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Approved for public release: distribution unlimited.

Become the default open source Linux-capable RISC-V multicore 
used by the planet.

Create a HW development style that reconciles modern software 
engineering with the challenging requirements of hardware.
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Source: http://www.parrotbreeding.com.au/wp-content/uploads/2009/12/yellow-tailed-black-cockatoo-female.jpg

The BlackParrot Manifesto
● BE TINY

○ Place a premium on a small, 
understandable, agile, 
secure code base.

○ Minimize unused features or 
configurations that increase 
complexity and verification.

● BE MODULAR
○ Use well-defined interfaces that enable 

scalable, global participation.
○ Enable modular testability & CI.

● BE FRIENDLY
○ Welcome contributions and distributed 

ownership.
○ Combat “Not Invented Here” Syndrome.
○ Be easy to use.

 

PPA
Functionality

Virality
Quality
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Focus on interfaces, not implementation
● Borrowing from software, we focus on defining clean and narrow interfaces
● Then microarchitectural change only needs to be verified at the module level, 

rather than the system level
○ E.g. Adding a new branch predictor only affects the Front End, not the Back End

● Challenge is to make these interfaces flexible enough to support various 
levels of sophistication in implementation without incurring hardware 
overhead



Decoupled Core Uarch

FE BE

ME

fe_queue

fe_cmd

req cmd resp req cmd resp

concentrator

● Front End (FE)
○ Fully speculative region 
○ No architectural state lives 

here
○ Supplies Back End with 

pc/instruction pairs
● Back End (BE)

○ Executes RISC-V 
instructions

○ Manages virtual 
memory/privilege 
levels/interrupts

● Memory End (ME)
○ Maintains coherence
○ Manages directory tags



Interfaces

FE BE

ME

fe_queue

fe_cmd

req cmd resp req cmd resp

concentrator

● fe_queue
○ pc/instr pairs
○ pc/exception pairs

■ Memory access faults
■ tlb miss

● fe_cmd
○ pc redirections

■ mispredict
■ trap

○ tlb mappings, etc.
● lce_req 

○ Request from the LCE to 
the CCE (I have a cache 
miss)

● lce_cmd
○ Command to LCE (set tag 

and data to x)
● lce_resp

○ Response to a command 
from CCE (I have evicted a 
line, here is the dirty data)



Current Core 
Implementation
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PC Gen

BlackParrot Front End
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● 2 stage (1 stage warmup)
● 0-1 cycle taken penalty
● BHT/BTB

BHT
Override prediction 



Completion Pipe
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!
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roll roll roll cache miss

(issue | dispatch)
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POSH: U. Washington’s BlackParrot Programmable Cache Coherence

Major Accomplishments to date:

• First open-source programmable directory-based 

cache coherence controller

• First open-source race-free-by-design 

directory-based coherence protocol implementation

• First open-source synthesizable design for exploring 

interplay of cache coherence and security

Challenges:

• Directory sharding leads to excessively wide SRAMS

• Solved by modifying coherence engine to 

support configurable sequential readout of tags

First open-source programmable directory-based coherence controller

D
$I$

D
$I$

D
$I$

Dir Dir Dir

Mem Mem Mem

Passing AXE TSO coherence 
tests



PC
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BlackParrot 
Directory
Controller

Programmable at 
runtime (although 
usually boot time)



Feature wishlist
● Better / more flexible branch prediction (FE)
● More RISC-V features (FP, multiplication) (BE)
● Cool CCE features (prefetching, alternate coherence protocols)
● More flexible configurations (cache size, VM/no VM, etc.)



Current System 
Implementation



Wormhole routing

● Scalable and flexible routing 
strategy

● Smaller link widths than 
single flit routing

● Serialization / deserialization 
penalty

● High network occupancy
● Highly deadlock prone (but 

we avoid it by construction)
● Could other strategies do 

better?
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BlackParrot One ASIC

Taped out July 13, 2019! 
GF 12nm Process Technology
3mm x 3mm die

4-core 64b RISC-V multicore
CLINT Interrupt Controller
Off-chip SERDES for DRAM and I/O
Chips can be chained

DDR SERDES DDR SERDES 
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Config 
Loader



Possible single core variant?





Software side
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BlackParrot’s Growing Testsuite

• riscv-tests: rv64ui-p-*/rv64ui-v-* - 121 unit tests, 7 benchmarks

• https://github.com/riscv/riscv-tests

• BEEBS: Embedded benchmark suite - 77 tests 

• https://github.com/mageec/beebs

• Coremark: Industry-standard processor benchmark – 1 test

• https://github.com/eembc/coremark

• SPEC: 1 test (VPR), more soon to come!

• CMURPHI – Formal verification of our cache coherence protocol

• https://github.com/melver/cmurphi

• AXE – Runtime verification of memory consistency

• https://github.com/CTSRD-CHERI/axe

• Include all tools and necessary patches in BlackParrot repo so that users can validate performance 

and functionality for themselves!

On Deck:

• Linux

• SQED

• riscv-dv

• csmith-based random testing

• riscv-formal

https://github.com/riscv/riscv-tests
https://github.com/mageec/beebs
https://github.com/eembc/coremark
https://github.com/melver/cmurphi
https://github.com/CTSRD-CHERI/axe
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POSH: PanicRoom (Created for BlackParrot)

• We modified Newlib (an embedded C standard library) to sit on 

top of a tiny portable DRAM-based filesystem (ARM’s 

open-source LittleFS) to support POSIX I/O on bare-metal 

systems.

• The file system disk image (with input files & stdin files) is 

compiled into the binary, and is read/write.

• Extremely portable: <40 lines of code required to port 

PanicRoom to a new architecture. 

• Alternative approaches (like Berkeley Rocket, Ariane, and MIT 

Raw) proxy I/O to a host system and employ complex syscall 

translation facilities require reimplementation of RPC tunnels for 

each target: VCS, Verilator, emulation, ASIC, etc. 

• >> 300 times less code

A C standard library that allows emerging agile architectures to rapidly run large test programs with POSIX 
I/O.

We compile the filesystem into the application!

RISC-V 
Core

DRAM

User program

Newlib (C library)

LittleFS
w/ DRAM Bock 

Device

LittleFS 
disk image

Data

LittleFS
Disk Image

I/O

PanicRoom: A C standard library 
with integrated file-system

Project LOC

Rocket proxy kernel and fesvr 
tunnel & custom libgloss

14157

MIT RAW host-interface & 
custom libgloss

6999

UW HammerBlade using 
PanicRoom

32

UW BlackParrot using 
PanicRoom 20

A comparison of effort 
required 
to  support POSIX I/O 
  (in addition to newlib)

Tiny interface to 
PanicRoom 

Code

Data

Goal: Release as open source as 
part of newlib shortly.
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Extra things to port
● Multi-core benchmarks

○ Parsec, SPLASH, etc.
○ Normally require an OS for thread management

■ Stub out pthreads? Could be incorporated in PanicRoom!

● riscv-dv
○ Automated UVM-based white-box assembly-driven tester

■ For compliance with RISC-V spec.  Guaranteed to find bugs

● More SPEC benchmarks
○ Warning: long running.  Let us know if you would like access, because SPEC is not 

open-source



More info, please
● Tracers for everything

○ TLB fills / evictions
○ Emulation logs
○ VM traces
○ Performance analysis tools (where did cycles go)
○ Coherence traffic packet widths/num flits/latencies

● Modeling of adding new instructions vs emulation
○ FPDIV SW vs simple hardware vs pipelined hardware
○ AMO in L1/L2/emulation



VLSI Side



FreePDK45
● Predictive 45nm modeling
● “Fake” PDK, but realistic 

enough to draw 
conclusions from

bsg_fakeram
● CACTI-based predictive 

SRAM generator
● Generates blackbox 

macros with .lib, .lef, .v

We have an ASIC flow set up!
● DC/ICC RM scripts are 

under NDA so we can’t 
quite publish it

● Contact me if you’d like 
your project to be in the 
VLSI space



Quick repo overview
● bp_common - Interface definitions and tool infrastructure
● bp_fe, bp_be, bp_me - End level modules
● bp_top - Top level (Core, SoC, FPGA wrappers)

GETTING_STARTED.md on dev in the BlackParrot repo is the most up to date 
documentation

For now, 

● All testbenches should be run from bp_top/syn
● All new tests should be added in bp_common/test



Parameterized structs
● SystemVerilog does not have a built in capability for parameterized structs
● We get around this by declaring macros which declare structs

● Why not use $bits for port widths?
○ Structs are declared inside of 

modules, because that’s 
where parameters are 
scoped.  Therefore the struct 
does not exist at port 
elaboration time!

● Why not declare parameters 
globally and have structs declared 
once?

○ More flexibility, could have 
big.LITTLEParrot

○ Keeps modules more generic, 
no dependency on higher 
level parameters



How to customize BP
● To get a handle on the knobs that BlackParrot has, we use a struct of 

parameters to declare all high level parameterized structs
● You can find validated parameter sets in bp_common_aviary_pkg.vh
● https://github.com/black-parrot/pre-alpha-release/blob/master/bp_common/src/include/bp_common_aviary_pkg.vh

● To add a new parameter to the set, add to bp_common_aviary_defines.vh

https://github.com/black-parrot/pre-alpha-release/blob/master/bp_common/src/include/bp_common_aviary_pkg.vh


How to customize BP
● In the code to gain back all of the toplevel parameters, simply use 

`declare_proc_params(cfg_p)



BlackParrot: Community driven uarch
● BlackParrot is a relatively new project, rough edges and all
● We’re also bootstrapping a ton of open-source infrastructure - SW, HW, 

system-level, ASIC design
● The best way to help the project is to raise issues where things are unclear or 

incorrect, especially in HOWTO guides
● The easiest way to get commits into the main BlackParrot repo is submitting 

documentation patches
● Your project can help us pathfind new features, add visibility and make 

BlackParrot the best default option for computer architecture research! 


