
Trace Cache: a Low Latency Approach to High
Bandwidth Instruction Fetching

• Bandwidth and latency can cause fetch/decode
stages to become a bottleneck

• Bandwidth an issue as more instructions fetched per
cycle

– Need multiple instruction cache lookups per cycle

– Can’t fetch past a taken branch in a single cycle

• Latency more of an issue as pipelines get longer

– Instruction cache misses and branch mispredictions rely on
fetch/decode to refill the pipeline

Trace Caches

• Previous instruction caches

– Cached instructions in compiled order

– Instructions decoded after retrieving from cache

• Trace Cache:
– Cache instructions after decoding

– Store in observed execution order

• Trace: A short snapshot of the dynamic execution stream
– May contain up to a few branch instructions, as long as the outcome

for each branch is also specified.

– Can be specified by starting address and branch outcomes for any
branches within the trace

– Also need to know where to execute next at the end of the trace

Trace Caches

• Trace Cache Implementation
– Query by starting address, plus bits describing number of

branches and their outcomes

– Trace Target Address: Next fetch address if the trace ends in a
branch that is taken

– Trace fall-through address: Next fetch address otherwise

• Indexing method: starting address only, or starting address
plus branch bits?
– Former: Can only have one trace per starting address. But, trace prefix

could be returned for partial matches
• Evict partial hits?

– Latter: Would allow multiple traces per starting address

Trace Caches

• What is the downside to concatenating the branch
bits to the starting address for indexing?

• If a trace contains a return or indirect jump, it is
aborted and not cached at all. Why not just store a
prefix of the trace prior to those instructions?

Prefetching using Markov Predictors

• Prefetchers are designed to anticipate memory
requests
– Input: Past history of memory references
– Output: Predicted next memory reference address(es)
– Some model of program behavior is needed

• Which memory references to observe?
– Observing all references from CPU doesn’t leave much

time to do anything fancy
– Miss addresses from CPU cache occur much less

frequently, allowing the prefetcher to take advantage
of more state

Prefetching using Markov Predictors

• Markov Prefetcher:

– Idea: Build and maintain a Markov model based
on past cache miss references

– Nodes are memory references

– Edges from reference X to Y are weighted by
observed frequency

– Could extend this by using multiple past
references to predict the next – but in practice it
didn’t appear to help

Prefetching using Markov Predictors

• Problems: difficult to realize in hardware
– Can only store a small part of observed history
– Arbitrary number of nodes and node out-degree
– Real-valued edge weights

• Solutions:
– Don’t store the history - maintain the model on the fly
– Limit number of nodes and maximum out-degree
– Prioritize edges based on an MRU scheme instead of actual

frequencies – “Markov-like”

• Hardware implementation:
– Realize graph as a transition table
– Rows are indexed by miss reference address, and contain

prioritized predictions of next fetch addresses

Prefetching using Markov Predictors

• Instead of placing the prefetcher between the
L1 and L2 cache, why not place it between
main memory and the cache?

• What is the advantage to using separate on-
chip prefetch buffers rather than just storing
prefetched data in the cache?

