CSE548: Readings for 1/14/13

A Preliminary Architecture for a Basic
Data-Flow Processor

 Basicidea:

— Express a program as data consumer / producer
nodes, wired together

* Exploits parallelism to overcome data latency
— Nodes activate whenever their inputs are ready
* Architecture designed to simulate these nodes

in an efficient way, storing / retrieving state as
needed

input a, b

y := (atb)/x
x := (a*(a+b))+b
output y, x
a b
L2
LI
Al +

A 4
A2 / L4
A 4
x (0} + A4
Lsx L6
v %

Qpeargtion
Uit) *
L 4 - L |
L] & 2
. -]
Operation
Uit m-d e
data opargtion
pockeis pachets
/ Instruction _
e Cell O -
'Y)
Distributian . Arbitration
Network Memary e Network
™ .
et e——
[nstruction
Cell n-\ *
|

Logic and Control Flow =—___

(special-cased)

et

T-gote F- gote merge

Two-Level Memory Hierarchy

operation pochkets

Operotion
Unets
eCIBION
Sl Unete
data degision
pachets pockats
Control
/ Networh
Calin ees
Cell !
“| Bloeck O j "
'
[J
Distribution | ¢ ® & LArbitration
Network < Memory Neotworh
Cali
Block -t v
l r & &
instruction v Memary instruction
”ck."l Command packels

memory commong

pockers
" command
ratriavae store

[nstrucnion
Memory

Questions on Dataflow Processor

* Why is control flow a special case?

 What is it like to program for this processor?

— Seems tough!

 How would file I/O work?

Two Fundamental Limits on Dataflow
Multiprocessing

* Criticizes dataflow processors for not paying
attention to the memory hierarchy

* Argues:
1. Optimal # of virtual processors limited by size of
top-level cache (swapping context is costly)
2. Purely local scheduling of processes is doomed

3. Dataflow idea hides cost of swapping contexts
- should be made explicit

Two Fundamental Limits on Dataflow
Multiprocessing

‘Dataflow architectures essentially replace the small register
number with a large tag that serves to “name” the value. A
realistic view of the storage hierarchy requires that only a
small number of such name/value pairs can be resident at a
time. Once the number of VPs exceeds the capacity of the top
level matching store, the synchronization cost increases
dramatically, since some form of overflow store must be
used[12, 6]’

e “overflow” is the two-level memory hierarchy

e Argues that this sort of switching can be very costly
because processor speed comes from using the high-level
cache effectively

Two Fundamental Limits on Dataflow
Multiprocessing

The propose another architecture, “Threaded
Abstract Machine”
No virtual processors

Exposes the “fixed resources” of the actual
processor

Exposes scheduling to the compiler to allow
for higher-level planning

Two Fundamental Limits on Dataflow
Multiprocessing

 What are “throttling” and “k-bounding”?
— Help dataflow use the right amount of parallelism

* Why isn’t the dataflow two-level memory
hierarchy a sufficient solution?

e How does this TAM business work in detail?

WaveScalar

 Dataflow architecture that does not switch
contexts as much

— Keeps data cells in high-level cache for long periods of
time
* Allows users to program in a traditional von
Neumann-style language
* Proposes a new type of locality — “dataflow
locality” — and exploits it

— Basically the fact that some data nodes need to talk to
each other more than others

WaveScalar

Consists of a physical network of processors
with fast local caches

— Divided into clusters so that dataflow-locality can
be exploited

Procedural code is compiled into chunks

Each chunk is a dataflow-style node network
— Called a “wave”

Dataflow network distributed across
Processors

WaveScalar

* How does the compiling process really work,
in detail?

— loop unrolling?

