4–70

Console overview, 7–1
Context switching

multiprocessor considerations, 5–24
Control instructions, 4–18
Conventions

code examples, 1–9
extents, 1–8
figures, 1–9
instruction format, 3–9
notation, 3–9
numbering, 1–7
ranges, 1–8

/C opcode qualifier
IEEE floating-point, 4–67
VAX floating-point, 4–67

Count instructions
Count leading zero, 4–32
Count population, 4–33
Count trailing zero, 4–34

CPYSE instruction, 4–99
CPYS instruction, 4–99
CPYSN instruction, 4–99
cserve (PALcode) instruction, 10–2

required recognition of, 6–4
CSERVE (PALcode) instruction, 9–7

required recognition of, 6–4
csir (PALcode) instruction, 11–2
CTLZ instruction, 4–32
CTPOP instruction, 4–33
CTTZ instruction, 4–34
CVTDG instruction, 4–111
CVTGD instruction, 4–111
CVTGF instruction, 4–111
CVTGQ instruction, 4–109
CVTLQ instruction, 4–100
CVTQF instruction, 4–110
CVTQG instruction, 4–110
CVTQL instruction, 4–100

FP_C quadword with, B–4
CVTQS instruction, 4–114
CVTQT instruction, 4–114
CVTST instruction, 4–116
CVTTQ instruction, 4–113

FP_C quadword with, B–4
CVTTS instruction, 4–115

D
Data alignment, A–6
Data caches

ECB instruction with, 4–135
WH64 instruction with, 4–144

Data fetches (memory), 5–11
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Data format, overview, 1–3
Data sharing (multiprocessor), A–7

synchonization requirement, 5–6
Data stream considerations, A–6
Data structures, shared, 5–6
Data types

byte, 2–1
IEEE floating-point, 2–7
longword, 2–2
longword integer, 2–12
quadword, 2–2
quadword integer, 2–13
unsupported in hardware, 2–13
VAX floating-point, 2–3
word, 2–2

Denormal, 4–64
Depends order (DP), 5–15
di (PALcode) instruction, 11–2
Digital UNIX PALcode, instruction summary,

C–18
Digital UNIX privileged PALcode instruc-

tions, 10–2
Digital UNIX unprivileged PALcode

instructions, 10–1
Dirty zero, 4–64
DIVF instruction, 4–117
DIVG instruction, 4–117
Division

integer, A–12
performance impact of, A–12

Division by zero enable (DZEE)
FP_C quadword bit, B–5

Division by zero status (DZES)
FP_C quadword bit, B–5

DIV operator, 3–7
DIVS instruction, 4–119
DIVT instruction, 4–119
/D opcode qualifier

FPCR (floating-point control register), 4–73
IEEE floating-point, 4–67

DP
See Depends order

draina (PALcode) instruction, 10–2, 11–2
required, 6–6

DRAINA (PALcode) instruction, 9–7
required, 6–6

dtbis (PALcode) instruction, 11–2
Dual-issue instruction considerations, A–2
DYN bit

See Arithmetic traps, dynamic rounding
mode

DZE bit
See Arithmetic traps, division by zero

DZED bit
See Trap disable bits, division by zero

D_floating data type, 2–6
alignment of, 2–6
mapping, 2–6
restricted, 2–6

E
ECB (Evict data cache block) instruction,

4–135
CLUSH (PALcode) instruction with, 4–136

ei (PALcode) instruction, 11–2
EQV instruction, 4–43
EXCB (exception barrier) instruction, 4–137

with FPCR, 4–78
Exception handlers, B–2

TRAPB instruction with, 4–143
Exceptions

F31 with, 3–2
R31 with, 3–1

EXTBL instruction, 4–52
Extensions to architecture, D–1
EXTLH instruction, 4–52
EXTLL instruction, 4–52
EXTQH instruction, 4–53
EXTQL instruction, 4–52
Extract byte instructions, 4–52
EXTWH instruction, 4–52
EXTWL instruction, 4–52

F
FBEQ instruction, 4–94
FBGE instruction, 4–94
FBGT instruction, 4–94
FBLE instruction, 4–94
FBLT instruction, 4–94
FBNE instruction, 4–94
FCMOVEQ instruction, 4–101
FCMOVGE instruction, 4–101
FCMOVGT instruction, 4–101
FCMOVLE instruction, 4–101
FCMOVLT instruction, 4–101
FCMOVNE instruction, 4–101
FETCH (prefetch data) instruction, 4–138

performance optimization, A–10
FETCH_M (prefetch data, modify intent)

instruction, 4–138
performance optimization, A–10

Finite number, Alpha, contrasted with VAX,
4–65

Floating-point branch instructions, 4–93
Floating-point control register (FPCR), 4–73

accessing, 4–76
at processor initialization, 4–77
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Floating-point control register (FPCR) (cont’d)
bit descriptions, 4–74
instructions to read/write, 4–103
operate instructions that use, 4–96
saving and restoring, 4–77
trap disable bits in, 4–73

Floating-point convert instructions, 3–13
Fa field requirements, 3–13

Floating-point division, performance impact
of, A–12

Floating-point format, number representation
(encodings), 4–65

Floating-point instructions
branch, 4–93
faults, 4–63
function field format, 4–79
introduced, 4–63
memory format, 4–84
opcodes and format summarized, C–1
operate, 4–96
rounding modes, 4–66
terminology, 4–64
trapping modes, 4–68
traps, 4–63

Floating-point load instructions, 4–84
load F_floating, 4–85
load G_floating, 4–86
load S_floating, 4–87
load T_floating, 4–88
with non-finite values, 4–84

Floating-point operate instructions, 4–96
add (IEEE), 4–105
add (VAX), 4–104
compare (IEEE), 4–107
compare (VAX), 4–106
conditional move, 4–101
convert IEEE floating to integer, 4–113
convert integer to IEEE floating, 4–114
convert integer to integer, 4–100
convert integer to VAX floating, 4–110
convert S_floating to T_floating, 4–115
convert T_floating to S_floating, 4–116
convert VAX floating to integer, 4–109
convert VAX floating to VAX floating, 4–111
copy sign, 4–99
divide (IEEE), 4–119
divide (VAX), 4–117
format of, 3–12
from integer moves, 4–122
move from/to FPCR, 4–103
multiply (IEEE), 4–125
multiply (VAX), 4–124
subtract (IEEE), 4–130
subtract (VAX), 4–128
to integer moves, 4–120

Floating-point operate instructions (cont’d)
unused function codes with, 3–12

Floating-point registers, 3–2
Floating-point rounding modes, 4–66
Floating-point single-precision operations,

4–63
Floating-point store instructions, 4–84

store F_floating, 4–89
store G_floating, 4–90
store S_floating, 4–91
store T_floating, 4–92
with non-finite values, 4–84

Floating-point support
floating-point control (FP_C) quadword,

B–4
FPCR (floating-point control register), 4–73
IEEE, 2–7
IEEE standard 754-1985, 4–82
instruction overview, 4–63
longword integer, 2–12
operate instructions, 4–96
optional, 4–2
quadword integer, 2–13
rounding modes, 4–66
single-precision operations, 4–63
trap modes, 4–68
VAX, 2–3

Floating-point to integer move, 4–120
Floating-point to integer move instructions,

3–13
Floating-point trapping modes, 4–68

See also Arithmetic traps
imprecision from pipelining, 4–69

FNOP code form, A–13
FPCR

See Floating-point control register
FP_C quadword, B–4
FTOIS instruction, 4–120
FTOIT instruction, 4–120
Function codes

See also Opcodes
IEEE floating-point, C–7
independent floating-point, C–9
in numerical order, C–13
VAX floating-point, C–9

F_floating data type, 2–3
alignment of, 2–4
compared to IEEE S_floating, 2–8
MAX/MIN, 4–66
operations, 4–63

G
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gentrap (PALcode) instruction, 10–1, 11–1
required recognition of, 6–4

GENTRAP (PALcode) instruction, 9–2
required recognition of, 6–4

G_floating data type, 2–5
alignment of, 2–5
mapping, 2–5
MAX/MIN, 4–66

H
halt (PALcode) instruction, 10–2, 11–2

required, 6–8
HALT (PALcode) instruction, 9–7

required, 6–8

I
I/O devices, DMA

MB and WMB with, 5–23
reliably communicating with processor,

5–27
shared memory locations with, 5–11

I/O interface overview, 8–1
IEEE compliance, B–2
IEEE convert-to-integer trap mode,

instruction notation for, 4–69
IEEE floating-point

See also Floating-point instructions
exception handlers, B–2
floating-point control (FP_C) quadword,

B–4
format, 2–7
FPCR (floating-point control register), 4–73
function field format, 4–80
hardware support, B–1
NaN, 2–7
options, B–1
standard, mapping to, B–5
standard charts, B–12
S_floating, 2–7
trap handling, B–6
trap modes, 4–69
T_floating, 2–9
X_floating, 2–10

IEEE floating-point compliance, 4–78
IEEE floating-point control word, B–4
IEEE floating-point instructions

add instructions, 4–105
compare instructions, 4–107
convert from integer instructions, 4–114
convert S_floating to T_floating, 4–115
convert to integer instructions, 4–113
convert T_floating to S_floating, 4–116
divide instructions, 4–119
from integer moves, 4–122

IEEE floating-point instructions (cont’d)
function codes for, C–7
multiply instructions, 4–125
operate instructions, 4–96
square root instructions, 4–127
subtract instructions, 4–130
to register moves, 4–120

IEEE rounding modes, 4–66
IEEE standard

conformance to, B–1
mapping to, B–5
support for, 4–78

IEEE trap modes, required instruction
notation, 4–69

IGN (ignore), 1–9
imb (PALcode) instruction, 10–1, 11–1

required, 6–9
IMB (PALcode) instruction, 5–23, 9–2

required, 6–9
virtual I-cache coherency, 5–5

IMP (implementation dependent), 1–9
IMPLVER (Implementation version)

instruction, 4–140
value assignments for, D–1

Independent floating-point function codes,
C–9

INE bit
See Arithmetic traps, inexact result

INED bit
See Trap disable bits, inexact result trap

Inexact result enable (INEE)
FP_C quadword bit, B–5

Inexact result status (INES)
FP_C quadword bit, B–4

Infinity, 4–64, 4–65
conversion to integer, 4–82

initpal (PALcode) instruction, 11–3
INSBL instruction, 4–56
Insert byte instructions, 4–56
INSLH instruction, 4–56
INSLL instruction, 4–56
INSQHIL (PALcode) instruction, 9–2
INSQHILR (PALcode) instruction, 9–2
INSQH instruction, 4–56
INSQHIQ (PALcode) instruction, 9–3
INSQHIQR (PALcode) instruction, 9–3
INSQL instruction, 4–56
INSQTIL (PALcode) instruction, 9–3
INSQTILR (PALcode) instruction, 9–3
INSQTIQ (PALcode) instruction, 9–3
INSQTIQR (PALcode) instruction, 9–3
INSQUEL (PALcode) instruction, 9–4
INSQUEQ (PALcode) instruction, 9–4
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Instruction encodings
common architecture, C–1
numerical order, C–13
opcodes and format summarized, C–1

Instruction fetches (memory), 5–11
Instruction formats

branch, 3–11
conventions, 3–9
floating-point convert, 3–13
floating-point operate, 3–12
floating-point to integer move, 3–13
memory, 3–9
memory jump, 3–10
operands, 3–9
operand values, 3–9
operate, 3–11
operators, 3–6
overview, 1–4
PALcode, 3–13
registers, 3–1

Instructions, overview, 1–5
Instruction set

See also Floating-point instructions;
PALcode instructions

access type field, 3–5
Boolean, 4–42
branch, 4–19
byte manipulate, 4–48
conditional move (integer), 4–44
data type field, 3–5
floating-point subsetting, 4–2
integer arithmetic, 4–25
introduced, 1–6
jump, 4–19
load memory integer, 4–4
miscellaneous, 4–131
multimedia, 4–151
name field, 3–4
opcode qualifiers, 4–3
operand notation, 3–4
overview, 4–1
shift, arithmetic, 4–47
shift, logical, 4–46
software emulation rules, 4–3
store memory integer, 4–4
VAX compatibility, 4–149

Instruction stream
See I-stream

INSWH instruction, 4–56
INSWL instruction, 4–56
Integer arithmetic instructions

See Arithmetic instructions

Integer division, A–12
Integer registers

defined, 3–1
R31 restrictions, 3–1

Invalid operation enable (INVE)
FP_C quadword bit, B–5

Invalid operation status (INVS)
FP_C quadword bit, B–5

INV bit
See also Arithmetic traps, invalid operation

INVD bit
See Trap disable bits, invalid operation

/I opcode qualifier, IEEE floating-point, 4–69
IOV bit

See Arithmetic traps, integer overflow
I-stream

coherency of, 6–9
design considerations, A–2
modifying physical, 5–5
modifying virtual, 5–5
PALcode with, 6–2
with caches, 5–5

ITOFF instruction, 4–122
ITOFS instruction, 4–122
ITOFT instruction, 4–122

J
JMP instruction, 4–23
JSR instruction, 4–23
JSR_COROUTINE instruction, 4–23
Jump instructions, 4–19, 4–23

See also Control instructions
branch prediction logic, 4–24
coroutine linkage, 4–24
return from subroutine, 4–23
unconditional long jump, 4–24

K
kbpt (PALcode) instruction, 11–2

L
LDAH instruction, 4–5
LDA instruction, 4–5
LDBU instruction, 4–6
LDF instruction, 4–85
LDG instruction, 4–86
LDL instruction, 4–6
LDL_L instruction, 4–9

restrictions, 4–10
with processor lock register/flag, 4–10
with STx_C instruction, 4–9
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LDQ instruction, 4–6
LDQP (PALcode) instruction, 9–7
LDQ_L instruction, 4–9

restrictions, 4–10
with processor lock register/flag, 4–10
with STx_C instruction, 4–10

LDQ_U instruction, 4–8
LDS instruction, 4–87

with FPCR, 4–78
LDT instruction, 4–88
LDWU instruction, 4–6
LEFT_SHIFT(x,y) operator, 3–7
lg operator, 3–7
Literals, operand notation, 3–4
Litmus tests, shared data veracity, 5–17
Load instructions

See also Floating-point load instructions
emulation of, 4–3
FETCH instruction, 4–138
load address, 4–5
load address high, 4–5
load quadword, 4–6
load quadword locked, 4–10
load sign-extended longword, 4–6
load sign-extended longword locked, 4–9
load unaligned quadword, 4–8
Load zero-extended byte, 4–6
Load zero-extended word, 4–6
multiprocessor environment, 5–6
serialization, 4–141

Load literal, A–14
Load-locked, defined, 5–16
Load memory instructions, with trap shadow,

4–71
Load memory integer instructions, 4–4
LOAD_LOCKED operator, 3–7
Location, 5–11
Location access constraints, 5–14
Lock flag, per-processor

defined, 3–2
when cleared, 4–10
with load locked instructions, 4–10
with store conditional instructions, 4–12

Lock registers, per-processor
defined, 3–2
with load locked instructions, 4–10
with store conditional instructions, 4–12

Lock variables, with WMB instruction, 4–147
Logical instructions

See Boolean instructions
Longword data type, 2–2

alignment of, 2–12
atomic access of, 5–2
integer floating-point format, 2–12

LSB (least significant bit), defined for
floating-point, 4–65

M
MAP_F function, 2–4
MAP_S function, 2–8
MAP_x operator, 3–7
Mask byte instructions, 4–58
MAX, defined for floating-point, 4–66
MAX extension

See also the Preface
AMASK instruction with, D–1

MAXS(x,y) operator, 3–7
MAXSB8 instruction, 4–152
MAXSW4 instruction, 4–152
MAXU(x,y) operator, 3–7
MAXUB8 instruction, 4–152
MAXUW4 instruction, 4–152
MB (Memory barrier) instruction, 4–141

See also IMB, WMB
compared with WMB, 4–147
multiprocessors only, 4–141
using, 5–23
with DMA I/O, 5–23
with LDx_L/STx_C, 4–13
with multiprocessor D-stream, 5–22
with shared data structures, 5–9

MBZ (must be zero), 1–9
Memory access

aligned byte/word, A–11
coherency of, 5–1
granularity of, 5–2
width of, 5–3
with WMB instruction, 4–146

Memory alignment, requirement for, 5–2
Memory barrier instructions

See MB, IMB (PALcode), and WMB
instructions

Memory barriers, 5–22
Memory format instructions

opcodes and format summarized, C–1
Memory instruction format, 3–9

with function code, 3–10
Memory jump instruction format, 3–10
Memory-like behavior, 5–3
Memory management

support in PALcode, 6–2
Memory prefetch registers, A–10

defined, 3–3
MFPR (PALcode) instruction, 9–7
MF_FPCR instruction, 4–103
MIN, defined for floating-point, 4–66
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MINS(x,y) operator, 3–7
MINSB8 instruction, 4–152
MINSW4 instruction, 4–152
MINU(x,y) operator, 3–7
MINUB8 instruction, 4–152
MINUW4 instruction, 4–152
Miscellaneous instructions, 4–131
/M opcode qualifier, IEEE floating-point, 4–67
Move, register-to-register, A–14
Move instructions (conditional)

See Conditional move instructions
MSKBL instruction, 4–58
MSKLH instruction, 4–58
MSKLL instruction, 4–58
MSKQL instruction, 4–58
MSKWH instruction, 4–58
MSKWL instruction, 4–58
MTPR (PALcode) instruction, 9–7
MT_FPCR instruction, 4–103

synchronization requirement, 4–76
MULF instruction, 4–124
MULG instruction, 4–124
MULL instruction, 4–35

with MULQ, 4–35
MULQ instruction, 4–36

with MULL, 4–35
with UMULH, 4–36

MULS instruction, 4–125
Multimedia instructions, 4–151
MULT instruction, 4–125
Multiple instruction issue, A–2
Multiply instructions

See also Floating-point operate
multiply longword, 4–35
multiply quadword, 4–36
multiply unsigned quadward high, 4–37

Multiprocessor environment
See also Data sharing
cache coherency in, 5–6
context switching, 5–24
I-stream reliability, 5–23
MB and WMB with, 5–23
no implied barriers, 5–22
read/write ordering, 5–10
serialization requirements in, 4–141
shared data, 5–6, A–7

N
NaN (Not-a-Number)

conversion to integer, 4–82
copying, generating, propograting, 4–83
defined, 2–7
quiet, 4–65
signaling, 4–65

NATURALLY ALIGNED data objects, 1–9
Negate stylized code form, A–14
Non-finite number, 4–65
Nonmemory-like behavior, 5–3
NOP, universal (UNOP), A–13
NOT instruction, ORNOT with zero, 4–43
NOT operator, 3–7
NOT stylized code form, A–15

O
Opcode qualifiers

See also specific qualifiers
default values, 4–3
notation, 4–3

Opcodes
See also Function codes
common architecture, C–1
Digital UNIX PALcode, C–18
in numerical order, C–13
notation used in summary, C–1
OpenVMS Alpha PALcode, C–17
PALcode in numerical order, C–18
reserved, C–18
summary, C–11
unused function codes for, C–18
Windows NT Alpha PALcode, C–18

OpenVMS Alpha PALcode, instruction
summary, C–17

OpenVMS Alpha privileged PALcode
instructions, 9–7

OpenVMS Alpha unprivileged PALcode
instructions, 9–1

Operand expressions, 3–4
Operand notation

defined, 3–3
Operand values, 3–4
Operate instruction format, 3–11

floating-point, 3–12
floating-point convert, 3–13
unused function codes with, 3–11

Operate instructions
opcodes and format summarized, C–1

Operate instructions, convert with integer
overflow, 4–73

Operators, instruction format, 3–6
Optimization

See Performance optimizations
ORNOT instruction, 4–43
OR operator, 3–7
Overflow enable (OVFE)

FP_C quadword bit, B–5
Overflow status (OVFS)

FP_C quadword bit, B–5
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Overlap
with location access constraints, 5–14
with processor issue constraints, 5–13
with visibility, 5–14

OVF bit
See Arithmetic traps, overflow

OVFD bit
See Trap disable bits, overflow disable

P
Pack to bytes instructions, 4–155
PALcode

barriers with, 5–22
CALL_PAL instruction, 4–134
compared to hardware instructions, 6–1
defined for Digital UNIX, 10–1
Digital-defined for OpenVMS Alpha, 9–1
Digital-defined for Windows NT Alpha,

11–1
implementation-specific, 6–2
instead of microcode, 6–1
instruction format, 3–13
overview, 6–1
privileged Digital UNIX, 10–2
privileged OpenVMS Alpha, 9–7
privileged Windows NT Alpha, 11–2
recognized instructions, 6–4
replacing, 6–3
required function support, 6–2
required instructions, 6–5
running environment, 6–2
special functions, 6–2
unprivileged Digital UNIX, 10–1
unprivileged OpenVMS Alpha, 9–1
unprivileged Windows NT Alpha, 11–1

PALcode instructions
opcodes and format summarized, C–1
required, opcodes for, C–18
reserved, opcodes for, C–18

PALcode instructions, required privileged,
6–6

PALcode instructions, required unprivileged,
6–9

PALcode Opcodes in numerical order, C–18
PCC_CNT, 3–2, 4–142
PCC_OFF, 3–2, 4–142
Performance optimizations

branch prediction, A–3
code sequences, A–11
data stream, A–6
for frequently executed code, A–1
for I-streams, A–2
instruction alignment, A–2
instruction scheduling, A–5

Performance optimizations (cont’d)
I-stream density, A–5
multiple instruction issue, A–2
shared data, A–7

Performance tuning
IMPLVER instruction with, 4–140

PERR (Pixel error) instruction, 4–154
Physical address space

described, 5–1
PHYSICAL_ADDRESS operator, 3–8
Pipelined implementations, using EXCB

instruction with, 4–137
Pixel error instruction, 4–154
PKLB (Pack longwords to bytes) instruction,

4–155
PKWB (Pack words to bytes) instruction,

4–155
Prefetch data (FETCH instruction), 4–138
Prefetch data registers, A–10
PRIORITY_ENCODE operator, 3–8
Privileged Architecture Library

See PALcode
PROBE (PALcode) instruction, 9–4
Processor communication, 5–15
Processor cycle counter (PCC) register, 3–2

RPCC instruction with, 4–142
Processor issue constraints, 5–13
Processor issue sequence, 5–12
Processor type assignments, D–1
Program counter (PC) register, 3–1

with EXCB instruction, 4–137
Pseudo-ops, A–15

Q
Quadword data type, 2–2

alignment of, 2–3, 2–13
atomic access of, 5–2
integer floating-point format, 2–13
T_floating with, 2–13

R
R31

restrictions, 3–1
RAZ (read as zero), 1–9
RC (read and clear) instruction, 4–150
rdirql (PALcode) instruction, 11–3
rdksp (PALcode) instruction, 11–3
rdmces (PALcode) instruction, 10–2, 11–3
rdpcr (PALcode) instruction, 11–3
rdps (PALcode) instruction, 10–2
rdpsr (PALcode) instruction, 11–3
rdteb (PALcode) instruction, 11–2
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rdthread (PALcode) instruction, 11–3
rdunique (PALcode) instruction, 10–1

required recognition of, 6–5
RDUNIQUE (PALcode) instruction

required recognition of, 6–5
rdusp (PALcode) instruction, 10–2
rdval (PALcode) instruction, 10–2
RD_PS (PALcode) instruction, 9–4
Read/write, sequential, A–9
Read/write ordering (multiprocessor), 5–10

determining requirements, 5–10
hardware implications for, 5–28
memory location defined, 5–11

READ_UNQ (PALcode) instruction, 9–4
reboot (PALcode) instruction, 11–3
Regions in physical address space, 5–1
Registers, 3–1

See also specific registers
floating-point, 3–2
integer, 3–1
lock, 3–2
memory prefetch, 3–3
optional, 3–3
processor cycle counter, 3–2
program counter (PC), 3–1
value when unused, 3–9
VAX compatibility, 3–3

Register-to-register move, A–14
REI (PALcode) instruction, 9–4
Relational Operators, 3–8
REMQHIL (PALcode) instruction, 9–4
REMQHILR (PALcode) instruction, 9–5
REMQHIQ (PALcode) instruction, 9–5
REMQHIQR (PALcode) instruction, 9–5
REMQTIL (PALcode) instruction, 9–5
REMQTILR (PALcode) instruction, 9–5
REMQTIQ (PALcode) instruction, 9–5
REMQTIQR (PALcode) instruction, 9–6
REMQUEL (PALcode) instruction, 9–6
REMQUEQ (PALcode) instruction, 9–6
Representative result, 4–65
Reserved instructions, opcodes for, C–18
Reserved operand, 4–65
restart (PALcode) instruction, 11–3
Result latency, A–5
RET instruction, 4–23
retsys (PALcode) instruction, 10–2, 11–4
rfe (PALcode) instruction, 11–4
RIGHT_SHIFT(x,y) operator, 3–8
Rounding modes

See Floating-point rounding modes

RPCC (Read processor cycle counter)
instruction, 4–142

RS (read and set) instruction, 4–150
RSCC (PALcode) instruction, 9–6
rti (PALcode) instruction, 10–2

S
S4ADDL instruction, 4–27
S4ADDQ instruction, 4–29
S4SUBL instruction, 4–39
S4SUBQ instruction, 4–41
S8ADDL instruction, 4–27
S8ADDQ instruction, 4–29
S8SUBL instruction, 4–39
S8SUBQ instruction, 4–41
SBZ (should be zero), 1–9
Security holes, 1–7

with UNPREDICTABLE results, 1–8
Sequential read/write, A–9
Serialization, MB instruction with, 4–141
SEXT(x) operator, 3–8
SEXTB instruction, 4–61
SEXTW instruction, 4–61
Shared data (multiprocessor), A–7

changed vs. updated datum, 5–6
Shared data structures

atomic update, 5–7
ordering considerations, 5–9
using memory barrier (MB) instruction,

5–9
Shared memory

accessing, 5–11
access sequence, 5–11
defined, 5–11
issue sequence, 5–11

Shift arithmetic instructions, 4–47
Shift logical instructions, 4–46
Sign extend instructions, 4–61
Single-precision floating-point, 4–63
SLL instruction, 4–46
Software considerations, A–1

See also Performance optimizations
/S opcode qualifier

IEEE floating-point, 4–69
VAX floating-point, 4–68

SQRTF instruction, 4–126
SQRTG instruction, 4–126
SQRTS instruction, 4–127
SQRTT instruction, 4–127
Square root instructions

IEEE, 4–127
VAX, 4–126
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SRA instruction, 4–47
SRL instruction, 4–46
ssir (PALcode) instruction, 11–4
STB instruction, 4–15
STF instruction, 4–89
STG instruction, 4–90
STL instruction, 4–15
STL_C instruction, 4–12

when guaranteed ordering with LDL_L,
4–13

with LDx_L instruction, 4–12
with processor lock register/flag, 4–12

Storage, defined, 5–14
Store-conditional, defined, 5–16
Store instructions

See also Floating-point store instructions
emulation of, 4–3
FETCH instruction, 4–138
multiprocessor environment, 5–6
serialization, 4–141
Store byte, 4–15
store longword, 4–15
store longword conditional, 4–12
store quadword, 4–15
store quadword conditional, 4–12
store unaligned quadword, 4–17
Store word, 4–15

Store memory instructions, with trap shadow,
4–71

Store memory integer instructions, 4–4
STORE_CONDITIONAL operator, 3–8
STQ instruction, 4–15
STQP (PALcode) instruction, 9–7
STQ_C instruction, 4–12

when guaranteed ordering with LDQ_L,
4–13

with LDx_L instruction, 4–12
with processor lock register/flag, 4–12

STQ_U instruction, 4–17
STS instruction, 4–91

with FPCR, 4–78
STT instruction, 4–92
STW instruction, 4–15
SUBF instruction, 4–128
SUBG instruction, 4–128
SUBL instruction, 4–38
SUBQ instruction, 4–40
SUBS instruction, 4–130
SUBT instruction, 4–130
Subtract instructions

See also Floating-point operate
subtract longword, 4–38
subtract quadword, 4–40
subtract scaled longword, 4–39
subtract scaled quadword, 4–41

SUM bit
See Summary bit

Summary bit, in FPCR, 4–74
SWASTEN (PALcode) instruction, 9–6
swpctx (PALcode) instruction, 10–3, 11–4
SWPCTX (PALcode) instruction, 9–8
swpipl (PALcode) instruction, 10–3
swpirql (PALcode) instruction, 11–4
swpksp (PALcode) instruction, 11–4
swppal (PALcode) instruction, 10–3, 11–4

required recognition of, 6–5
SWPPAL (PALcode) instruction, 9–8

required recognition of, 6–5
swpprocess (PALcode) instruction, 11–4
S_floating data type

alignment of, 2–9
compared to F_floating, 2–8
exceptions, 2–8
format, 2–8
mapping, 2–8
MAX/MIN, 4–66
NaN with T_floating convert, 4–82
operations, 4–63

T
tbi (PALcode) instruction, 10–3
tbia (PALcode) instruction, 11–4
tbis (PALcode) instruction, 11–5
tbisasn (PALcode) instruction, 11–5
TEST(x,cond) operator, 3–8
Timeliness of location access, 5–17
Timing considerations, atomic sequences,

A–18
TRAPB (trap barrier) instruction, A–15

described, 4–143
with FPCR, 4–78
with trap shadow, 4–71

Trap disable bits, 4–73
division by zero, 4–75
DZED with DZE arithmetic trap, 4–72
DZED with INV arithmetic trap, 4–72
IEEE compliance and, B–2
inexact result, 4–74
invalid operation, 4–75
overflow disable, 4–75
underflow, 4–74
underflow to zero, 4–74
when unimplemented, 4–73

Trap enable bits, B–4
Trap handler, with non-finite arithmetic

operands, 4–70
Trap handling, IEEE floating-point, B–6
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Trap modes
floating-point, 4–68
IEEE, 4–69
IEEE convert-to-integer, 4–69
VAX, 4–68
VAX convert-to-integer, 4–69

Trap shadow
defined, 4–69
defined for floating-point, 4–65
programming implications for, 5–30
trap handler requirement for, 4–71

True result, 4–65
True zero, 4–65
T_floating data type

alignment of, 2–10
exceptions, 2–10
format, 2–9
MAX/MIN, 4–66
NaN with S_floating convert, 4–82

U
UMULH instruction, 4–37

with MULQ, 4–36
UNALIGNED data objects, 1–9
Unconditional long jump, 4–24
UNDEFINED operations, 1–7
Underflow enable (UNFE)

FP_C quadword bit, B–5
Underflow status (UNFS)

FP_C quadword bit, B–5
UNDZ bit

See Trap disable bits, underflow to zero
UNF bit

See arithmetic traps, underflow
UNFD bit

See Trap disable bits, underflow
UNOP code form, A–13
UNORDERED memory references, 5–10
Unpack to bytes instructions, 4–156
UNPKBL (Unpack bytes to longwords)

instruction, 4–156
UNPKBW (Unpack bytes to words)

instruction, 4–156
UNPREDICTABLE results, 1–7
/U opcode qualifier

IEEE floating-point, 4–69
VAX floating-point, 4–68

Updated datum, 5–6
urti (PALcode) instruction, 10–1

V

VAX compatibility instructions, restrictions
for, 4–149

VAX compatibility register, 3–3
VAX convert-to-integer trap mode, 4–69
VAX floating-point

See also Floating-point instructions
D_floating, 2–6
F_floating, 2–3
G_floating, 2–5
trap modes, 4–69

VAX floating-point instructions
add instructions, 4–104
compare instructions, 4–106
convert from integer instructions, 4–110
convert to integer instructions, 4–109
convert VAX floating format instructions,

4–111
divide instructions, 4–117
from integer move, 4–122
function codes for, C–9
function field format, 4–81
multiply instructions, 4–124
operate instructions, 4–96
square root instructions, 4–126
subtract instructions, 4–128

VAX rounding modes, 4–66
VAX trap modes, required instruction

notation, 4–69
Vector instructions

byte and word maximum, 4–152
byte and word minimum, 4–152

Virtual D-cache, 5–4
maintaining coherency of, 5–4

Virtual I-cache, 5–4
maintaining coherency of, 5–5

Visibility, defined, 5–14
/V opcode qualifier

IEEE floating-point, 4–69
VAX floating-point, 4–69

W
WH64 (Write hint) instruction, 4–144
WH64 instruction

lock_flag with, 4–10
whami (PALcode) instruction, 10–3
Windows NT Alpha PALcode, instruction

summary, C–18
Windows NT Alpha privileged PALcode

instructions, 11–2
Windows NT Alpha unprivileged PALcode

instructions, 11–1
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WMB (Write memory barrier) instruction,
4–146

atomic operations with, 5–8
compared with MB, 4–147
with shared data structures, 5–9

Word data type, 2–2
atomic access of, 5–2

Word manipulation instructions
LDWU, 4–6

wrent (PALcode) instruction, 10–3
wrentry (PALcode) instruction, 11–5
wrfen (PALcode) instruction, 10–3
wripr (PALcode) instruction, 10–3
Write-back caches, requirements for, 5–5
Write buffers, requirements for, 5–5
WRITE_UNQ (PALcode) instruction, 9–6
wrkgp (PALcode) instruction, 10–3
wrmces (PALcode) instruction, 10–3, 11–5
wrperfmon (PALcode) instruction, 10–3, 11–5
wrunique (PALcode) instruction, 10–1

required recognition of, 6–5
WRUNIQUE (PALcode) instruction

required recognition of, 6–5

wrusp (PALcode) instruction, 10–4
wrval (PALcode) instruction, 10–4
wrvptptr (PALcode) instruction, 10–4
WR_PS_SW (PALcode) instruction, 9–6
wtint (PALcode) instruction, 10–4
WTINT (PALCODE) instruction, 9–8

X
x MOD y operator, 3–7
XOR instruction, 4–43
XOR operator, 3–8
X_floating data type, 2–10

alignment of, 2–11
big-endian format, 2–12
format, 2–10
MAX/MIN, 4–66

Z
ZAP instruction, 4–62
ZAPNOT instruction, 4–62
Zero byte instructions, 4–62
ZEXT(x)operator, 3–8
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Technical Support and Ordering Information

Obtaining Technical Support

If you need technical support or help deciding which literature best meets your needs,
call the Digital Semiconductor Information Line:

United States and Canada
Outside North America

1–800–332–2717
+1–508–628–4760

or visit the Digital Semiconductor World-Wide Web Internet site:
http://www.digital.com/info/semiconductor

Ordering Digital Semiconductor Products

To obtain a Digital Semiconductor Product Catalog, contact the Digital Semiconduc-
tor Information Line, above.

Ordering Digital Semiconductor Literature

For a complete list of the available Digital Semiconductor literature, contact the
Digital Semiconductor Information Line or visit Digital Semiconductor’s World-Wide
Web Internet site.




