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Abstract: A processor is described which can achieve highly parallel execution of programs represented in data- 
flow form. The languake implemented incorporates conditional and iteration mechanisms, and the processor is a step 
toward a practical data-flow processor for a Fortran-level data-flow language. The processor has a unique archi- 
tecture which avoids the problems of processor switching and memory/processor interconnecion that usually limit the 
degree of realizable concurrent processing. The architecture offers an unusual solution to the problem of struc- 
turing and managing a two-level smmory system. 

Introduction 
Studies of concurrent operation within a computer sys- 
tem and of the representation of parallelism in a pro- 
graming language have yielded a new form of program 
representation, known as data flow. Execution of a 
data-flow program is data-driven: that is, each instruc- 
tion is enabled for execution just when each required 
operand has been supplied by the execution of a prede- 
cessor instruction. Data-flow representations for pro- 
grams have been described by Karp and Miller [S], Rod- 
riguez [Ill, Adams [l], Dennis and Foeseen [5]. BPhrs 
[2], Kosinakl 19, lo], and Dannis [4]. 

We have developed an attractive architecture for a pro- 
cessor that executes elementary data-flow programs [6, 
71. The class of programs implemented by this processor 
corresponds to the model of Karp and Miller [a]. These 
data-flow programs are well suited to representing sig- 
nal processing computations such as waveform generation, 
modulation and filtering, in which a group of operations 
is to be performed once for each sample (in time) of the 
signals being processed. This elementary data-flow pro- 
cessor avoids the problems of processor switching and 
processor/memory interconnection present in attempts to 
adapt conventional Van Nsumen type machines for parallel 
computation. Sections of the machine camrmnicate by the 
transmission of fixed size information packets, and the 
machine is organized so that the sections can tolerate 
delays in packet transmission without compromising ef- 
fective utilization of the hardware. 
We wish to expand the capabilities of the data-flow 
architecture, with the ultimate goal of developing a 
general purpose processor using a generalized data-flow 
language such as described by Dennis [4], Kosinski [9, 
101 and Bahrs (21. As an intermediate step, we have de- 
veloped a preliminary design for a basic data-flow pro- 
cessor that sxecutes programs expressed in a more power- 
ful language than the elementary machine, but still not 
achieving a generalized capability. The language of the 
basic machine is that described by Dennis and Fossesn 
151, and includes constructs for expressing conditional 
and iterative execution of progrsm parts. 
In this paper we present solutions to the major probliems 
faced in the development of the basic machine. A 
straightforward solution to the incorporation of decis- 
ion capabilities in the machine is described. In addi- 
tion, the growth in program size and complexity with the 
addition of the decision capability requires utilization 
Of a two-level memory system. A design is presented in 
which only active instructions are in the operational 
memory of the processor, and each instruction is brought 
to that memory only when necessary for program execution, 
and r-ins there only as long as it is being utilized. 

* 
The work reported here was supported bv the National 
Science Foundation under rese&h grand 63-34671. 

The ElementaN Processor - 
The Elementary Rocessor is designed to utilize the ele- 
mentary data-flow language as its base language. A pro- 
gram in the elementary data-flow language is a directed 
graph in which the nodes are operators or links. These 
nodes are connected by arcs along which values (conveyed 
by tokens) may travel. An operator of the schema is 
enabled when tokens are present on all input arcs. 'J&s 
enabled operator may firs at any time, removing the to- 
kens on its input arc=omputing a value from the oper- 
ands associated vith the input tokens, and associating 
that value with a result token placed on its output arc. 
A result may be sent to mDle than one destination by 
means of a link which removes a token on its input arc 
and places tokens on its output arcs bearing copies of 
the input value. An operator or a link cannot fire un- 
less there is no token present on any output arc of that 
operator or link. 

An example of a program in the elementary data-flow lan- 
guage is shown in Figure 1 and represents the following 
simple computation: 

-a, b 
y :a (a+b)/x 
x : = (a*(a+b))+b 

output y, x 

i A4 

Figure I. An elementary doto- flow progrom 
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tration Network which directs it to an appropriate Opera- . . 
tion Unit by decoding the instruction portion of the pack 
et. 
The result of an operation leaves an Operation Unit as on 
or mDre data packets, consisting of the computed value an 
the addressof a register in the Memory to vhich the valu 

Fqur. 2 Orqonllotlo” or ttl* ~l.msnlory doto-‘lo* !arw,.*mr. is to be delivered. The DFstZibution Netvork accepts dat. 
packets from the Operation Units and utilizes the address 

The rectangular boxes in Figure 1 are operators, and each of each to direct ehe data item through the nehwrk to th 
arithmetic ooeretor in the above computation is reflected correct register in the Hemorv. The Instruction Cell con 
in a correspbndlng operator in the piogram. The small 
dots are links. The large dots represent tokens holding 
values for the initial configuration of the program. 

talning that register may then be enabled if an lnstruc- 
tion and all operands are present in the Cell. 

In the program of Figure 1, links Ll and L2 are initially 
enabled. The firing of Ll makes copies of the value a 
available to operators Al and A3; firing L2 presents the 
value b to operators Al and A4. Once Ll and L2 have 
fired (in any order), operator Al is enabled since it 
vi11 have a token on each of its input arca. After Al 
has fired (completing the computation of a+b), link L3 
will become enabled. The firing of W vi11 enable the 
concurrent firing of operators A2 and A3, and so on. 
The computations represented by an elementary program 
are performed in a data-driven manner; the enabling of 
an operator is determined only by the arrival of values 
on all input links, and no separate control signals are 
utilized. Such a scheme prompted the design of a pro- 
cessor organized as in Figure 2. 

A data-flow schema to be executed is stored in the Mem- 
9 of the processor. The Merry is organized into- 
Instruction w, each Cell corresponding to an opera- 
tor of the data-flow program. Each Instruction Cell 
(Figure 3) is composed of three registers. The first 
register holds an instruction (Figure 4) which speci- 
fies the operation to be performed and the address 
of the register(s) to which the result of the operation 
is to be directed. The second and third registers hold 
the operands for use in execution of the instruction. 
When a Cell contains an instruction and the necessary op- 
erands, it is enabled and signals the Arbitration Network 
that it is ready to transmit its contents as an operation 
packet to an Oocration w which can perform the desired 
function. The operation packet flow through the Arbi- 

[nstruction C*I I 

Many Instruction Cells may be enabled simultaneously, and 
it is the task of the Arbitration Network to efficiently 
deliver operation packets to Operation Units and to queue 
operation packets waiting for each Operation Unit. A 
structure for the Arbitration Network providing a path fo 
operation packets from each Instruction Cell to each Op- 
eration Unit is presented in Figure 5. Rach Arbitration 
m passes packets arriving at its input ports one-at-a- 
time to its output port, using a round-robin discipline t 
resolve any ambiguity about which packets should be sent 
next. A Svttch Unit assigns a packet at its input to one -- 
of its output ports, according to some property of the 
packet, in this case the operation code. 

The Distribution Network is similarly organized using 
Switch Units to route data packets from the Operation 
Units to the Memory Registers specified by the destina- 
tion addresses. A fev Arbitration Units are required ao 
data packets from different Operation Units can enter the 
network simultaneously. 
Since the Arbitration Network has many input ports and 
onlyafev output ports, the rate of packet flov will be 
much greater at the output ports. Thus, a serial rep- 
resentation of packets is appropriate at the input ports 
to minimize the number of connections to the Memory, but 
a mOre parallel representation is required at the output 
ports so a high throughput may be achieved. Hence, 
serial-to-parallel conversion is performed in stages 
within the Arbitration Netvork. Similarly, parallel-to- 
serial conversion of the value portion of each result 
packet occurs vithin the Distribution Network. 

The Operation Units of the processor are pipelined in 

operation code 

destination destination 
I 2 
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&bitration Netwrk to OperAtion Units capable of Per- 
forming the identity and addition operations. If the 
result of thi decision is false, output cells 7 and 8 
vi11 be enabled, and cells 4, 5, and 6 will have their 
gated operands deleted. 

Weuuq Hi ersrchv Vitro-leve 1 

The high level of parallel activity achievable in dats- 
flow processors makes a unique form of memory hierarchy 
feasible: the Instruction Cells are arranged to act AS 
a cache for the most actfve instructions of the data- 
flow program. Individual instructions are retrieved 
from auxiliary memory (the Instruction Memmy) as they 
become required by the progress of computation, and in- 
structions are returned to the Instruction Meavry when 
the Instruction Cells holding them are required for more 
active parts of the program. 

The organization of a basic data-flow processor with 
Iortruction Memory is given in Fig. la. 

Instruction Messmy 

The Instruction Memory has a storage location for each 
poaeible register address of the basic processor. 
These storage locations are organized into groups of 
three locations identified by the address of the firat 
loution of the group. Each group can hold the contents 
of one Instruction CeLL in the formets already given in 
Fig. 10. 
A mmorv comnand packet (a, r&r) presented to the corn-- 
d port of the Xostruction Memory, requests retrfzl 
of an Instruction packet (a. x) in which x is the Cell 
contents stored in the group of locations specified by 
address A. The instruction packet is delivered at the 
retrieve port of the Instruction he-. 

An instruction packet (a, x) presented at the store port 
of the Instruction Memory requests storage of Giicon- 
tmto x in the three-location group specified by address 
a. Hmmver, the storage is not effective untfL a m-ry 
mold packet (q, m) is received by the Inatruetion 

Memory at its conmmnd port, and any prior retrieval re- 
quest has been honored. Similarly, retrieval requests 
are not honored until prior storage requests for the 
group have taken effect. 
We envision that the Instruction Memory vould be de- 
signed to handle large numbers of storage and retrievsl 
.requests concurrently, much AS the input/output facilities 
of contemporary computer systems operate under softvare 
control. 

CeLL Block ODeration -- 
For application of the cache principle to the basic. data- 
flow processor, an Instruction Memory address is divided 
into a w address and a mfnor address, each containing 
a number of bits of the address. One Cell Block of the 
processor is associated vith each possible major address. 
All instructions having the same major address are pro- 
cessed by the Instruction dells of the corresponding Cell 
Block. Thus the Distribution and Control Networka use 
ths major address to direct data packets, control Packets, 
and instruction packeta to the appropriate Cell Block- 
The packets delivered to the Cell Block include the minor 
address, vhich is’sufficient to determine how the PA&et 
should be treated by the CaLl Block. 

Operation and decision packets leaving a Cell Block have 
exactly the same formet AS before. Instruction packats 
leaving a Cell Block have the form (m, x) where m is a 
minor address and x is the contents of an Instruction 
Cell. The major address of the Cell Block is appended 
to each instruction packet as it travels through the AP 
bitration Network. In the same way, memory c-ad 
packets Leave the Cell Block with just a minor addrear, 
which is augnmnted by the mejor address of the Cell Block 
during its trip through the Memry Cmnd Netwrk. 

Fig. 15 shows the structure of a Cell Block. gach In- 
struction Cell is able to hold any instruction vhoae ma- 
jor address is that of the Cell Block. Since euny mme 
instructicmr share A aujor address than there are Calls 
in a Cell Block, the Cell Block includes an Association 
Table which hae en enap (m, I) for each Instruction 
Cell: m is the minor address of the instruction to vhich 
the Cell is aseigned, and f is a Cell status fndiutor 
who#e values have significauce as follows: 
status value -- lseehilq 

&gg the Cell is not assigned to any in- 
struction 

engaRed the Cell has been engaged for the in- 
struction having minor address m, b 
arrival of a data or conrrd Packet 

OccuDied the Cell is occupied by an iMetuCtion 
with minor address m 

the Stack elamsnt of a Cell Block holds an ordering of 
the Iwuuctioa Cells as candidates for dieulacmt of 
their contents by newly activated InstiuCti~. CulY 
Cells in occupied status are candiates for displa-nt. 
Operation of a Cell Block can be specified by giving two 
procedures -- one initiated by arrival of a data or con- 
trol picket at the Cell BLock, and the other activated 
by arrival of an instruction packat from the Instruction 
-rY. 

Rocedure 1: Arrival of A dats or control pa&et (n, y) 
where n is a minor address and y is the packet con- 
tent. 

StCp 1. Doea the Association Table have an entiy vith 
minor address n? If so. let p be the Cell corre- 
sponding co the entry, and go KO step 5. Othervise 
continue with step 2. 

SfCp 2. If the association Table show chat no Instruc- 
cion Cell has status free, go to step 3. Otherwise 
lat p oe a Cell vith status free. Let the Associa- 
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(a) data llnk 

A 
(b) control llnk 

Figure 6. Links Of the basic doto-flow longuoge. 

order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 

Cc I T-gate 

(e) merge (f) boolean operator 

Figure 7. Actors of the basic data-flaw language. 

The Basic Data-Flow Lanarune ---- 
Our success in the architecture of the elementary data- 
flw proces6or led us to consider applying the concepts 
to the l rchftecture of machine6 for more complete data- 
flov languages. For the first step in generalization, 
M have choren. a class of datarflpw programs that corre- 
spond to a formal data-flow model studied by Dennis and 
Forreen [5]. 

The representation of conditionals and iteration in 
data-flow form requires additional types of link6 and 
actors. The types of link6 and actors for the baric 
data-flow language are shown in Figures 6 and 7. 
D6t6 values pa66 through data link6 in the manner pre- 
rented previously. The tokens transmitted by control 
link6 are knovn as control tokens and each convey6 a - -* 
value of either true or false. A control token is gcner- 
ated at a deciderich,~ receiving values from its 
fnput arcs, applies its a66ociated predicate, and produces from the input arc correrponding to the value of the 
either a true or false control token at its output arc. control token received. llny tokens on the other input 

-- are not affected. 

the value true at its control input. It viL1 absorb the 
data tokenFits input arc and place nothing on Its out- 
put arc if a false-valued control token is received. 
Simflarly, thxate will paas its input data token to 
its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 
A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 
output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 
n := 0 
while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 
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order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
form data packets vith the result when it appears. 

A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
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form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 
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it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
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order to allow maximum throughput. The destination ad- 
dress(es) of an instruction are entered into identity 
pipelines of the Opration Units and are utilized to 
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A more detailed explanation of the elementary proce66or 
and its operation is given in (61. We have completed 
designs for all units of the elementary processor in the 
form of speed-independent interconnections of a small 
set of basic asynchronous module types. These designs 
are presented in [7]. 
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its output arc only on receipt of a false-valued token 
on the control input. Upon receipt oftrue-valued to- 

- ken, it will ab6orb the data token. 

A 6rrge actor has a true input, a false input, and a 
control input. It pasacs to its output arc a data token 

(a) operator 

T 

The control token produced at a decider can be combined 
with other control tOk8n6 by means of a Boolean operator As vith the elermntary schcrrms, a link or actor is not 

(Figure 7f), allowing a decl6ion to be built up from enabled to fire unlecls there is no token on any of its 

6impler deCi6ion6. output arc6. 

Control tokens direct the flw of data tokens by means U6ing the actors and links of the basic data-flow lan- 

of T-gates, F-gates, or merge actors (Figure 7c, d, e). mw3e. conditionals and iteration can be easily reore- 
A T-gate pa6ses the data token on its input arc to its seated. In illustration, Figure 8 gives a basic data- 
output arc vhen it receive6 a control coke” conveying flw program for the following computation: 

&ggty, x 
n := 0 
while y c x k 
y:=y+x 

n :=n+l 
F end - 

outout y, n 
*I The control input arc6 of the three merge actors carry 
* false-valued tokens in the inltlal configuration so the 

n inpue value6 of x and y and the conscant 0 are admitted 
a6 initial values for the iteration. Once the6e values 
have been received, the predicate y < x is tested. If 
it is true, the value of x and the new value for y are 
cycled back into the body of the iteration through the 
T-gates and tvo merge nodes, Concurrently , the remaining 
T-gate and merge node return an incremented value of the 
iteration count n. When the output of the decider is 
m, the current values of y and n are delivered 
through the two F-gates, and the initial configuration 
is restored. 

n 
The Basic Data-Flow Processor ---- 
Two problems must be faced in adapting the design of the 
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QuesJons	
  on	
  Dataflow	
  Processor	
  

•  Why	
  is	
  control	
  flow	
  a	
  special	
  case?	
  

•  What	
  is	
  it	
  like	
  to	
  program	
  for	
  this	
  processor?	
  
– Seems	
  tough!	
  

•  How	
  would	
  file	
  I/O	
  work?	
  



Two	
  Fundamental	
  Limits	
  on	
  Dataflow	
  
MulJprocessing	
  

•  CriJcizes	
  dataflow	
  processors	
  for	
  not	
  paying	
  
a\enJon	
  to	
  the	
  memory	
  hierarchy	
  

•  Argues:	
  
1.  OpJmal	
  #	
  of	
  virtual	
  processors	
  limited	
  by	
  size	
  of	
  

top-­‐level	
  cache	
  (swapping	
  context	
  is	
  costly)	
  
2.  Purely	
  local	
  scheduling	
  of	
  processes	
  is	
  doomed	
  
3.  Dataflow	
  idea	
  hides	
  cost	
  of	
  swapping	
  contexts	
  

-­‐	
  should	
  be	
  made	
  explicit	
  



‘Dataflow	
  architectures	
  essenJally	
  replace	
  the	
  small	
  register	
  
number	
  with	
  a	
  large	
  tag	
  that	
  serves	
  to	
  “name”	
  the	
  value.	
  A	
  
realisJc	
  view	
  of	
  the	
  storage	
  hierarchy	
  requires	
  that	
  only	
  a	
  
small	
  number	
  of	
  such	
  name/value	
  pairs	
  can	
  be	
  resident	
  at	
  a	
  
Jme.	
  Once	
  the	
  number	
  of	
  VPs	
  exceeds	
  the	
  capacity	
  of	
  the	
  top	
  
level	
  matching	
  store,	
  the	
  synchronizaJon	
  cost	
  increases	
  
dramaJcally,	
  since	
  some	
  form	
  of	
  overflow	
  store	
  must	
  be	
  
used[12,	
  6]’	
  

•  “overflow”	
  is	
  the	
  two-­‐level	
  memory	
  hierarchy	
  
•  Argues	
  that	
  this	
  sort	
  of	
  switching	
  can	
  be	
  very	
  costly	
  

because	
  processor	
  speed	
  comes	
  from	
  using	
  the	
  high-­‐level	
  
cache	
  effecJvely	
  

Two	
  Fundamental	
  Limits	
  on	
  Dataflow	
  
MulJprocessing	
  



•  The	
  propose	
  another	
  architecture,	
  “Threaded	
  
Abstract	
  Machine”	
  

•  No	
  virtual	
  processors	
  
•  Exposes	
  the	
  “fixed	
  resources”	
  of	
  the	
  actual	
  
processor	
  

•  Exposes	
  scheduling	
  to	
  the	
  compiler	
  to	
  allow	
  
for	
  higher-­‐level	
  planning	
  

Two	
  Fundamental	
  Limits	
  on	
  Dataflow	
  
MulJprocessing	
  



•  What	
  are	
  “thro\ling”	
  and	
  “k-­‐bounding”?	
  
– Help	
  dataflow	
  use	
  the	
  right	
  amount	
  of	
  parallelism	
  

•  Why	
  isn’t	
  the	
  dataflow	
  two-­‐level	
  memory	
  
hierarchy	
  a	
  sufficient	
  soluJon?	
  

•  How	
  does	
  this	
  TAM	
  business	
  work	
  in	
  detail?	
  

Two	
  Fundamental	
  Limits	
  on	
  Dataflow	
  
MulJprocessing	
  



WaveScalar	
  

•  Dataflow	
  architecture	
  that	
  does	
  not	
  switch	
  
contexts	
  as	
  much	
  
–  Keeps	
  data	
  cells	
  in	
  high-­‐level	
  cache	
  for	
  long	
  periods	
  of	
  
Jme	
  

•  Allows	
  users	
  to	
  program	
  in	
  a	
  tradiJonal	
  von	
  
Neumann-­‐style	
  language	
  

•  Proposes	
  a	
  new	
  type	
  of	
  locality	
  –	
  “dataflow	
  
locality”	
  –	
  and	
  exploits	
  it	
  
–  Basically	
  the	
  fact	
  that	
  some	
  data	
  nodes	
  need	
  to	
  talk	
  to	
  
each	
  other	
  more	
  than	
  others	
  



WaveScalar	
  

•  Consists	
  of	
  a	
  physical	
  network	
  of	
  processors	
  
with	
  fast	
  local	
  caches	
  
– Divided	
  into	
  clusters	
  so	
  that	
  dataflow-­‐locality	
  can	
  
be	
  exploited	
  

•  Procedural	
  code	
  is	
  compiled	
  into	
  chunks	
  
•  Each	
  chunk	
  is	
  a	
  dataflow-­‐style	
  node	
  network	
  
– Called	
  a	
  “wave”	
  

•  Dataflow	
  network	
  distributed	
  across	
  
processors	
  



WaveScalar	
  

•  How	
  does	
  the	
  compiling	
  process	
  really	
  work,	
  
in	
  detail?	
  
–  loop	
  unrolling?	
  


