
BlackParrot Deep Dive

BlackParrot Project Goals

2

Approved for public release: distribution unlimited.

Become the default open source Linux-capable RISC-V multicore
used by the planet.

Create a HW development style that reconciles modern software
engineering with the challenging requirements of hardware.

Core 0 Core 1 Core N
...

The BlackParrot “Genesis Release” Team

Prof. Michael
 Taylor

Prof. Mark
 Oskin

Prof. Ajay
 Joshi

Dan Petrisko Farzam Gilani

Katie Lim

Tommy Jung

Yongqin Wang

Mark Wyse

Bandhav Veluri Tavio Guarino

Boyou Zhou Furkan ErisLeila Delshad Zahra Azad

Chun Zhao

Scott Davidson

BlackParrot: Four Success
Metrics

PPA

Qualit
y

Funct
ionalit

y

Virality

(achieve these and BlackParrot will become the Linux of RISC-V)

Approved for public release: distribution unlimited.

BlackParrot: Four Success
Metrics

PPA

Will People Trust Our Code?
Is it easy to understand?
Is it secure?
Is it validated?
Will you put it in Silicon?

Qualit
y

Funct
ionalit

y

Virality

(achieve these and BlackParrot will become the Linux of RISC-V)

Approved for public release: distribution unlimited.

BlackParrot: Four Success
Metrics

PPA

Will People Trust Our Code?
Is it easy to understand?
Is it secure?
Is it validated?
Will you put it in Silicon?

convince the smartest people in
the world to improve it.

scale to many users.

get companies to invest and
become stewards of the code.

BlackParrot is a “stone soup” designed
to:Qualit

y

Funct
ionalit

y

Virality

(achieve these and BlackParrot will become the Linux of RISC-V)

Approved for public release: distribution unlimited.

BlackParrot: Four Success
Metrics

PPA

Will People Trust Our Code?
Is it easy to understand?
Is it secure?
Is it validated?
Will you put it in Silicon?

Does the code have the features
people need?

And leave out the ones they
don’t?

convince the smartest people in
the world to improve it.

scale to many users.

get companies to invest and
become stewards of the code.

BlackParrot is a “stone soup” designed
to:Qualit

y

Funct
ionalit

y

Virality

(achieve these and BlackParrot will become the Linux of RISC-V)

Approved for public release: distribution unlimited.

BlackParrot: Four Success
Metrics

PPA
Is the code Pareto optimal in terms
of Power, Performance, and Area?

Will People Trust Our Code?
Is it easy to understand?
Is it secure?
Is it validated?
Will you put it in Silicon?

Does the code have the features
people need?

And leave out the ones they
don’t?

convince the smartest people in
the world to improve it.

scale to many users.

get companies to invest and
become stewards of the code.

BlackParrot is a “stone soup” designed
to:Qualit

y

Funct
ionalit

y

Virality

(achieve these and BlackParrot will become the Linux of RISC-V)

Approved for public release: distribution unlimited.

Source: http://www.parrotbreeding.com.au/wp-content/uploads/2009/12/yellow-tailed-black-cockatoo-female.jpg

The BlackParrot Manifesto
● BE TINY

○ Place a premium on a small,
understandable, agile,
secure code base.

○ Minimize unused features or
configurations that increase
complexity and verification.

● BE MODULAR
○ Use well-defined interfaces that enable

scalable, global participation.
○ Enable modular testability & CI.

● BE FRIENDLY
○ Welcome contributions and distributed

ownership.
○ Combat “Not Invented Here” Syndrome.
○ Be easy to use.

PPA
Functionality

Virality
Quality

Approved for public release: distribution unlimited.

Focus on interfaces, not implementation
● Borrowing from software, we focus on defining clean and narrow interfaces
● Then microarchitectural change only needs to be verified at the module level,

rather than the system level
○ E.g. Adding a new branch predictor only affects the Front End, not the Back End

● Challenge is to make these interfaces flexible enough to support various
levels of sophistication in implementation without incurring hardware
overhead

Decoupled Core Uarch

FE BE

ME

fe_queue

fe_cmd

req cmd resp req cmd resp

concentrator

● Front End (FE)
○ Fully speculative region
○ No architectural state lives

here
○ Supplies Back End with

pc/instruction pairs
● Back End (BE)

○ Executes RISC-V
instructions

○ Manages virtual
memory/privilege
levels/interrupts

● Memory End (ME)
○ Maintains coherence
○ Manages directory tags

Interfaces

FE BE

ME

fe_queue

fe_cmd

req cmd resp req cmd resp

concentrator

● fe_queue
○ pc/instr pairs
○ pc/exception pairs

■ Memory access faults
■ tlb miss

● fe_cmd
○ pc redirections

■ mispredict
■ trap

○ tlb mappings, etc.
● lce_req

○ Request from the LCE to
the CCE (I have a cache
miss)

● lce_cmd
○ Command to LCE (set tag

and data to x)
● lce_resp

○ Response to a command
from CCE (I have evicted a
line, here is the dirty data)

Current Core
Implementation

BTB

pc
redirect

pc_f0 pc_f
1 pc_f2

FE cmd

mis
s

ppn

I$

ITLB

itlb_miss_f2

instr

fetch

exception
+4

pc_resume
fe_cmd.pc

pc_resume
fe_cmd.pc

FE queue

fe_cm
d

From BE

To BE

PC Gen

BlackParrot Front End

Approved for public release: distribution unlimited.

● 2 stage (1 stage warmup)
● 0-1 cycle taken penalty
● BHT/BTB

BHT
Override prediction

Completion Pipe

PC

clear_spec

incroll

branch mispredict

cache miss commit

pc: 16

pc: 12

pc: 20

pc: 8

rptr

cptr

wptr

Rolly
FIFO

ISS ISD EX1

INT RF

FP RF

Decoder

Floating Point Pipe

Memory Pipe

Multiplication Pipe

Integer
Pipe

Exception Pipe

Bypass

 nop

FWB
NPC

!
=

psn

~dispatch

EX2 IWB

roll roll roll cache miss

(issue | dispatch)

Approved for public release: distribution unlimited.

BlackParrot BE

Completion Pipe

PC

clear_spec

incroll

branch mispredict

cache miss commit

pc: 16

pc: 12

pc: 20

pc: 8

rptr

cptr

wptr

Rolly
FIFO

ISS ISD EX1

INT RF

FP RF

Decoder

Floating Point Pipe

Memory Pipe

Multiplication Pipe

Integer
Pipe

Exception Pipe

Bypass

 nop

FWB
NPC

!
=

psn

~dispatch

EX2 IWB

roll roll roll cache miss

(issue | dispatch)

Approved for public release: distribution unlimited.

commit pointnon-blocking point

Approved for public release: distribution unlimited. 17

POSH: U. Washington’s BlackParrot Programmable Cache Coherence

Major Accomplishments to date:

• First open-source programmable directory-based

cache coherence controller

• First open-source race-free-by-design

directory-based coherence protocol implementation

• First open-source synthesizable design for exploring

interplay of cache coherence and security

Challenges:

• Directory sharding leads to excessively wide SRAMS

• Solved by modifying coherence engine to

support configurable sequential readout of tags

First open-source programmable directory-based coherence controller

D
I

D
I

D
I

Dir Dir Dir

Mem Mem Mem

Passing AXE TSO coherence
tests

PC

18

uCode
RAM

uCode Decode

Directory

Pending Bits

Uncached Message RX/TX

Message RX/TX

Input Networks Output Networks

Registers

Fetch/Input Execute

GAD

ALU

Output

Mode Mode

Branch
Taken

PC+1

Branch
Target

Approved for public release: distribution unlimited.

BlackParrot
Directory
Controller

Programmable at
runtime (although
usually boot time)

Feature wishlist
● Better / more flexible branch prediction (FE)
● More RISC-V features (FP, multiplication) (BE)
● Cool CCE features (prefetching, alternate coherence protocols)
● More flexible configurations (cache size, VM/no VM, etc.)

Current System
Implementation

Wormhole routing

● Scalable and flexible routing
strategy

● Smaller link widths than
single flit routing

● Serialization / deserialization
penalty

● High network occupancy
● Highly deadlock prone (but

we avoid it by construction)
● Could other strategies do

better?

Approved for public release: distribution
unlimited.

22

BlackParrot One ASIC

Taped out July 13, 2019!
GF 12nm Process Technology
3mm x 3mm die

4-core 64b RISC-V multicore
CLINT Interrupt Controller
Off-chip SERDES for DRAM and I/O
Chips can be chained

DDR SERDES DDR SERDES

Approved for public release: distribution
unlimited.

23

BlackParrot One ASIC

Taped out July 13, 2019!
GF 12nm Process Technology
3mm x 3mm die

4-core 64b RISC-V multicore
CLINT Interrupt Controller
Off-chip SERDES for DRAM and I/O
Chips can be chained

Each core:
 RV64IA with Virtual Memory
 Single-issue In-order
 32K Data cache
 32K Instruction cache
 64-entry BTB
 8-entry DTLB
 8-entry ITLB

DDR SERDES DDR SERDES

Instr-uc
tion

Cache

Data
Cache

Directory

Front
End

Back
End

Memory End

X
X

X

X

X

X
X

X

X

X

CM
D
RTR

RES
P
RTR

Approved for public release: distribution
unlimited.

24

BlackParrot One ASIC

Taped out July 13, 2019!
GF 12nm Process Technology
3mm x 3mm die

4-core 64b RISC-V multicore
CLINT Interrupt Controller
Off-chip SERDES for DRAM and I/O
Chips can be chained

Each core:
 RV64IA with Virtual Memory
 Single-issue In-order
 32K Data cache
 32K Instruction cache
 64-entry BTB
 8-entry DTLB
 8-entry ITLB

DDR SERDES DDR SERDES

CMD
RTR

RESP
RTR

CLINT CFG

Instr-uc
tion

Cache

Data
Cache

Directory

Front
End

Back
End

Memory End

X
X

X

X

X

X
X

X

X

X

CM
D
RTR

RES
P
RTR

Fake
DRAM

Config
Loader

Possible single core variant?

Software side

Approved for public release: distribution unlimited. 29

BlackParrot’s Growing Testsuite

• riscv-tests: rv64ui-p-*/rv64ui-v-* - 121 unit tests, 7 benchmarks

• https://github.com/riscv/riscv-tests

• BEEBS: Embedded benchmark suite - 77 tests

• https://github.com/mageec/beebs

• Coremark: Industry-standard processor benchmark – 1 test

• https://github.com/eembc/coremark

• SPEC: 1 test (VPR), more soon to come!

• CMURPHI – Formal verification of our cache coherence protocol

• https://github.com/melver/cmurphi

• AXE – Runtime verification of memory consistency

• https://github.com/CTSRD-CHERI/axe

• Include all tools and necessary patches in BlackParrot repo so that users can validate performance

and functionality for themselves!

On Deck:

• Linux

• SQED

• riscv-dv

• csmith-based random testing

• riscv-formal

https://github.com/riscv/riscv-tests
https://github.com/mageec/beebs
https://github.com/eembc/coremark
https://github.com/melver/cmurphi
https://github.com/CTSRD-CHERI/axe

Approved for public release: distribution unlimited.

30

POSH: PanicRoom (Created for BlackParrot)

• We modified Newlib (an embedded C standard library) to sit on

top of a tiny portable DRAM-based filesystem (ARM’s

open-source LittleFS) to support POSIX I/O on bare-metal

systems.

• The file system disk image (with input files & stdin files) is

compiled into the binary, and is read/write.

• Extremely portable: <40 lines of code required to port

PanicRoom to a new architecture.

• Alternative approaches (like Berkeley Rocket, Ariane, and MIT

Raw) proxy I/O to a host system and employ complex syscall

translation facilities require reimplementation of RPC tunnels for

each target: VCS, Verilator, emulation, ASIC, etc.

• >> 300 times less code

A C standard library that allows emerging agile architectures to rapidly run large test programs with POSIX
I/O.

We compile the filesystem into the application!

RISC-V
Core

DRAM

User program

Newlib (C library)

LittleFS
w/ DRAM Bock

Device

LittleFS
disk image

Data

LittleFS
Disk Image

I/O

PanicRoom: A C standard library
with integrated file-system

Project LOC

Rocket proxy kernel and fesvr
tunnel & custom libgloss

14157

MIT RAW host-interface &
custom libgloss

6999

UW HammerBlade using
PanicRoom

32

UW BlackParrot using
PanicRoom 20

A comparison of effort
required
to support POSIX I/O
 (in addition to newlib)

Tiny interface to
PanicRoom

Code

Data

Goal: Release as open source as
part of newlib shortly.

Approved for public release: distribution unlimited. 31

BlackParrot’s Growing Testsuite

• riscv-tests: rv64ui-p-*/rv64ui-v-* - 121 unit tests, 7 benchmarks

• https://github.com/riscv/riscv-tests

• BEEBS: Embedded benchmark suite - 77 tests

• https://github.com/mageec/beebs

• Coremark: Industry-standard processor benchmark – 1 test

• https://github.com/eembc/coremark

• SPEC: 1 test (VPR), more soon to come!

• CMURPHI – Formal verification of our cache coherence protocol

• https://github.com/melver/cmurphi

• AXE – Runtime verification of memory consistency

• https://github.com/CTSRD-CHERI/axe

• Include all tools and necessary patches in BlackParrot repo so that users can validate performance

and functionality for themselves!

On Deck:

• Linux

• SQED

• riscv-dv

• csmith-based random testing

• riscv-formal

https://github.com/riscv/riscv-tests
https://github.com/mageec/beebs
https://github.com/eembc/coremark
https://github.com/melver/cmurphi
https://github.com/CTSRD-CHERI/axe

Extra things to port
● Multi-core benchmarks

○ Parsec, SPLASH, etc.
○ Normally require an OS for thread management

■ Stub out pthreads? Could be incorporated in PanicRoom!

● riscv-dv
○ Automated UVM-based white-box assembly-driven tester

■ For compliance with RISC-V spec. Guaranteed to find bugs

● More SPEC benchmarks
○ Warning: long running. Let us know if you would like access, because SPEC is not

open-source

More info, please
● Tracers for everything

○ TLB fills / evictions
○ Emulation logs
○ VM traces
○ Performance analysis tools (where did cycles go)
○ Coherence traffic packet widths/num flits/latencies

● Modeling of adding new instructions vs emulation
○ FPDIV SW vs simple hardware vs pipelined hardware
○ AMO in L1/L2/emulation

VLSI Side

FreePDK45
● Predictive 45nm modeling
● “Fake” PDK, but realistic

enough to draw
conclusions from

bsg_fakeram
● CACTI-based predictive

SRAM generator
● Generates blackbox

macros with .lib, .lef, .v

We have an ASIC flow set up!
● DC/ICC RM scripts are

under NDA so we can’t
quite publish it

● Contact me if you’d like
your project to be in the
VLSI space

Quick repo overview
● bp_common - Interface definitions and tool infrastructure
● bp_fe, bp_be, bp_me - End level modules
● bp_top - Top level (Core, SoC, FPGA wrappers)

GETTING_STARTED.md on dev in the BlackParrot repo is the most up to date
documentation

For now,

● All testbenches should be run from bp_top/syn
● All new tests should be added in bp_common/test

Parameterized structs
● SystemVerilog does not have a built in capability for parameterized structs
● We get around this by declaring macros which declare structs

● Why not use $bits for port widths?
○ Structs are declared inside of

modules, because that’s
where parameters are
scoped. Therefore the struct
does not exist at port
elaboration time!

● Why not declare parameters
globally and have structs declared
once?

○ More flexibility, could have
big.LITTLEParrot

○ Keeps modules more generic,
no dependency on higher
level parameters

How to customize BP
● To get a handle on the knobs that BlackParrot has, we use a struct of

parameters to declare all high level parameterized structs
● You can find validated parameter sets in bp_common_aviary_pkg.vh
● https://github.com/black-parrot/pre-alpha-release/blob/master/bp_common/src/include/bp_common_aviary_pkg.vh

● To add a new parameter to the set, add to bp_common_aviary_defines.vh

https://github.com/black-parrot/pre-alpha-release/blob/master/bp_common/src/include/bp_common_aviary_pkg.vh

How to customize BP
● In the code to gain back all of the toplevel parameters, simply use

`declare_proc_params(cfg_p)

BlackParrot: Community driven uarch
● BlackParrot is a relatively new project, rough edges and all
● We’re also bootstrapping a ton of open-source infrastructure - SW, HW,

system-level, ASIC design
● The best way to help the project is to raise issues where things are unclear or

incorrect, especially in HOWTO guides
● The easiest way to get commits into the main BlackParrot repo is submitting

documentation patches
● Your project can help us pathfind new features, add visibility and make

BlackParrot the best default option for computer architecture research!

