Me: Mark Oskin, oskin@cs.washington.edu, 206-293-9456 (cell, txt is preferred).

Daily reading: reading will be given for each class period. Expectation is everyone will read the material and answer two questions: (1) summarize the key ideas; (2) formulate 3-4 discussion questions.

Daily presentation: everyone will rotate (we'll assign an order today) taking turns presenting a short 5-10m introduction to the reading. Expectation is 3-4 slides.

Class structure: This class will rarely have slides or pre-canned material. Instead the expectation is you have read the material and we will spend the class period discussing it and digging deeper into the ideas. I may project stuff on a screen but it is more for taking shared notes than presenting anything.

Format: Class is in person, unless you are quarantining at home and notify me in advance, in which case class is still in person but a zoom window will be open at http://washington.zoom.us/my/markoskin. There will be times that I am traveling and the class will be all zoom. Watch your email for notification.

Project: Choose a topic you are interested in. Suggested topics are later in this document. Produce a small research paper on that topic and present it in class (10-15 minute presentation, 7-10 page paper).

Grading: 25% participation (including intro talks); 75% project (including presentation). No exam.

Topics this class will cover. Suggestions welcome:

- RISC v CISC
- Modern CPUs
 - branch prediction
 - caching
 - prefetching
 - out-of-order execution
 - vector/SIMD
 - scheduling
 - threading (MTA)
 - (value prediction?)
- Multicores
 - Consistency
 - Cache coherence
 - Directory coherence
 - Software approaches to coherence (page, language, ...)
 - NOCs
- Many cores
 - Hardware accelerators
- GPUs
 - Hardware design
 - Software model & tools
- Datacenters
 - Rack & Wearhouse scale
• Virtual Machines
• Quantum computers/architecture
 • Survey of current systems

Project ideas

• Using BlackParrot, an RTL level RISC-V multicore that can boot Linux, implement some feature from the research literature. Features may be a more sophisticated branch predictor, a cache prefetcher, a SIMD extension unit, etc.

• Integrate BlackParrot with X, where X is some interesting RTL project. Study the features of X and the necessary changes for efficient integration into the system.

• Choose a paper from the last 10 years of ISCA/MICRO/ASPLOS and attempt to reproduce their results. Particularly interesting would be to implement a model for their idea on your own and attempt to reproduce the author(s)’ findings.

• Perform a comprehensive literature review of a particular topic. This project involves little coding but extensive reading. Literature review projects are expected to survey at least 50 papers and produce a new way to think about the research area.

• Design and evaluate an accelerator for a new application area.

• Write a paper that argues convincingly what computers will be like in 2035. This is harder than it sounds. I expect at least 25 citations and 10 graphs.

Project Milestones:

End of week 2: Pick a project and have our OK on it. This should be a short paragraph describing the project and how it will be conducted.

End of week 4: Status update. Provide a detailed, but short update on where you are with the project.

End of week 6: Draft of project write up.

Week 7-8: project presentation

End of week 9: Finished project write up.