Following instructic:»
ycle intervals.

s issued to the functivms:

n this issue.

reserved for a result by &

to establish, the instriu
may be issued at mims
ons.
‘eading to register Uy i
ISSUE command is givess,
| functional unit. Mot
1ats, however, the secomd
Following this mines
'ond the second parcel of

ringing instructions frois
“his is true since the oniy
1 the housekeeping tasks
actually issuing any. A
show the usage of these

iction in U1
of 1st instruction
t instruction in U2

struction is 30-

a 30-bit instruction fol-
2 of the SKIP commands
lling and skipping steps.
ruction stack is compli-
slication arises from the
" the following:

SCOREBOARD 125

foop = A conditional Branch, condition met, in the stack.

Jump ° —An unconditional Branch, or condition Branch, condition met, not in
the stack.

No Branch—A conditional Branch, condition not met.

To test for the destination in the Stack, the contents of the program ad-
register, P, must remain set equal to the address which contains the
Wranch instruction. Therefore, P is not changed until after the “third
. arcel” instruction is issued, that being the last possible location of a 30-bit
..ranch instruction in a word.
An additional problem of the Branch is the condition of the issue control
wchanism following a “fall-through,” or no-branch, condition. Instruc-
uions, following the Branch instruction in the same instruction word, are
neld in the registers Ul and U2 after the issue of the Branch instruction.
.hen, if the branch condition is not met, these instructions are brought to
" 1$SUE in the normal manner. As a result, the control over the instruction
iack output must track directly with the ISSUE command.

D. SCOREBOARD

A unique and essential part of the 6600 Central Processor control is the
. Unit and Register Reservation Control, or the Scoreboard. What is in-
tended by this design is the simultaneous operation of functional units ona
- single instruction stream. Many operations in these units are quite inde-
~ pendent of others, due to the relative simplicity of the instructions. Itis
often particularly apparent that a sequence of arithmetic or logical opera-

~ tions can be executed simultaneously with a sequence of control or house-
~ keeping operations. Again, examples will be shown in which considerable
overlap is possible even in the single sequence.

One major premise of the Scoreboard design is that each new instruc-
. tion be issued to its functional unit as early as possible in order to allow fol-
. lowing instructions to be issued. In some cases, an issued instruction may
- be held up after issue awaiting input operands, while a following instruction
may proceed without restraint.

Three types of conflict can be described in the usage of functional units
and registers, which must be resolved by the Scoreboard.

1. First Order Conflict
This is a conflict between instructions which require the same func-

tional unit or the same result registers.

Example one. Functional unit conflict
X6 = X1 + X2
X5 = X3 + X4

126 -

CENTRAL PROCESSOR CONTROL

Both instructions use the Add functional unit, a situation in which
the second instruction must wait for the first to be completed.

In the case of multiply or increment instructions, two units are pro
vided reducing the probability of this conflict.

Example two. Result register conflict
X6 = X1 + X2
X6 = X4 % X5

Both instructions call for register X6 for the result, another situation
in which the second instruction must wait for the first to be com.
pleted. Although the example shown is a trivial case, it will be seen
in later discussion that many nontrivial cases are possible.

The control over this conflict is simply that of not issuing the second
instruction until the first is completed. At issue time, the condition
must be determined early enough to stop the ISSUE command.

. Second Order Conflict

This conflict occurs when an instruction requires the result of
previously issued, and as yet uncompleted, instruction as a source
or input operand.

Example: /
X6 = X1 + X2
X7 = X5/X6

Register X6 in this example is used as the resuit of the Add instruc-
tion and then as the divisor in the Divide instruction. The second
instruction is issued but held in the Divide Unit until result X6 is
ready.

The second order conflict does not halt issuing of instructions but is
resolved by the scoreboard control over the functional unit.

. Third Order Conflict

This conflict occurs when an instruction is called on to store its
result in a register which is to be used as an input operand for a pre-
viously issued, but as yet unstarted, instruction.

Example:
X3 = X1/X2
X5 = X4 * X3
X4 = X0 + X6

In this example the third order conflict on the use of register X4 is
a direct result of a second order conflict on register X3. Because the
instructions are issued on consecutive minor cycles and because the

unit, a situation in which
irst to be completed.

uctions, two units are pro-
flict.

1e result, another situation
it for the first to be com-
trivial case, it will be seen
ases are possible.

it of not issuing the second
1 issue time, the condition
the ISSUE command.

1 requires the result of a

id, instruction as a source.

: result of the Add instruc-
2 instruction. The second
ide Unit until result X6 is

suing of instructions but is
1e functional unit.

1 is called on to store its
n input operand for a pre-
uction.

n the use of register X4 is
_register X3. Because the
10r cycles and because the

SCOREBOARD 127

Add function is much faster than Divide or Multiply, the addition is
accomplished and ready for entry in the result register X4 well in
advance of the start of Multiply. The second order conflict on
register X3 causes the Multiply to hold until that input operand is
ready. This holds up the entry of register X4 into the Multiply
Unit also.

Third order conflicts are resolved by holding the result in the func-
tional unit.

Scoreboard control thus directs the functional unit in starting, obtain-
ing its operands, and storing its result. Each unit, once started, proceeds
independently until just before the result is produced. The unit then sends a
signal to the Scoreboard requesting permission to release its result to the
result register. The Scoreboard determines that the path to the result reg-
ister is clear and signals the requesting unit to release its result. The releas-
ing units reservations are then cleared, and all units waiting for the result
are signaled to read the result for their respective computations.

DESIGNATORS

The Scoreboard gets its name from the number of designators and
identifiers used in performing the job of reservation control. Figure 75 on
page 129 diagrams the number of designators associated with one fune-
tional unit. Shown is the Add Unit which is given the number 17 with func-
tion designators, reservation identifiers and flags as described below.

Fm —Function to be performed (ADD)

Fi —Designates register Xi for result

Fj —Designates register Xj as addend

Fk —Designates register Xk as augend

Qi —ldentifies the functional unit, by number, producing
a result to be used as addend

Qk —Identifies the functional unit, by number, producing

a result to be used as augend

Read Flag j —A single-bit flag indicating that the addend is ready
Read Flag k—A single-bit flag indicating that the augend is ready

Xi —ldentifies that the Add Unit, number 17, has reserved
register Xi for its result. (Bi and Ai for other
units)

All functional units are assigned a number to be used in the identifiers Q
for the units, X for the operand registers, B for the increment registers, and A
for the Address registers. These numbers are assigned as follows:

128 CENTRAL PROCESSOR CONTROL

Designator (Octal) - .. Functional Unit: ;57

00 © " Branch

01 =+ Increment1

02 =i Increment 2

03 - Shift

04 ~" Boolean

05 , Divide

06 “ 47 Multiply 1

07 Multiply 2

10 G - B ‘
11 . Read Storage Channel1 = =
12 .77 . Read Storage Channel 2= ™
13" =% Read Storage Channel 3 "

14 %" Read Storage Channel 4
15w Read Storage Channel 5

16 i Fixed Add

17 =7 Add

The Scoreboard operation is described in two parts; first, placing reser-
vations, and second, directing the read operand and store result operations
of each unit.

PLACING RESERVATIONS

This portion of the Scoreboard operation is executed in four sequential
steps at the time an instruction is issued. These steps are as follows.

1. Reserve the functional unit, Set its “busy” flag, and enter the operating
mode (fm). : L

2. Set the register designators in the functional unit, Fi, Fj and Fk.

3. Enter any previous result reservations on the entry operands, Qj and Qk.

4. Set the result register identifier, Xi, Bi, or Ai with the functional unit number.

Step one, SET UNIT BUSY, is rather straightforward except as the deter-
mination of unit “busy” is made.. As an example, two consecutive instruc-
tions to the same unit must be handled such that the second instruction
ISSUE is disallowed. Since these are one minor cycle apart, the setting of
unit “busy” flag by the first instruction followed by the test for busy by the
second instruction must be accomplished in one minor cycle.

Step two, SET F, transfers the i, j, and k fields of the instruction to the
designators of the functional unit. These are then used to designate operand
and result registers to be used by the unit. Figure 76 shows how these desig-
nators are transferred from U1l to U2 and then to the respective functional
units.

. Notice that the Branch instructions cause a right shift of the desig-
nators i and j in register Ul to j and k respectively in register U2. This ma-

I Unit

“hannel 1
Channel 2
Zhannel 3
Channel 4
channel 5

parts; first, placing reser-
ad store result operations

xecuted in four sequential
teps are as follows.

and enter the operating

%, Fj and Fk.
operands, Qj and Qk.
1e functional unit number.

rward except as the deter-
, two consecutive instruc-
at the second instruction
:ycle apart, the setting of
y the test for busy by the
inor cycle.

5 of the instruction to the
used to designate operand
76 shows how these desig-
the respective functional

1 right shift of the desig-
in register U2. This ma-

SCOREBOARD 129

INSTRUCTION
ISSUE [=—-RESERVATIONS
CONTROL
SET F
CENTRAL INSTRUCTION - SET Q
MEMORY STACK U REGISTERS SET X-B-A
ISSUE
MINOR CYCLE / INSTRUCTION
ISSUE RATE
{(MAXIMUM)
ISSUE SCOREBOARD
INSTRUCTIONS DESIGNATORS
SET | l I] I l_"]i /
FLAGs Q F MuLTIPLY 1 F
£T k REQUEST
set [] I REQUEST
OPERANDS ~ RESULT
GO RESERVATIONS
STORE
READ OPERANDS X_B-A | ENTRY GO STORE
CONTROL SCOREBOARD
READ_OPERANDS OPERATING [EXIT GO_READ CONTROL
REGISTERS | CONTROL
| I T o SET FLAGS
OPERANDS RESIULT READ
REQUEST
SET j I—— RELEASE
C 1 0 | o0)
READ (F2 F
FLAGS Q F
set [] | Li]
' ISSUE
INSTRUCTIONS

neuver is convenient to allow a direct usage of the Increment and Fixed Add
Units as partner units to the Branch unit for conditional branch instructions.

Step three in placing reservations, SET Q, is essentially a copying opera-
tion from one of the 24 XBA identifiers related to the 24 operating registers.
The identifier contains the functional unit number of the unit which has
reserved that register for a result. Since there are usually two Q identifiers,
one for each input operand, there may be two independent settings. See
Figure 77. Following this step, the essential link between a previous result

and an input operand is established.

Step four, the final step in placing reservations, SET XBA, places the

FIGURE 75 Reservation designators.

130 CENTRAL PROCESSOR CONTROL

' Fi
WX WEM
W=ex P TR INCR I
PR o u2=5x,__F A
L . MEM
N 7 3
% = X INcR 11
2 A
5 @ X[SHIFT.
2 = X TBOOLEAN
= z 4 X [DIVIDE
g = i(29,2',22) U7 T
) |SSUE X XULT T
4 Ex 2. 5% X TAD
& S y* = OX —X [LONG ADD
U1 [O dm_ Fj
T S y
f — 7 2 2 BINCR I
— ISSUE - E i
@ INCR IT
" ¥ "z B 2
1 ISSUE — x 24,25,26 4 SHIFT
X [BOOLEAN
i i X1 DIVIDE
X TMULT I
|] : X _[MULT_IL
. M~ . & ADD
! ! < TLONG ADD
- >°\ | s , ; Fi
- ‘ B_[INCR
K ~a K ‘ - . B
X
|| - x
ISSUE . k(2°, 21, 22) e
: -OX X | M
ISSUE-OX % ISSUE- OX XMy
.) X
X

FIGURE 76 SetF -

functional unit number in the identifier associated with the result register.
Translations of the function to be performed are necessary in order to select
the correct register group, X, B or A, along with the correct register in the
group. Note that the unit numbers were chosen such that only two bits are
necessary for the B and A registers, whereas four bits are needed for the X
registers. Only three units cause results in B and A registers, whereas up to
ten “units” cause results in X registers. This, of course, includes the Read
Storage channels into registers X1 through X5. The unit number generator
produces the necessary unit numbers to be entered. In the case of Read
Storage instructions, which produce a new result in registers Al through A5,
the A identifier is set with the Increment Unit number, and the partner X
identifier is set to the Read Storage Channel number. See Figure 78.

© SET READ FLAGS

s After issuing the instruction and placing r%ervatiohs, the Scoreboard
proceeds to control the functional unit in reading operands and storing re-

sults. The first activity
of input operands. The
be read. Both Read Fle

The conditions for
fier associated with tha:
functional unit identifiec
operation with the inpu
second order conflict is 1

. X6
X7

When the second i
tions, SET Q, causes the
the Qk identifier for the
Add Unit, having been p

When the Add Un

’ U2
-
w
ey wl
2 3
L
E i3
] E
(52} =
=z o)
<L
o
'_
Ui
~— ISSUE
f f
- ISSUE -—

ISSUE - OX ISSUE - OX

Fi

=
m
<

INCR I

=
<

INCR II

SHIFT
BOOLEAN
DIVIDE

YK X < [>< | B={ Qo) < T 2> G0)<

LONG_ADD
Fi

INCR I

INCR II

>/ 00 <[1>

SHIFT
BOOLEAN

P X P[>
=<
C
5
H
H|

LONG ADD

Fk

NCR I
NCR II
BOOLEAN
DIVIDE

2|
[l femi
o
H
[

XXX X[<} <[

ith the result register.
ssary in order to select
correct register in the
t that only two bits are
s are needed for the X
egisters, whereas up to
irse, includes the Read
unit number generator
In the case of Read
gisters Al through A5,
ber, and the partner X
See Figure 78.

ations, the Scoreboard
rerands and storing re-

-/ SCOREBOARD 131

sults. The first activity in the functional unit is the simultaneous ‘“reading”

of input operands.

be read. Both Read Flags must, therefore, be set. f
The conditions for setting a Read Flag are determined by the Q identi-

The unit may not start until both operands are ready to

- fier associated with that input operand and by the Release signal from the
 functional unit identified by Q. The effect is to link the result of the previous
- operation with the input operand. The example used in the description of
~ second order conflict is repeated here to show the effect.

X6 =X14X2 |___,| Ry
 x7=X5/%6 p--——i

When the second instruction is issued, the third step in placing reserva-

" the Ok identifier for the divisor.

_ tions, SET Q, causes the unit number found in identifier X6 to be placed in
The unit number is, of course, 17 for the "
- Add Unit, having been placed there at the time of issue of the first instruction.

When the Add Unit requests release and receives permission, a Release

S
C
~

~ 3 gl S
5 = 2| UNIT_BUSY INCR T
- @ - INCR 11
g = SHIFT
] E BOOLEAN
@ 5 < [DIVIDE
& MULT T
& , MULT 1T
SELECT LONG_ADD
U 1SSUE Xj, Bi, Aj XBA-DES. L LADD
] [[Txxew | 20 X
f f : . | + -k
z|® 2&) T INCR T
— ISSUE ; £ 3 INCR_IT
~ X Xk SHIFT
m e m % X2— |+ BOOLEAN
] : e L < ; < [DIVIDE
L / MULT I
A : - ~ . . MULT 1T
' !) 50_]] i N LONG ADD
- | © Bt 1| ADD
: M B2 ~
j o 53
"\ B3 s gk|
- :73\ | B5 i
- B
k -Q K B7
|| *?\ | =
ISSUE. P e A
ISSUE - OX... i i A2 Aj

ISSUE - OX

FIGURE 77 SetQ

132 CENTRAL PROCESSOR CONTROL =~

SCBD

£ .'?: = : ‘Uz ISSUE
— — - b XXXI
= 7] a5 e xx1X
E) =) ylmur 1 (22 O
12l B @ S5 e xixx
w g BNCR I |25 O XX
s S e e o am—
: 2 = Elncr 17|55
e 5| sceo |5 ST
. g ISSUE T
v —T |
ot ISSUE XLATE] UZ=5X
B] _‘ SELECT
N ONLY 5X 4
f ? f f Xi +
— ISSUE — | : Bi >
m ~? m m ; Al
1 ssee H|H o
i ; N i . is0=7
L !
; T J j=0-7)
)\\ e
- l— L ol
g et T Tara———
e | XXi o 1=
— \~?\\ : AQ
ISSUE - 8. A

O Al-A7 A2

ISSUE - OX". ISSUE - OX

All Release 51gnal hnes are shown as they appear to the divisor input
to the Divide Unit. The case in point is the Release signal from the Add .
Unit, which AND’s with the translation of the unit number held in Qk for the
Divide Unit. Since the Qk identifier can hold only one unit number, only
one Release signal is selected. Assuming the Q identifier is set to zero, mean-
ing no wait is necessary, the Read Flag is set immediately after issue.

Figure 79 also shows how the Release signals are actually sent to all
Read Flag networks. The example of Release for the Read Storage Chan-
nel 5 is shown going to the Q translation for unit number 15 on all nine units.
This example appears to skip some Read Flag circuits, but it should be re-
membered that the X Registers are not connected as input operands in every
combination to all units. The k operand in the Increment Units and the

~j operand in the Shift Unit are noteworthy.

When both Read Flags are set on any unit, the unit may be expected
to start. However, it should be clear that several units could reach this
condition simultaneously. For units which share data trunks (Chapter V),

DIVIDE %

Lai

]

DIVIDE

[@ DESIGNATORS Qk

H
hag
g —
© e
| &=
w|f =8
ml.l
-z
8
6——(%
o
o
2]
o
<
o
%)
8
S o
g O
=~
%]
2 @]
< ©
m -—
o
o
2]
g
0

w

®

<t

-
cx. o
g Z
s> &
aEkE
oFax?”

w
498
JZ @<
A O

}_

7]

D=

= !

Sl

cjx

FUNC UNIT

XBA-DES
(od]
=0 glT=al
ax " =0
XX 00 5
XX gH w oH
po— =11 Jg s o9
X0 a o b g
X1 oo or
X2 oW =4}
wao
ox X3 xo ?5 xo
- 5 X Y @ &
X6 =S
= (o}
+ xi-x7 2L]) { - 3‘9
T Wil
O] w N S
li=mal S o e
BO & B
BO Bi T <
B2 _
+ Bi-B7 B3 o (o] g
B4 — €
B5
B6 -
B7 3
XXX1 N =0 3
xax £ Le—n & —
- AQ W 3 I
Al S g .
e p-A7 A 3 P e
o Iz
A3 s © [
5 5 8 &
Y3 a & l— T
zZ [
A7 . = ¢ — 2
o l; ~ 8
, g = —
» Unit. This is shown in & o —
& 0
C @ <
pear to the divisor input a -
ease signal from the Add o] T ,
. o
number held in Qk for the 4
. 1
ly one unit number, only §§> g
tifier is set to zero, mean- JEE,
. . ul
diately after issue. -28%
q<q
ls are actually sent to all >
- the Read Storage Chan- BI2
imber 15 on all nine units. §§
cuits, but it should be re- ~ = —
. . = — <Z(Hl 1o X X x X X
1s input operands in every ST =1 I A I A O A O A
: Q el |l f2f 12] 15 |5 2| |alg
Increment Units and the zl9| [g] 1Z] 18] 1Z] 12] 12] 18] |18la
2 Zl o @ 1o B B 3 €92 = = = =
the unit may be expected FIGURE 79 Set read flags divide unit.

-al units could reach this
data trunks (Chapter V),

134 CENTRAL PROCESSOR CONTROL
this would mean simultaneous traffic on the trunk. ‘Thei"efore, the data
trunk priority condition also controls the start of the unit.

RELEASE

An additional factor in the Scoreboard control has to do with the Re-
lease signal. The release of the result to the result register would be un-
complicated were it not for the third order conflict and the result data trunk
conflict. The third order conflict described before is repeated here.

X3=X1/x2 b——f
X5 =X4#X3 f---pb——
;- X4=X0+X6 p>--4 !

In this example the third instruction is completed well in advance of
the first two but cannot release its result to register X4 until the previous
Read is accomplished.

Close examination of the example will show that the Read Flag for
Multiply j input, corresponding to the X4 input, is set and simply waiting for
the k Read Flag. The k Read Flag is held up by a second order conflict.
Note that the third instruction would not be issued if the Multiply | input
Read Flag were not set since that would indicate a previous result to register
X4 not yet completed. ; S s

This is a form of proof that a Read Flag can be cause to hold up the
Release signal. Each register can be described as “all clear” if no Read Flags
are set corresponding to that register. To generate the All Clear for each
register, the Fj and Fk designators are translated to the register number and
ANDed with the associated j or k Read Flag. ..

These ALL CLEAR signals for each register are ~th’ét‘1'combined with the

" translation of the result designator, Fi, for the unit to determine whether the

unit should be allowed to release its result.

Assuming that the unit is held back, some time later the Read Flag will
be cleared as a result of its unit starting, thereby clearing the flag. The
entire case is presented in Figure 80. : o e

E. REGISTER ENTRY/EXIT CONTROL

trol over data entering and leaving the registers is
provided by a rather simple system. Entry to the X, B or A registers is a
direct result of the Release mechanism described in the section on the Score-
board. A “GO STORE” signal is generated by the release mechanism, direct-
ing the requesting functional unit to transmit its result to the registers via
its result trunk. At the same time, the result designator, usually Fi, is also
sent to the register end of that trunk. This designator is translated and con-
trol is initiated to clear the result register and transfer the data from the

GO STORE
TRUNK

PRIORITY
REQUEST
RELEASE| f
FF
ALL CLEAR

tcLear

i

TRANSLATION

trunk to the correc
the fixed-time natu
and data trunks. I
isters X, B, and A.
exchange jump for i
isters used to hold t
order conflict case ¢
In a fixed, syn«
exit control provid
trunks are controlle
: For the Incret
may specify an A, E
with the k designar
READ Aj, and GO RI
For the Mult
are needed, GO RE/
Three control
pair because of the
All GO READ
described previousl

12 ORGANIZATION OF THE 6600

= PP2

PRINTER CH4=
1

! CENTRAL CENTRAL
STORAGE PROCESSOR

—_—————

CH8

~—=—- PROGRAMMED CONNECTION

PERIPHERAL . PERIPHERAL
CHANNELS PROCESSORS

FIGURE 3

C. CENTRAL PROCESSOR—CPU

_ The Central Processor of the Control Data 6600 Computer is based on

a hlgl} degree'of functional parallelism. This is provided by the use of many

f?qnctlonal units and a number of essential supporting properties, as shown in
1gure 4.

The ten functional units are independent of each other and may operate

10 ADD
FUNCTIONAL

UNITS MULTIPLY

MULTIPLY
DIVIDE
FIXED ADD
INCREMENT

24
REGISTERS _ | INCREMENT

12 10
¢~ PERIPHERAL |~ PERIPHERAL CENTRAL
CHANNELS PROCESSORS STORAGE BOOLEAN

SHIFT
BRANCH

INSTRUCTION
STACK SCOREBOARD

_ CENTRAL PROCESSOR
FIGURE 4

simultaneously. Ina ty
functional units will be i

+ Floating Add
Floating Multiply (2)
+ Floating Divide

» Fixed Add

* Increment (2)

» Boolean

« Shift

* Branch

.

Twenty-four regist
these are assigned as o]
Eight are assigned as in
are assigned as address
metic functions are exec
turned to the registers.
efficient instruction pac.
eighteen-bit registers pr

Instructions in the
dress for each of two o]

contains two operands, |

The use of registe
handling of partial or ins
be used for these values.
eration would be requir

Instructions are lo:
under control of a Pro;
ceeds, up to a maximun
some circumstances, the
memory. An obvious c

Locatic

Program Addr
Program Addr
Program Addr
Program Addr
Program Addr

In this example a
location n + 4 calls for
cumstances, this entire
The program can loop
any storage references

