
RETROSPECTIVE: 

Lockup-Free Instruction Fetch/Prefetch Cache Organization 

David Kroft 

14 Kings Inn Trail 
Thornhill, Ontario 

L3T lT7 

II3 ow does one begin to describe the dreams, 
thoughts and fears that surround a discovery of a 
different view of some old concepts or the employ- 
ment of old accepted methodology to new ave- 
nues? It is probably best to start the account by 
describing the field of Computer Architecture, in 
particular, the area of hierarchical memory design, 
that was prevalent around and before the time the 
ideas came to light. 

In the mid seventies, I was fortunate to be 
selected as one of the members of a design team to 
design and develop the central processing unit 
(CPU) for a low end model of Control Data’s new 
line of main frame computers. Since integrated 
logic circuit components were now readily avail- 
able and, consequently, computer hardware was 
much cheaper, the new line would feature a highly 
expanded instruction set - the move in vogue at 
that time was toward complex instruction set com- 
puters (CISCs). Note, that due to the price of hard- 
ware, all former CPUs were of the reduced or 
minimum instruction sets varieties (RISCs). The 
fall of the cost of hard logic and memory, also, 
allowed for the implementing of the new hierarchi- 
cal memory design concepts into these next com- 
puters to be designed, developed and 
manufactured. Control Data, or should I say, the 
technical visionaries of Control Data at that time 
had differing opinions as to the advantages of hier- 
archical memory design. I recall one of these 
visionaries telling me the following: “We, at Con- 
trol Data, have the know-how to design central 
memories big enough, fast enough and put them 
close enough to the CPU that memory hierarchy 
would never be needed.” I was, however, able to 
convince at least a sufficient number of these tech- 
nical gurus that a Cache Memory would be advan- 
tageous to the new CPU so that I was given the 

assignment to design the Cache for this low end 
model of the line. The fact that IBM was now incor- 
porating Caches in all their new designs, obvi- 
ously, helped me considerably with my 
persuasion. Note that there were other later com- 
puters designs at Control Data that did not have 
Caches -believe it or not. 

So, there I was in the mid seventies, having 
never designed anything real up to then - I had 
accomplished a lot on paper - given with the 
assignment to solely perform the system design 
and logic design implementation of a Cache for 
this new low end model with its extended instruc- 
tion set. I say, solely, because no Cache had ever 
been included in any of the Control Data designs 
previously and there were a number of “Doubting 
Thomases.” Due to the opposition or possibly since 
I had still had the courage and adventure of youth 
- I was only in my early thirties, I embarked on a 
very ambitious design approach. 

First, I included most of the latest Cache con- 
cepts that were contained in the literature. I 
decided on a set associative organization with 128 
sets (rows) of four or eight blocks (lines) per set 
and a block size of 32 bytes (4 B-byte CDC words). 
In addition, write through and a least recently used 
(LRU) replacement algorithm were chosen. These 
selections were made after much study and consid- 
eration of the simulation data in the literature and 
with the restrictions imposed by the then available 
memory components (a fast 256 by anything was 
not on the horizon while a fast 128 by 1 was there.) 
The two set sizes (columns), (4 and B), allowed for 
the two required Cache sizes of 16K and 32K bytes. 
In retrospect, the complexity (i.e. additional cost) 
of the additional associativity for the marginally 
higher hit rate for the larger Cache was the only 
decision I regret. 

20 



Next, I decided to incorporate the additional 
cost of having the Cache’s address space be an 
unique virtual address space thereby putting the 
cache closer to the processor; the translate looka- 
side buffer (TLB) would now operate in parallel 
with the Cache rather than before it. Note that the 
Cache only needs the real memory address from 
the TLB on a miss. Lastly, just before the miss over- 
lap feature (from paper) inclusion in the design, I 
discovered a way to allow for the graceful degra- 
dation of the Cache via the disabling of any one of 
the four 8K bytes sections at a time. The above 
required just the need to determine the maximum 
LRU of the enabled blocks in a set when block 
replacement was needed. 

Recall that this new line of machines envi- 
sioned by Control Data had an extended instruc- 
tion set. In fact, the instruction set included almost 
all the instructions of all formats that were present 
in one machine or another. Many of the instruc- 
tions made more than one reference to memory. At 
first, I thought, how can one order the memory ref- 
erences so that the first references always produce 
a hit in the Cache to prevent impact on the follow- 
ing ones. At the same time, I saw that the Cache 
had effectively two input ports, one from the exe- 
cution unit and one from the instruction unit. Why 
should the hit/miss of one port impact the other, I 
reflected? I was told that a two port Cache with 
each port totally independent of one another was 
an open problem with no solution known as yet 
and the route most manufacturers were taking to 
circumvent this two port problem was to have two 
Caches, one for each unit - these units, it was 
known, each had different classes of data. There 

were, now, two cases for miss overlap or for Cache 
hit(s) being processed while a Cache miss was out- 
standing. How can this be accomplished? 

I associated the above problem with everyday 
occurrences. I pondered “what if” there was a 
queue of people waiting for service from one par- 
ticular individual and this individual could service 
these people either with one of two possible sce- 
narios - a long time consuming service due to the 
need for additional parts, information, etc. or a 
short quick response. The solution for minimum 
wait time would not be solved by reordering the 
people in the line; a second individual is required. 
How should this second individual help? The sec- 
ond individual would back up the first by going to 
get the necessary parts, information, etc. while the 
first continued to service the queue. The above 
thought process permitted me to see a vision for 
overlapping misses. I will save all the relevant 
information about a miss, forward a request to a 
“block getting unit” for the block needed and then, 
continue processing the input service requests. A 
block receiving unit will interrogate the relevant 
information about a miss, forward the response to 
the waiting individual and update its own unit, the 
Cache buffer, if advisable. The block getting unit 
and the block receiving unit are this second indi- 
vidual. A light has come on; the long process of 
determining all the details and workings must 
now be done to determine viability. Fortunately, all 
fell into place, if not initially, then during debug. 

As indicated at the beginning, a discovery is 
just a different look at some old concepts or the use 
of some old concepts for new mechanisms. Mine 
was the latter. 

21 


