
CSE548:	  Readings	  for	  1/14/13	  

Dan	  Butler	  



A	  Preliminary	  Architecture	  for	  a	  Basic	  
Data-‐Flow	  Processor	  

•  Basic	  idea:	  
– Express	  a	  program	  as	  data	  consumer	  /	  producer	  
nodes,	  wired	  together	  

•  Exploits	  parallelism	  to	  overcome	  data	  latency	  
– Nodes	  acJvate	  whenever	  their	  inputs	  are	  ready	  

•  Architecture	  designed	  to	  simulate	  these	  nodes	  
in	  an	  efficient	  way,	  storing	  /	  retrieving	  state	  as	  
needed	  



A Preliminary Architecture for a Basic data-L‘iow Processor* 

Jack B. Dennis and David P. Misunas 
Project MAC 

Massachusetts Institute of Technology 

Abstract: A processor is described which can achieve highly parallel execution of programs represented in data- 
flow form. The languake implemented incorporates conditional and iteration mechanisms, and the processor is a step 
toward a practical data-flow processor for a Fortran-level data-flow language. The processor has a unique archi- 
tecture which avoids the problems of processor switching and memory/processor interconnecion that usually limit the 
degree of realizable concurrent processing. The architecture offers an unusual solution to the problem of struc- 
turing and managing a two-level smmory system. 

Introduction 
Studies of concurrent operation within a computer sys- 
tem and of the representation of parallelism in a pro- 
graming language have yielded a new form of program 
representation, known as data flow. Execution of a 
data-flow program is data-driven: that is, each instruc- 
tion is enabled for execution just when each required 
operand has been supplied by the execution of a prede- 
cessor instruction. Data-flow representations for pro- 
grams have been described by Karp and Miller [S], Rod- 
riguez [Ill, Adams [l], Dennis and Foeseen [5]. BPhrs 
[2], Kosinakl 19, lo], and Dannis [4]. 

We have developed an attractive architecture for a pro- 
cessor that executes elementary data-flow programs [6, 
71. The class of programs implemented by this processor 
corresponds to the model of Karp and Miller [a]. These 
data-flow programs are well suited to representing sig- 
nal processing computations such as waveform generation, 
modulation and filtering, in which a group of operations 
is to be performed once for each sample (in time) of the 
signals being processed. This elementary data-flow pro- 
cessor avoids the problems of processor switching and 
processor/memory interconnection present in attempts to 
adapt conventional Van Nsumen type machines for parallel 
computation. Sections of the machine camrmnicate by the 
transmission of fixed size information packets, and the 
machine is organized so that the sections can tolerate 
delays in packet transmission without compromising ef- 
fective utilization of the hardware. 
We wish to expand the capabilities of the data-flow 
architecture, with the ultimate goal of developing a 
general purpose processor using a generalized data-flow 
language such as described by Dennis [4], Kosinski [9, 
101 and Bahrs (21. As an intermediate step, we have de- 
veloped a preliminary design for a basic data-flow pro- 
cessor that sxecutes programs expressed in a more power- 
ful language than the elementary machine, but still not 
achieving a generalized capability. The language of the 
basic machine is that described by Dennis and Fossesn 
151, and includes constructs for expressing conditional 
and iterative execution of progrsm parts. 
In this paper we present solutions to the major probliems 
faced in the development of the basic machine. A 
straightforward solution to the incorporation of decis- 
ion capabilities in the machine is described. In addi- 
tion, the growth in program size and complexity with the 
addition of the decision capability requires utilization 
Of a two-level memory system. A design is presented in 
which only active instructions are in the operational 
memory of the processor, and each instruction is brought 
to that memory only when necessary for program execution, 
and r-ins there only as long as it is being utilized. 

* 
The work reported here was supported bv the National 
Science Foundation under rese&h grand 63-34671. 

The ElementaN Processor - 
The Elementary Rocessor is designed to utilize the ele- 
mentary data-flow language as its base language. A pro- 
gram in the elementary data-flow language is a directed 
graph in which the nodes are operators or links. These 
nodes are connected by arcs along which values (conveyed 
by tokens) may travel. An operator of the schema is 
enabled when tokens are present on all input arcs. 'J&s 
enabled operator may firs at any time, removing the to- 
kens on its input arc=omputing a value from the oper- 
ands associated vith the input tokens, and associating 
that value with a result token placed on its output arc. 
A result may be sent to mDle than one destination by 
means of a link which removes a token on its input arc 
and places tokens on its output arcs bearing copies of 
the input value. An operator or a link cannot fire un- 
less there is no token present on any output arc of that 
operator or link. 

An example of a program in the elementary data-flow lan- 
guage is shown in Figure 1 and represents the following 
simple computation: 

-a, b 
y :a (a+b)/x 
x : = (a*(a+b))+b 

output y, x 

i A4 

Figure I. An elementary doto- flow progrom 

12.5 



tration Network which directs it to an appropriate Opera- . . 
tion Unit by decoding the instruction portion of the pack 
et. 
The result of an operation leaves an Operation Unit as on 
or mDre data packets, consisting of the computed value an 
the addressof a register in the Memory to vhich the valu 

Fqur. 2 Orqonllotlo” or ttl* ~l.msnlory doto-‘lo* !arw,.*mr. is to be delivered. The DFstZibution Netvork accepts dat. 
packets from the Operation Units and utilizes the address 

The rectangular boxes in Figure 1 are operators, and each of each to direct ehe data item through the nehwrk to th 
arithmetic ooeretor in the above computation is reflected correct register in the Hemorv. The Instruction Cell con 
in a correspbndlng operator in the piogram. The small 
dots are links. The large dots represent tokens holding 
values for the initial configuration of the program. 

talning that register may then be enabled if an lnstruc- 
tion and all operands are present in the Cell. 

In the program of Figure 1, links Ll and L2 are initially 
enabled. The firing of Ll makes copies of the value a 
available to operators Al and A3; firing L2 presents the 
value b to operators Al and A4. Once Ll and L2 have 
fired (in any order), operator Al is enabled since it 
vi11 have a token on each of its input arca. After Al 
has fired (completing the computation of a+b), link L3 
will become enabled. The firing of W vi11 enable the 
concurrent firing of operators A2 and A3, and so on. 
The computations represented by an elementary program 
are performed in a data-driven manner; the enabling of 
an operator is determined only by the arrival of values 
on all input links, and no separate control signals are 
utilized. Such a scheme prompted the design of a pro- 
cessor organized as in Figure 2. 

A data-flow schema to be executed is stored in the Mem- 
9 of the processor. The Merry is organized into- 
Instruction w, each Cell corresponding to an opera- 
tor of the data-flow program. Each Instruction Cell 
(Figure 3) is composed of three registers. The first 
register holds an instruction (Figure 4) which speci- 
fies the operation to be performed and the address 
of the register(s) to which the result of the operation 
is to be directed. The second and third registers hold 
the operands for use in execution of the instruction. 
When a Cell contains an instruction and the necessary op- 
erands, it is enabled and signals the Arbitration Network 
that it is ready to transmit its contents as an operation 
packet to an Oocration w which can perform the desired 
function. The operation packet flow through the Arbi- 

[nstruction C*I I 

Many Instruction Cells may be enabled simultaneously, and 
it is the task of the Arbitration Network to efficiently 
deliver operation packets to Operation Units and to queue 
operation packets waiting for each Operation Unit. A 
structure for the Arbitration Network providing a path fo 
operation packets from each Instruction Cell to each Op- 
eration Unit is presented in Figure 5. Rach Arbitration 
m passes packets arriving at its input ports one-at-a- 
time to its output port, using a round-robin discipline t 
resolve any ambiguity about which packets should be sent 
next. A Svttch Unit assigns a packet at its input to one -- 
of its output ports, according to some property of the 
packet, in this case the operation code. 

The Distribution Network is similarly organized using 
Switch Units to route data packets from the Operation 
Units to the Memory Registers specified by the destina- 
tion addresses. A fev Arbitration Units are required ao 
data packets from different Operation Units can enter the 
network simultaneously. 
Since the Arbitration Network has many input ports and 
onlyafev output ports, the rate of packet flov will be 
much greater at the output ports. Thus, a serial rep- 
resentation of packets is appropriate at the input ports 
to minimize the number of connections to the Memory, but 
a mOre parallel representation is required at the output 
ports so a high throughput may be achieved. Hence, 
serial-to-parallel conversion is performed in stages 
within the Arbitration Netvork. Similarly, parallel-to- 
serial conversion of the value portion of each result 
packet occurs vithin the Distribution Network. 

The Operation Units of the processor are pipelined in 

operation code 

destination destination 
I 2 

-0 I I I I I 

Tr speclollzed function 

L operollon untt 

- ,q,.rr 3 operat,on 0, or !nSlr”Cf,D” Cell Flqure 4 Insrrucllon formal 

126 



&bitration Netwrk to OperAtion Units capable of Per- 
forming the identity and addition operations. If the 
result of thi decision is false, output cells 7 and 8 
vi11 be enabled, and cells 4, 5, and 6 will have their 
gated operands deleted. 

Weuuq Hi ersrchv Vitro-leve 1 

The high level of parallel activity achievable in dats- 
flow processors makes a unique form of memory hierarchy 
feasible: the Instruction Cells are arranged to act AS 
a cache for the most actfve instructions of the data- 
flow program. Individual instructions are retrieved 
from auxiliary memory (the Instruction Memmy) as they 
become required by the progress of computation, and in- 
structions are returned to the Instruction Meavry when 
the Instruction Cells holding them are required for more 
active parts of the program. 

The organization of a basic data-flow processor with 
Iortruction Memory is given in Fig. la. 

Instruction Messmy 

The Instruction Memory has a storage location for each 
poaeible register address of the basic processor. 
These storage locations are organized into groups of 
three locations identified by the address of the firat 
loution of the group. Each group can hold the contents 
of one Instruction CeLL in the formets already given in 
Fig. 10. 
A mmorv comnand packet (a, r&r) presented to the corn-- 
d port of the Xostruction Memory, requests retrfzl 
of an Instruction packet (a. x) in which x is the Cell 
contents stored in the group of locations specified by 
address A. The instruction packet is delivered at the 
retrieve port of the Instruction he-. 

An instruction packet (a, x) presented at the store port 
of the Instruction Memory requests storage of Giicon- 
tmto x in the three-location group specified by address 
a. Hmmver, the storage is not effective untfL a m-ry 
mold packet (q, m) is received by the Inatruetion 

Memory at its conmmnd port, and any prior retrieval re- 
quest has been honored. Similarly, retrieval requests 
are not honored until prior storage requests for the 
group have taken effect. 
We envision that the Instruction Memory vould be de- 
signed to handle large numbers of storage and retrievsl 
.requests concurrently, much AS the input/output facilities 
of contemporary computer systems operate under softvare 
control. 

CeLL Block ODeration -- 
For application of the cache principle to the basic. data- 
flow processor, an Instruction Memory address is divided 
into a w address and a mfnor address, each containing 
a number of bits of the address. One Cell Block of the 
processor is associated vith each possible major address. 
All instructions having the same major address are pro- 
cessed by the Instruction dells of the corresponding Cell 
Block. Thus the Distribution and Control Networka use 
ths major address to direct data packets, control Packets, 
and instruction packeta to the appropriate Cell Block- 
The packets delivered to the Cell Block include the minor 
address, vhich is’sufficient to determine how the PA&et 
should be treated by the CaLl Block. 

Operation and decision packets leaving a Cell Block have 
exactly the same formet AS before. Instruction packats 
leaving a Cell Block have the form (m, x) where m is a 
minor address and x is the contents of an Instruction 
Cell. The major address of the Cell Block is appended 
to each instruction packet as it travels through the AP 
bitration Network. In the same way, memory c-ad 
packets Leave the Cell Block with just a minor addrear, 
which is augnmnted by the mejor address of the Cell Block 
during its trip through the Memry Cmnd Netwrk. 

Fig. 15 shows the structure of a Cell Block. gach In- 
struction Cell is able to hold any instruction vhoae ma- 
jor address is that of the Cell Block. Since euny mme 
instructicmr share A aujor address than there are Calls 
in a Cell Block, the Cell Block includes an Association 
Table which hae en enap (m, I) for each Instruction 
Cell: m is the minor address of the instruction to vhich 
the Cell is aseigned, and f is a Cell status fndiutor 
who#e values have significauce as follows: 
status value -- lseehilq 

&gg the Cell is not assigned to any in- 
struction 

engaRed the Cell has been engaged for the in- 
struction having minor address m, b 
arrival of a data or conrrd Packet 

OccuDied the Cell is occupied by an iMetuCtion 
with minor address m 

the Stack elamsnt of a Cell Block holds an ordering of 
the Iwuuctioa Cells as candidates for dieulacmt of 
their contents by newly activated InstiuCti~. CulY 
Cells in occupied status are candiates for displa-nt. 
Operation of a Cell Block can be specified by giving two 
procedures -- one initiated by arrival of a data or con- 
trol picket at the Cell BLock, and the other activated 
by arrival of an instruction packat from the Instruction 
-rY. 

Rocedure 1: Arrival of A dats or control pa&et (n, y) 
where n is a minor address and y is the packet con- 
tent. 

StCp 1. Doea the Association Table have an entiy vith 
minor address n? If so. let p be the Cell corre- 
sponding co the entry, and go KO step 5. Othervise 
continue with step 2. 

SfCp 2. If the association Table show chat no Instruc- 
cion Cell has status free, go to step 3. Otherwise 
lat p oe a Cell vith status free. Let the Associa- 

Two-‐Level	  Memory	  Hierarchy	  

Logic	  and	  Control	  Flow	  
(special-‐cased)	  

A 
(a) data llnk 

A 
(b) control llnk 

Figure 6. Links Of the basic doto-flow longuoge. 

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

Cc I T-gate 

(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flaw language. 

The Basic Data-Flow Lanarune ---- 
Our success in the architecture of the elementary data- 
flw proces6or led us to consider applying the concepts 
to the l rchftecture of machine6 for more complete data- 
flov languages. For the first step in generalization, 
M have choren. a class of datarflpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Forreen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of link6 and 
actors. The types of link6 and actors for the baric 
data-flow language are shown in Figures 6 and 7. 
D6t6 values pa66 through data link6 in the manner pre- 
rented previously. The tokens transmitted by control 
link6 are knovn as control tokens and each convey6 a - -* 
value of either true or false. A control token is gcner- 
ated at a deciderich,~ receiving values from its 
fnput arcs, applies its a66ociated predicate, and produces from the input arc correrponding to the value of the 
either a true or false control token at its output arc. control token received. llny tokens on the other input 

-- are not affected. 

the value true at its control input. It viL1 absorb the 
data tokenFits input arc and place nothing on Its out- 
put arc if a false-valued control token is received. 
Simflarly, thxate will paas its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 
A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 
output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 
n := 0 
while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 

127 

A 
(a) data llnk 

A 
(b) control llnk 

Figure 6. Links Of the basic doto-flow longuoge. 

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

Cc I T-gate 

(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flaw language. 

The Basic Data-Flow Lanarune ---- 
Our success in the architecture of the elementary data- 
flw proces6or led us to consider applying the concepts 
to the l rchftecture of machine6 for more complete data- 
flov languages. For the first step in generalization, 
M have choren. a class of datarflpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Forreen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of link6 and 
actors. The types of link6 and actors for the baric 
data-flow language are shown in Figures 6 and 7. 
D6t6 values pa66 through data link6 in the manner pre- 
rented previously. The tokens transmitted by control 
link6 are knovn as control tokens and each convey6 a - -* 
value of either true or false. A control token is gcner- 
ated at a deciderich,~ receiving values from its 
fnput arcs, applies its a66ociated predicate, and produces from the input arc correrponding to the value of the 
either a true or false control token at its output arc. control token received. llny tokens on the other input 

-- are not affected. 

the value true at its control input. It viL1 absorb the 
data tokenFits input arc and place nothing on Its out- 
put arc if a false-valued control token is received. 
Simflarly, thxate will paas its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 
A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 
output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 
n := 0 
while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 

127 

A 
(a) data llnk 

A 
(b) control llnk 

Figure 6. Links Of the basic doto-flow longuoge. 

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

Cc I T-gate 

(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flaw language. 

The Basic Data-Flow Lanarune ---- 
Our success in the architecture of the elementary data- 
flw proces6or led us to consider applying the concepts 
to the l rchftecture of machine6 for more complete data- 
flov languages. For the first step in generalization, 
M have choren. a class of datarflpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Forreen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of link6 and 
actors. The types of link6 and actors for the baric 
data-flow language are shown in Figures 6 and 7. 
D6t6 values pa66 through data link6 in the manner pre- 
rented previously. The tokens transmitted by control 
link6 are knovn as control tokens and each convey6 a - -* 
value of either true or false. A control token is gcner- 
ated at a deciderich,~ receiving values from its 
fnput arcs, applies its a66ociated predicate, and produces from the input arc correrponding to the value of the 
either a true or false control token at its output arc. control token received. llny tokens on the other input 

-- are not affected. 

the value true at its control input. It viL1 absorb the 
data tokenFits input arc and place nothing on Its out- 
put arc if a false-valued control token is received. 
Simflarly, thxate will paas its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 
A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 
output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 
n := 0 
while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 

127 

A 
(a) data llnk 

A 
(b) control llnk 

Figure 6. Links Of the basic doto-flow longuoge. 

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

Cc I T-gate 

(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flaw language. 

The Basic Data-Flow Lanarune ---- 
Our success in the architecture of the elementary data- 
flw proces6or led us to consider applying the concepts 
to the l rchftecture of machine6 for more complete data- 
flov languages. For the first step in generalization, 
M have choren. a class of datarflpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Forreen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of link6 and 
actors. The types of link6 and actors for the baric 
data-flow language are shown in Figures 6 and 7. 
D6t6 values pa66 through data link6 in the manner pre- 
rented previously. The tokens transmitted by control 
link6 are knovn as control tokens and each convey6 a - -* 
value of either true or false. A control token is gcner- 
ated at a deciderich,~ receiving values from its 
fnput arcs, applies its a66ociated predicate, and produces from the input arc correrponding to the value of the 
either a true or false control token at its output arc. control token received. llny tokens on the other input 

-- are not affected. 

the value true at its control input. It viL1 absorb the 
data tokenFits input arc and place nothing on Its out- 
put arc if a false-valued control token is received. 
Simflarly, thxate will paas its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 
A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 
output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 
n := 0 
while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 

127 



QuesJons	  on	  Dataflow	  Processor	  

•  Why	  is	  control	  flow	  a	  special	  case?	  

•  What	  is	  it	  like	  to	  program	  for	  this	  processor?	  
– Seems	  tough!	  

•  How	  would	  file	  I/O	  work?	  



Two	  Fundamental	  Limits	  on	  Dataflow	  
MulJprocessing	  

•  CriJcizes	  dataflow	  processors	  for	  not	  paying	  
a\enJon	  to	  the	  memory	  hierarchy	  

•  Argues:	  
1.  OpJmal	  #	  of	  virtual	  processors	  limited	  by	  size	  of	  

top-‐level	  cache	  (swapping	  context	  is	  costly)	  
2.  Purely	  local	  scheduling	  of	  processes	  is	  doomed	  
3.  Dataflow	  idea	  hides	  cost	  of	  swapping	  contexts	  

-‐	  should	  be	  made	  explicit	  



‘Dataflow	  architectures	  essenJally	  replace	  the	  small	  register	  
number	  with	  a	  large	  tag	  that	  serves	  to	  “name”	  the	  value.	  A	  
realisJc	  view	  of	  the	  storage	  hierarchy	  requires	  that	  only	  a	  
small	  number	  of	  such	  name/value	  pairs	  can	  be	  resident	  at	  a	  
Jme.	  Once	  the	  number	  of	  VPs	  exceeds	  the	  capacity	  of	  the	  top	  
level	  matching	  store,	  the	  synchronizaJon	  cost	  increases	  
dramaJcally,	  since	  some	  form	  of	  overflow	  store	  must	  be	  
used[12,	  6]’	  

•  “overflow”	  is	  the	  two-‐level	  memory	  hierarchy	  
•  Argues	  that	  this	  sort	  of	  switching	  can	  be	  very	  costly	  

because	  processor	  speed	  comes	  from	  using	  the	  high-‐level	  
cache	  effecJvely	  

Two	  Fundamental	  Limits	  on	  Dataflow	  
MulJprocessing	  



•  The	  propose	  another	  architecture,	  “Threaded	  
Abstract	  Machine”	  

•  No	  virtual	  processors	  
•  Exposes	  the	  “fixed	  resources”	  of	  the	  actual	  
processor	  

•  Exposes	  scheduling	  to	  the	  compiler	  to	  allow	  
for	  higher-‐level	  planning	  

Two	  Fundamental	  Limits	  on	  Dataflow	  
MulJprocessing	  



•  What	  are	  “thro\ling”	  and	  “k-‐bounding”?	  
– Help	  dataflow	  use	  the	  right	  amount	  of	  parallelism	  

•  Why	  isn’t	  the	  dataflow	  two-‐level	  memory	  
hierarchy	  a	  sufficient	  soluJon?	  

•  How	  does	  this	  TAM	  business	  work	  in	  detail?	  

Two	  Fundamental	  Limits	  on	  Dataflow	  
MulJprocessing	  



WaveScalar	  

•  Dataflow	  architecture	  that	  does	  not	  switch	  
contexts	  as	  much	  
–  Keeps	  data	  cells	  in	  high-‐level	  cache	  for	  long	  periods	  of	  
Jme	  

•  Allows	  users	  to	  program	  in	  a	  tradiJonal	  von	  
Neumann-‐style	  language	  

•  Proposes	  a	  new	  type	  of	  locality	  –	  “dataflow	  
locality”	  –	  and	  exploits	  it	  
–  Basically	  the	  fact	  that	  some	  data	  nodes	  need	  to	  talk	  to	  
each	  other	  more	  than	  others	  



WaveScalar	  

•  Consists	  of	  a	  physical	  network	  of	  processors	  
with	  fast	  local	  caches	  
– Divided	  into	  clusters	  so	  that	  dataflow-‐locality	  can	  
be	  exploited	  

•  Procedural	  code	  is	  compiled	  into	  chunks	  
•  Each	  chunk	  is	  a	  dataflow-‐style	  node	  network	  
– Called	  a	  “wave”	  

•  Dataflow	  network	  distributed	  across	  
processors	  



WaveScalar	  

•  How	  does	  the	  compiling	  process	  really	  work,	  
in	  detail?	  
–  loop	  unrolling?	  


