My Memory Ain't What is Used to Be
Directions in Memory Interfaces

Memory Wall: computation speed increases faster than memory access
time

Uniprocessor

- Load and Store operations guaranteed to complete in program order

- Parallelism (at runtime): consecutive loads, access to different
addresses

Multiprocessor

- Consistency model defines in what order operations are applied to
memory and in what order updates are seen by other processors

* Processors use coherency protocols (e.g. MESI, MOESI)
- Sequential consistency (SC): total ordering and sequentialization

- Relaxed models provide higher performance but are harder to program

« Use memory barriers to prevent reordering
- Implicit vs. explicit coherence models

« Explicit models invoke coherence mechanism explicitly



My Memory Ain't What is Used to Be
Directions in Memory Interfaces

e Transactional Memory

- Atomically execute a sequence of instructions and rollback if
necessary

e Pros: optimistic, less deadlocks, flexible synchronization
granularity

— Transactions in Hardware

 Compare-and-Swap less useful for complex data structures
- Transactions in Software
e atomic (predicate) { ... }
* Functional languages

- Only have read-after write dependencies -> consistency and
coherence easier but hard to have mutable states

e |-structures, m-structures and monads



My Memory Ain't What is Used to Be
Directions in Memory Interfaces

Streams and Vectors

Stream programming: kernel and streams

Continuous streaming or chunked streaming are possible
Implementation in hardware

Vector processors provide instructions that operate on entire vectors at
once (also LOAD and STORES).

Memory aliasing

Hard to determine at compile time if pointers reference same memory
location, this limits compiler optimizations

restricted pointers in C99, no-middle-pointers in Java

memory dependency predictors (in hardware) are good at the moment
but might be insufficient if instruction windows are 100s or 1000s of
Instructions

Spatial Architectures, e.g. WaveScalar

Processor in Memory: integrate computing resources and large memory on
the same device



Questions

« Can functional languages exploit their “only read-after-write”

property on current hardware (e.g. x86) or is special hardware
support needed?

* |s the memory wall still getting “higher” or is it flattening out
because clock frequencies also flattened out as well and we
have parallelism due to multiple execution contexts?

 How do Intel's upcoming Transactional Synchronization
Extensions (TSX) work?

- What adaption if any is necessary to languages to exploit
this?



	Slide 1
	Slide 2
	Slide 3
	Slide 4

