

My Memory Ain't What is Used to Be
Directions in Memory Interfaces

● Memory Wall: computation speed increases faster than memory access
time

● Uniprocessor

– Load and Store operations guaranteed to complete in program order

– Parallelism (at runtime): consecutive loads, access to different
addresses

● Multiprocessor

– Consistency model defines in what order operations are applied to
memory and in what order updates are seen by other processors

● Processors use coherency protocols (e.g. MESI, MOESI)

– Sequential consistency (SC): total ordering and sequentialization

– Relaxed models provide higher performance but are harder to program

● Use memory barriers to prevent reordering

– Implicit vs. explicit coherence models

● Explicit models invoke coherence mechanism explicitly

My Memory Ain't What is Used to Be
Directions in Memory Interfaces

● Transactional Memory

– Atomically execute a sequence of instructions and rollback if
necessary

● Pros: optimistic, less deadlocks, flexible synchronization
granularity

– Transactions in Hardware

● Compare-and-Swap less useful for complex data structures

– Transactions in Software

● atomic (predicate) { ... }
● Functional languages

– Only have read-after write dependencies -> consistency and
coherence easier but hard to have mutable states

● I-structures, m-structures and monads

My Memory Ain't What is Used to Be
Directions in Memory Interfaces

● Streams and Vectors

– Stream programming: kernel and streams

– Continuous streaming or chunked streaming are possible
implementation in hardware

– Vector processors provide instructions that operate on entire vectors at
once (also LOAD and STORES).

● Memory aliasing

– Hard to determine at compile time if pointers reference same memory
location, this limits compiler optimizations

– restricted pointers in C99, no-middle-pointers in Java

– memory dependency predictors (in hardware) are good at the moment
but might be insufficient if instruction windows are 100s or 1000s of
instructions

● Spatial Architectures, e.g. WaveScalar

● Processor in Memory: integrate computing resources and large memory on
the same device

Questions

● Can functional languages exploit their “only read-after-write”
property on current hardware (e.g. x86) or is special hardware
support needed?

● Is the memory wall still getting “higher” or is it flattening out
because clock frequencies also flattened out as well and we
have parallelism due to multiple execution contexts?

● How do Intel's upcoming Transactional Synchronization
Extensions (TSX) work?

– What adaption if any is necessary to languages to exploit
this?

	Slide 1
	Slide 2
	Slide 3
	Slide 4

