
548
Lecture 7 - Branch Prediction

Saturday, December 10, 11



Why predict branches?

• Pipelining

• w/o prediction branches would cause 
stalls

• Why not?

Saturday, December 10, 11



What is a prediction?

• Address of next instructions (BTB)

• The prediction (a bit!)

• Confidence

Saturday, December 10, 11



When do we “update” our predictor?

• At the end

• Speculative update

• Global history register

• Counters?

Saturday, December 10, 11



What do we predict on?
• type of branch

• history of global branch outcomes

• address of the branch

• direction of the branch

• inputs to the branch

• feedback from previous branch outcomes

• 2 bit saturating counters

• history of outcomes for that branch

• TTTNTTNNTNNT

Saturday, December 10, 11



Can we do better?

• Increase branch counter memory

• Remove interference

• Profile-driven ISA hints

• Speculative threads to compute branch outcomes

• Get rid of the branches entirely, guess the outcome of computation

• Re-do genetic paper w/wider language

• Use program structure

• Not free:

• More time, more power, more area, more design complexity

Saturday, December 10, 11



Your questions
• How would you combine predictors, identifying branches as one type or 

other?
• Static (‘always take back branches’ or something more complicated?) 

seems to win at least 50% of the time; is this good?
• 
 •
 Non-choosing branch predictors?
• Did this case study of genetic programming influence later jump target 

prediction? (there was little previous research)
• Danger of overtraining the predictor to the programs used for fitness 

function?
• Today do predictor designs in commercial processors use the results of 

learning algorithms?
• What (approx.) are typical jump target, load/store address prediction, 

and other accuracies these days?
• Do processors continue to do more speculative execution in last 4 years?
•Do current cache sizes alleviate most of the issues with correlation?
•How does their oracle mechanism for selective history work? Is it possible 
to simulate such a device in hardware?
•Are modern branch predictors based more on PA or GA prediction?
•How well do the test cases actually reflect generic, common use, 
programs?
•How well do current genetic algorithms do generating branch predictors?
•Can this notation be modified to handle multiple simultaneous 
predictions?
•Is this notation or something similar used at present? Does it have 
significant use outside of providing a basis for creating genetic algorithms?
•How easy are the generated algorithms to implement in hardware?
•The Evers paper talks about predictors which are specialized to certain 

Saturday, December 10, 11



Your questions
• Has anybody actually used this approach to build a real predictor?
• Dependence prediction is missing in the list of of the predictors
• De we use way-predictors?
• How do you decide on-the-fly which previous branches are the most 

important?
• In a hybrid predictor, how do you determine which of the two predictors 

to trust for a given branch?
• How much are we limited by space in processor to store all of this data 

during execution?
• 
 •
 Can this method come up with more complex concepts such as 

eliminating uncorrelated branches from history (similar to the idea from 
the Evers paper)?

• Does the random starting point affect the outcomes?
• They talk about using previous opcodes as one possible input to 

predictors, but did they do this in their trials?
• The experiments use a number of different benchmarks. What 

characteristics differentiate these benchmarks and how do these 
characteristics affect the type of branch predictor needed?
• Are there other types of good branch predictors that are not 

mentioned in this paper?
• Did they (or anyone else) continue the genetic programming experiment 

with more operations and fundamental units?
• If so, did they find that any additional types of operations or inputs 

have good effects? (i.e. Can we use other dynamic inputs other than 

Saturday, December 10, 11


