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It executes most instructions in a single, short cycle.
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A general trend in computers today is to increase the
complexity of architectures commensurate with the in-
creasing potential of implementation technologies, as
exemplified by the complex successors of simpler ma-
chines. Compare, for example, the DEC VAX- 11 to the
PDP-1 1, the IBM System/382 to the System/3, and the
Intel iAPX-4323'4 to the 8086. The complexity of this
class of computers, which we call CISCs for complex in-
struction set computers, has some negative conse-
quences: increased design time, increased design errors,
and inconsistent implementations.5

Investigations of VLSI architectures indicate that the
delay-power penalty of data transfers across chip bound-
aries and the still-limited resources (devices) available on
a single chip are major design limitations. Even a million-
transistor chip is insufficient if a whole computer has to be
built from it.6 This raises the question of whether the ex-
tra hardware needed to implement a CISC is the best use
of "scarce" resources.

The above findings led to the Reduced Instruction Set
Computer Project. The purpose of the RISC Project is to
explore alternatives to the general trend toward architec-
tural complexity. The hypothesis is that by reducing the
instruction set one can design a suitable VLSI architecture
that uses scarce resources more effectively than a CISC.
We also expect this approach to reduce design time, design
errors, and the execution time of individual instructions.

An earlier version of this article, entitled "RISC I: A Reduced
Instruction Set VLSI Computer," appeared in the Proc. Eighth
Int'l Symp. Computer Architecture, May 1981, pp. 443-457.

Our initial version of such a computer is called RISC I.
To meet our goals of simplicity and effective single-chip
implementation, we somewhat artificially placed the
following design constraints on the architecture:

(1) Execute one instruction per cycle. RISC I instruc-
tions should be about as fast and no more complicated
than microinstructions in current machines such as the
PDP-ll or VAX.

(2) Make all instructions the same size. This again
simplifies implementation. We intentionally postponed
attempts to reduce program size.

(3) Access memory only with load and store instruc-
tions; the rest operate between registers. This restriction
simplifies the design. The lack of complex addressing
modes also makes it easier to restart instructions.

(4) Support high-level languages. The degree of sup-
port is explained below. Our intent is to optimize the per-
formance of RISC I for use with high-level languages.

RISC I supports 32-bit addresses, 8-, 16-, and 32-bit data,
and several 32-bit registers. We intend to examine support
for operating systems and floating-point calculations in
the future.

It would appear that these constraints, based on our
desire for simplicity and regularity, would result in a
machine with substantially poorer code density, poorer
performance, or both; but in spite of these constraints,
the resulting architecture competes favorably with other
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microprocessors and minicomputers. This is due largely
to a scheme of register organization we call overlapped
register windows.

Support for high-level languages

Clearly, new architectures should be designed with the
needs of high-level language programming in mind. It
should not matter, however, whether a high-level lan-
guage system is implemented mostly by hardware or
mostly by software, provided the system hides any lower
levels from the programmer.7 Given this framework, the
role of the architect is to build a cost-effective system by
deciding what pieces of the system should be in hardware
and what pieces in software.

The selection of languages for consideration in RISC I
was influenced by our environment; we chose "C" be-
cause of its large user community and, hence, con-
siderable local expertise. Given the limited number of
transistors that can be integrated into a single-chip com-
puter, most of the pieces of a RISC high-level language
system are in software, with hardware support for only
the most time-consuming events.

To determine what constructs are used most frequently
and, if possible, what constructs use the most time in
average programs, we first looked at the frequency of
classes of variables in high-level language programs. Data
collected for Pascal and C are shown in Table 1.

The most important observation was that integer con-
stants appeared almost as frequently as arrays or struc-

tures. What is not shown is that more than 80 percent of
the scalars were local variables and more than 90 percent
of the arrays or structures were global variables.

We also looked at the relative dynamic frequencies of
high-level language statements for the same eight pro-
grams; average occurrences over one percent are shown in
Table 2. This information does not tell what statements
use the most time in the execution oftypical programs. To
answer that question, we have to look at the code pro-
duced by typical versions of each of these statements. A
"typical" version ofeach statement was supplied by Wulf
as part of his study into judging the quality ofcompilers.8
We used C compilers for the VAX, PDP-l 1, and 68000 to
determine the average number of instructions and mem-

Table 1.
Dynamic percentage of operands in Pascal and C.

P1 P2 P3 P4 Cl C2 C3 C4 AVERAGE
INTEGER CONSTANT 14 18 11 20 25 11 29 28 20±7

SCALAR 63 68 46 54 37 45 66 62 55± 11

ARRAY/STRUCTURE 23 14 43 25 36 43 5 10 25±14

PROGRAM

P1
P2
P3
P4
C1
C2
C3
C4

EXPLANATION
COMP - a Pascal P-code style compiler
MACRO - the macro expansion phase of the SCALD design system
PRINT - a prettyprinter for Pascal
DIFF - a program that finds the differences between two files
PCC - the portable C compiler for the VAX
CIFPLOT - a program that plots VLSI mask layouts on a dot plotter
NROFF - a text formatting program
SORT - the Unix sorting program
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Table 2.
Relative frequency of Pascal and C statements.

P1 P2 P3 P4
39 52 35 53

35 30 36 1 6

15 14 16 15

2 0 5 13

5 5 5 4

4 0 1 0

AVERAGE
45±8
29±8

15+1

5±5

5±0

1 +1

Cl C2
22 50

59 31

6 17

2 2

9 0

2 -

C3
25

61

9

3

C4
56
22

16

5

AVERAGE
38 + 15
43+17

12+5

3 + 1

3+4

0 <1 41

* Because statements can be nested we count each occurrence of a statement. Loop statements are counted once per execution rather than once per loop iteration For
example. if two IF statements and three assignment statements appear in a loop that iterates 5 times, we would count 26 statements with 15 assignments. 10 IF
statements. and one loop. The WITH statement qualities a record name.

ory references per statement. By multiplying the frequen-
cy of occurrence of each statement with the correspond-
ing number of machine instructions and memory referen-
ces, we obtain Table 3, which is ordered by memory

references.

The data in Table 3 suggest that the procedure call/
return is the most time-consuming operation in typical
high-level language programs. These results corroborate
studies by Lunde9 and Wichmann.10 The statistics on

operands found in Table 1 emphasize the importance of
local variables and constants. RISC I supports HLLs by
enhancing performance of the most time-consuming fea-
tures of typical HLL programs, as opposed to making the
architecture "close" to a particular HLL; thus, RISC I at-
tempts to handle local variables, constants, and pro-

cedure calls efficiently while leaving less frequent opera-

tions to instruction sequences or subroutines.

Basic architecture of RISC I

The RISC I architecture has 31 instructions, most of
which do simple ALU and shift operations on registers.
As shown in Table 4, they have been grouped into four

Table 3.
Weighted relative frequency of HLL statements

(ordered by memory references).

STATEM ENTS*

HLL

CALL/RETURN

LOOPS

ASSIGN

IF

WITH

CASE

HLL WEIGHTED WEIGHTED
(OCCURRENCE) (MACHINE INSTR.) (MEM. REF.)

P C P C P C

15+1 12+5 31 +3 33+14 44+4 45+19

5+0 3±1 42±3 32±6 33±2 26±5
45±5 38±15 13±2 13±5 14±2 15±6
29±8 43±17 11 ±3 21 ±8 7±2 13±5

5+5 - 1 ±0 - 1 ±0
1+1 <1±1 1±1 1±1 1±1 1±1

categories: arithmetic-logical, memory access, branch,
and miscellaneous. Instructions, data, addresses, and
registers are 32 bits. The execution time of a RISC I cycle
is given by the time it takes to read and add two registers,
and then store the result back into a register. Register 0,
which always contains zero, allows us to synthesize a

variety of operations and addressing modes.

Load and store instructions move data between regis-
ters and memory. Rather than lengthen the general cycle
to permit a complete memory access, these instructions
use two CPU cycles. There are eight variations ofmemory
access instructions to accommodate sign-extended or

zero-extended 8-bit, 16-bit, and 32-bit data. Although
there appears to be only the index-plus-displacement ad-
dressing mode in data transfer instructions, absolute and
register-indirect addressing can be synthesized using
register 0 (see Table 5).

Branch instructions include call, return, conditional,
and unconditional jump. The conditional instructions are
the standard set used originally in the PDP-1 1 and found
in most 16-bit microprocessors today. Most of the inno-
vative features of RISC I are found in call, return, and
jump; they will be discussed later.

Figure 1 shows the 32-bit format used by register-to-
register instructions and memory access instructions.
For register-to-register instructions, DEST selects one of
the 32 registers as the destination of the result of the
operation performed on the registers specified by
SOURCE1 and SOURCE2. If IMM =0, the low-order
five bits of SOURCE2 specify another register; if
IMM = 1, SOURCE2 expresses a sign-extended 13-bit
constant. As mentioned above, the frequency of integer
constants in HLL programs suggests architectural sup-

port, so immediate operands are available in every in-
struction. SCC determines whether or not the condition
codes are set. Memory access instructions use SOURCE 1

to specify the index register and SOURCE2 to specify the
offset. One other format combines the last three fields to
form a 19-bit PC-relative address and is used primarily by
the branch instructions.

GOTO - 3±1 - 0 ± 0 - 0 ± 0 The examples in Table 6 show that many of the impor-

tant VAX instructions can be synthesized from simple
*For the CALL statement we counted passing parameters, saving/restoring general registers, RISC I addressing modes and opcodes. Comparative

and saving/restoring the program counter. The IF and CASE statements include instructions to
evaluate expressions and to jump. For LOOP statements we count all the machine instructions measurements of benchmarks will demonstrate the effec-
executed during each iteration. tiveness of the chosen instruction set.

STATEM ENTS*
ASSIGN
IF

CALL

WITH

LOOP
CASE
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Table 4.
Assembly language definition for RISC I.

INSTRUCTION OPERANDS COMMENTS

Rd-Rs+S2

Rd - Rs + S2 + carry

Rd-Rs-S2
Rd - Rs - S2 - carry

Rd-S2- Rs

Rd-S2 - Rs - carry

Rd-Rs & S2

Rd-Rs S2
Rd-Rs xor S2
Rd-Rs shifted by S2
Rd-Rs shifted by S2

Rd-Rs shifted by S2

Rd-M[Rx+S2]
Rd-M[Rx+ S2]
Rd-M[Rx+S2]
Rd-M[Rx+S2]
Rd-M[Rx+S2]

M[Rx+S2]-Rm
M[Rx+S2]-Rm
M[Rx+S2]-Rm

pc-Rx+S2
pc-pc+Y
Rd-pc, next
pc-Rx+ S2, CWP-CWP-1
Rd-pc, next
pc-pc+Y, CWP-CWP-1
pc-Rm+S2, CWP-CWP+1
Rd-last pc: next CWP-CWP-1

pc-Rm+S2; next CWP-CWP+1

Rd<31:13>-Y; Rd<12:0>-0
Rd-last pc

Rd-PSW
PSW-Rm

integer add

add with carry
integer subtract

subtract with carry

integer subtract

subtract with carry
logical AND

logical OR

logical EXCLUSIVE OR

shift left
shift right logical
shift right arithmetic

load long

load short unsigned

load short signed

load byte unsigned

load byte signed

store long
store short
store byte

conditional jump
conditional relative
call
and change window
call relative
and change window
return and change window

disable interrupts
enable interrupts

load immediate high
to restart delayed jump
load status word

set status word

Register windows. Investigations into the use of high-
level languages suggest that the procedure call is the most
time-consuming operation in high-level language pro-
grams. Potentially, RISC programs may have even more

Table 5.
Synthesizing VAX addressing modes.

ADDRESSING VAX RISC EQUIVALENT
REGISTER Rx Rx

IMMEDIATE #LITERAL S2 (13-BIT LITERAL)
INDEXED Rx + DISPL Rx + S2 (13-BIT

DISPLACEMENT)
ABSOLUTE @#ADDRESS rO+S2 (rO-O)
REG INDIRECT (Rx) Rx+O

calls, because the complex instructions found in CISCs
are subroutines in RISCs. Thus, the procedure call must
be as fast as possible, perhaps no longer than a few
jumps. Because of its register window scheme, RISC I ap-
proaches this goal and reduces data memory traffic.

Using procedures involves two groups oftime-consum-
ing operations: saving or restoring registers on each call or
return, and passing parameters and results to and from
the procedure. The frequency of local scalar variables
justifies the architectural support of placing locals in
registers, and Baskettll and Sites12 have proposed that

lOPCODE<7> SCC<1 >IDEST<5>ISOURCE1 <5> IMM<1 >|SOURCE2<13>|
Figure 1. RISC I basic instruction format.
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ADD

ADDC
SUB
SUBC
SUBR
SUBCR
AND

OR
XOR
SLL
SRL
SRA

Rs,S2,Rd
Rs,S2,Rd

Rs,S2,Rd

Rs,S2, Rd

Rs,S2,Rd
Rs,S2, Rd

Rs,S2,Rd
Rs, S2, Rd

Rs,S2,Rd
Rs, S2, Rd
Rs, S2, Rd

Rs,S2,Rd

LDL

LDSU
LDSS
LDBU
LDBS
STL
STS
STB

(Rx)S2,Rd
(Rx)S2, Rd
(Rx)S2, Rd

(Rx)S2,Rd

(Rx)S2,Rd
Rm, (Rx)S2
Rm, (Rx)S2
Rm,(Rx)S2

COND, S2( Rx)

COND,Y
Rd,S2(Rx)

JMP

JMPR

CALL

CALLR Rd ,Y

RET

CALLI NT
RETINT

Rm, S2
Rd

Rm,S2

LDH
GTLPC
GETPSW
PUTPSW

Rd ,Y
Rd

Rd
Rm

1 1



Table 6.
Synthesizing VAX Instructions.

OPERATION
REG-REG MOVE
COMPARE
COMPARE TO 0

VA;
MOVL
CMPL
TSTL
TSTL
CLRL
CLRL
MNEGL
MCOML
MOVL
MOVL

CLEAR

TWOS COMPLEMENT
ONES COMPLEMENT
LOAD CONST

INCREMENT
DECREMENT

Rm,Rn
Rm,Rn
Rn
A
Rn
A
Rm,Rn
Rm,Rn
$N,Rm( N <212)
$N,Rm( I N 2212)

INCL Rn
DECL Rn

RISC
ADD
SUB
SUB
LDL
ADD
STL
SUB
XOR
ADD
LDHI
ADD
ADD
SUB

EQUIVALENT
RO,Rm,Rn (rO--O)
Rm,Rn,rO,{c}
Rn,rO,rO,{c}
(rO)A,rO, {c}
rO, rO,Rn
rO,(rO)A
rO, Rm, Rn
Rm,# -1,Rn
rO,#N,Rm
#N <31:13> ,Rm
rO,#N < 12:0 >, Rm
Rn,#1 ,Rn
Rn,#1 ,Rn

CHECK INDEX BOUNDS, INDEX Rm,#O,#U, SUB Rm,#U,rO{c};
(A[O:U]) #1,A,Rn: JMP lequ,OK;*
TRAP IF ERROR, MOVB (Rn),Rp CALL error;
AND READ A[Rm] OK: LDBU (Rm)A,Rp

*This approach is better than the normal algorithm. We can think of an index as an unsigned integer since Osindexs U. A two's complement negative number
(1X X) is then a large unsigned number, so we only need make one unsigned test instead of two signed tests. Nonzero lower bounds are handled by subtracting
the lower bound from the index, and multiple indices are handled by repeating the sequence and including a multiply and an add. This idea resulted from a
discussion between Bill Joy, Peter Kessler, and George Taylor. Taylor coded the examples and found that on the VAX-11/780, the sequence of simple instructions
was always faster than the index instruction. This optimization is found in the Unix C optimizer.

microprocessors keep multiple banks of registers on the
chip to avoid register saving and restoring. A similar
scheme was adopted by RISC I. Each procedure call
allocates a new "window" of registers from the large
register file for use by that procedure, and the return
resets a pointer, restoring the old set. But some of the
registers are not saved or restored on each procedure call;
these registers (rO through r9) are called global registers.

Furthermore, the sets of registers used by different
procedures overlap, allowing parameters to be passed in
registers. In other machines, parameters are usually
passed on the stack, and the calling procedure uses a
register (frame pointer) that points to the beginning ofthe
parameters (and also the end of the locals). Thus, all
references to parameters are indexed references to mem-

HIGH

LOCAL

LOW

GLOBAL

Figure 2. Naming within one virtual RISC I register win.
dow.

ory. Our approach partitions the set of window registers
(10-31) into the three parts defined by their respective
overlap. Every procedure sees the set of registers shown in
Figure 2.

High registers 26 through 31 contain parameters passed
from "above" the current procedure-that is, from the
calling procedure. Local registers 16 through 25 are used
for local scalar storage. Low registers 10 through 15 are
used for temporaries and parameters passed to the pro-
cedure "below" the current procedure (the called pro-
cedure). On each procedure call a new set of registers,
numbered 10-31, is allocated. The low registers of the
"caller" become the high registers of the "callee"
because of the hardware overlap between subsequent
register windows. Thus, without moving information,
parameters in registers 10-15 appear in registers 25-31 of
the called window. Figure 3 illustrates this approach for
the case where procedureA calls procedure B, which calls
procedure C.

Ifthe nesting depth is sufficiently large, all register win-
dows will be used. RISC I handles a call overflow with a
separate stack in memory. Overflow and underflow are
handled with a trap to a software routine that adjusts that
stack. Because this routine can save or restore several sets
of registers, the overflow/underflow frequency is based
on local variations in the depth of the stack rather than
absolute depth. The effectiveness of this scheme depends
on the relative frequency of overflows and underflows.
Studies by Halbert and Kessler13 show that with eight
register banks overflow will occur in less than one percent
ofthe calls. This suggests that programs exhibit locality in
the dynamic nesting of procedures, just as they exhibit
locality in memory references.
Another problem with variables in registers occurs in

referencing them with pointers, since this requires vari-
able addresses. Because registers normally do not have
memory addresses, we could let the compiler determine
which variables have pointers and put these variables in

COMPUTER
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memory, but this precludes separate compilation and
slows access to these variables. RISC I solves that problem
by giving addresses to thewindow registers. By reserving a
portion of the address space, we can determine, with one
comparison, whether a register address points to a CPU
register or to one that has overflowed into memory.
Because the only instructions accessing memory-load
and store-already take an extra cycle, we can add this
feature without reducing their performance. This permits
the use of straightforward compiler technology and still
leaves most of the variables in registers.

This addressing technique also solves the "up-level
addressing" problem. Pascal and other languages allow
nested procedure declarations, thereby creating a class of
variables that are neither global variables nor local to a
single procedure. Compilers keep track ofeach procedure
environment using static and dynamic links or displays.
Such a compiler for RISC I would also associate the mem-
ory address for the window of local variables. These
variables would then be accessed by using the display or
dynamic chains to find the corresponding memory ad-
dresses.

Delayed jump. The normal RISC I instruction cycle is
just long enough to execute the following sequence of
operations: read a register, do an ALU operation, and
store the result back into a register. We increase perfor-
mance by prefetching the next instruction during the ex-
ecution of the current instruction. This introduces dif-
ficulties with branch instructions. Several high-end
machines have elaborate techniques to prefetch the ap-
propriate instruction after the branch,14 but these tech-
niques are too complicated for a single-chip RISC. Our
solution was to redefine jumps so that they do not take
effect until after the following instructions; we refer to
this as the delayed jump.
The delayed jump allows RISC I to always prefetch the

next instruction during the execution of the current in-
struction. The machine language code is suitably ar-
ranged so that the desired results are obtained. Because
RISC I is always intended to be programmed in high-level
languages, we will not burden the programmer with this
complexity; the "burden" will be carried by the program-
mers of the compiler, the optimizer, and the debugger.

Table 7 illustrates the delayed branch. Machines with
normal jumps would execute the sequence in Table 7a in
the order 100, 101, 102, 105.... To get that same effect
in RISC I, we would have to insert a no operation instruc-
tion (Table 7b). The sequence ofinstructions for RISC I is
now 100, 101, 102,103,106, .... In the worst case, every
jump could take two instructions. The RISC I compiler,
however, includes an optimizer that tries to rearrange the
sequence of instructions to do the equivalent operations
while making use of the instruction slot where the NOP
appears. As shown in Table 7c, the optimized RISC I se-
quence is 100, 101,102,105.... Because the instruction
following ajump is always executed and thejump at 101 is
not dependent on the add at 102, this sequence is
equivalent to the original program segment in Table 7a.

Architectural heritage. Since architects of new ma-
chines build on the work of others, we believe it is im-
portant to trace the genealogy of RISC I. Its earliest

ancestor is the 1951 Ferranti-Manchester MADM-the
first machine with index registers-which also used a
register to supply zero.15 Seymour Cray revived the idea
in 1964 with the CDC-6400 and continued to use it in the
CDC-7600 and the Cray 1. The delayed jump was first
used in the Maniac I, which was completed just a year
after the MADM, but we adopted the idea from micro-
programmed control units, where delayed jumps are the
norm.
The leading proponent of reduced instruction set com-

puters for floating-point data is Cray. For the last 15
years, he has combined simple instruction sets with so-

Table 7.
Normal and delayed jumps.

ADDRESS (a) NORMALJUMP (b) DELAYEDJUMP (c) OPTIMIZED
DELAYED JUMP

100 LOAD X,A LOAD X,A LOAD X,A
101 ADD 1,A ADD 1,A JUMP 105
102 JUMP 105 JUMP 106 ADD 1,A
103 ADD A,B NOP ADD A,B
104 SUB C,B ADD A,B SUB C,B
105 STORE A,Z SUB C,B STORE A,Z
106 STORE A,Z

Figure 3. Use of three overlapped register windows.
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phisticated pipelined implementations to create the most
powerful floating-point engines in the world. While Cray
concentrates. on impressive floating-point rates at im-
pressive costs, RISC I concentrates on improved perfor-
mance at lower cost for integer programs written in
HLLs.
A machine with similar goals that predates RISC I is the

IBM 801. This project, led by John Cocke and George
Radin, began in 1975 by reexamining the relationship
between instruction sets, compilers, and operating sys-
tems. They pushed the state of the art of compiler
technology and created an extremely fast, reduced-
instruction-set ECL minicomputer. Alas, the architecture
community was left to speculate on the truth of widely
varying rumors about the technical details'6 as well as the
success or failure of the project.17 Fortunately, accurate
information is beginning to emerge.'8 It will be interesting
to see the similarities between RISC I and the 801; one dif-
ference is that RISC I uses traditional compiler tech-
nology and the 801 uses a traditional register set.

In searching the annals of computer architecture we
cannot find a clear reference to overlapped register win-
dows. To our best knowledge, no machine uses the

scheme for fast, multiport registers in the CPU. Most
modern machines support procedure call by having in-
structions that manage a portion of main memory as a
stack to pass parameters and allocate locals. Theoretical-
ly, a cache should then make such a scheme as fast as the
overlapped register windows. Registers are faster than
caches because of the difference in speed between a small
memory and a large memory, the difference in speed be-
tween a deterministic access and a probabilistic access,
and the difference in speed between a nontranslated
register access and a translated virtual memory access.
Theoretically, hardware can overcome almost any ob-
stacle, but it occasionally stumbles in implementation.
The advantages of registers become apparent when we
look at concrete realizations; as we shall see, procedure
call/return on the VAX-I 1/780, using a software stack
enhanced by a hardware cache, is about an order of
magnitude slower than the overlapped register windows
of RISC I.

There are a few machines that share features of
RISC I's overlapped register window scheme. The BBN
C/70, a recent machine, allocates a new set of registers on
every procedure call, but it does not overlap register sets.

Figure 4. Photomicrograph of RISC 1.
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Table 8.
VLSI design metrics for Z8000, MC68000, iAPX-432, and RISC 1.

TOTAL DEVICES

TOTAL MINUS ROM

DRAWN DEVICES

REGULARIZATION FACTOR

SIZE OF CHIP (MILS)
(AREA IN MIVL2)
SIZE OF CONTROL (MIL2)
PERCENT CONTROL

TIME TO FIRST SILICON (MONTHS)

DESIGN EFFORT (MAN MONTHS)

LAYOUT EFFORT (MAN MONTHS)

238x251 246x281 318x323 366x313 358x326 406x305

60K
37K

53%

30

60
70

69K
35K

50%

30
100

70

103K

67K

65%

33
170

90

115K

45K

39%

33
170

100

1 1 7K

47K

40%

21

130

50

124K

7K

6%

19

15

12

A popular architecture that comes close to RISC I is the
Texas Instruments 990-9900 family. These machines
allocate their general "registers" in memory, so adding
the contents of one register to another results in three
memory accesses. A single register points to the register
work space; most of the machines allow the pointer to
overlap work spaces. The latest generation of this family,
the TI 99000, includes on-chip main memory, but the first
models appear to still have slow register access.19 The
machine that comes closest to the overlapped register win-
dows is the Bell Labs MAC-8. The state of NMOS
technology in 1975 precluded having a rich instruction set
and a register file on the chip; the architects chose the rich
instruction set. The main difference between the MAC-8
and TI 990 is that the Bell architects realized that overlap-
ping the registers could improve the performance of the
procedure call and provided instructions to specifically
overlap the register windows in memory. It is our under-
standing that some C compilers used this feature. This
machine was never implemented with on-chip registers,
and the logical successor to this machine, the BellMAC-32,
has abandoned this approach.

VLSI implementation

The transition from theoretical architecture to concrete
circuits began on January 6, 1981. Mask descriptions
were completed June 22, and we received first silicon on
October 23. Figure 4 is a photomicrograph of RISC I. We
followed the Mead-Conway design philosophy for
NMOS with lambda at two microns and no buried con-
tacts. This first version, RISC I "Gold" as it is known in-
ternally, implements the complete instruction set and six
windows with a total of 78 registers. The only piece of the
architecture not implemented is the mapping of registers
into the memory address space.
We collected statistics on the design and layout ofRISC

1.20 Table 8 compares these results to VLSI implementa-
tions of more complex architectures. The most visible im-
pact of the reduced instruction set is the reduced control

area: control is only six percent of RISC I compared to 50
percent in others. RISC I is also more regular. Lattin
defines the regularity factor as the total number of tran-
sistors (less those in ROM) divided by the number of in-
dividually drawn transistors.21 By this measure RISC I is
two to five times more regular than the Z8000, 68000, or
432. The time from the first discussion of the RISC I ar-
chitecture to the masks was 14 months-less than the
development periods of other machines. This was due in
part to the reduced instruction set and in part to the
Berkeley CAD software, a good match for this style of
VLSI design. The primary interface was Caesar, an ex-
cellent color graphics layout editor developed by
Ousterhout.22

Evaluation

Register windows. Two benchmarks-"puzzle" and
"quicksort"-showed the effectiveness of window
registers in reducing procedure cost. The two recursive
programs behave quite differently. Quicksort has a large
percentage of procedure calls. Puzzle has such a low den-
sity of calls that it is almost atypical for modern structured
programs, but it does have a large nesting depth. In both
cases, the window scheme proved to be beneficial. Table 9
shows the maximum depth of recursion, the number of
register window overflows and underflows, and the total

Table 9.
Memory traffic due to call/return.

CALLSPLUS MAXIMUM RISC
RETURNS, NESTED OVERFLOWS +
% INSTRS DEPTH UNDERFLOWS

PUZZLE 43K
0 7%

QUICKSORT 111 K
8 0%
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ZILOG
Z8000
17.5K

17.5K

3.5K

5.0

MOTOROLA
68000
68K
37K

3.OK
12.1

43201
110K
44K

5 .6K
7.9

INTEL iAPX-432
43202
49K

49K

9.5K

5.2

43203
60K
44K

5.7K

7.7

RISC
44K

44K

1 .8K

25

DATA MEMORY TRAFFIC
RISC I. VAX.
WORDS WORDS

20 124 8K 444K
0.8% 28 0%

10 64 4K 696K
1 0% 50.0%
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number of words transferred between memory and the
RISC CPU as a result of the overflows and underflows. It
also shows the memory traffic due to saving and restoring
registers in the VAX. For this simulation we assumed that
half of the registers were saved on an overflow and half
were restored on an underflow. We found that for RISC
I, an average of 0.37 words are transferred to memory per
procedure invocation for the puzzle program and 0.07 for
quicksort. Note that half of the data memory references
in quicksort are the result of the call/return overhead of
the VAX.

Table 10 compares the average "cost" of the RISC pro-
cedure mechanism-measured in execution time, number
of instructions executed, and data memory accesses-to
that of three traditional machines. The data was collected
by looking at the code generated by C compilers for these
machines for procedure call and return statements, as-
suming that two parameters are passed and requiring that
three registers be saved.
The window scheme also reduces off-chip memory ac-

cesses. In traditional machines, 30 to 50 percent of the in-
structions generally access data memory, but no more
than 20 percent of the instructions are register-to-
register.23'24 Because RISC I arithmetic and logical in-
structions cannot access memory, one might expect a
higher percent of data transfer instructions. This is not
the case. The static frequencies of RISC I instructions for
nine typical C programs show that less than 20 percent of
the instructions are loads and stores, but more than 50
percent are register-to-register. RISC I has successfully
changed the allocation of variables from memory into

Table 10.
Procedure call/return overhead
(including parameter passing).

EXECUTION INSTRUCTIONS DATA MEMORY
TIME (ttSECS) EXECUTED ACCESSES

VAX- 11

PDP- 11

68000

RISC

26

22

19

2

5

19

9

6

19

15

12

0.2

registers, thus minimizing the slower off-chip memory ac-
cesses. This demonstrates that complex addressing modes
are not necessary to obtain an effective machine.

Delayed jump. The effectiveness of rearranging the
code aroundjump instructions can be evaluated by count-
ing the NOP instructions in a program. Static figures
before optimization show that in typical C programs
about 18 percent of the instructions are NOPs inserted
after jump instructions. A simple peephole optimizer
reduces this to about eight percent. The optimizer does
well on unconditional branches (removing about 90 per-
cent of the NOPs) but not so well with conditional
branches (removing only about 20 percent of the NOPs).
Note that these are the static numbers; the dynamic
numbers can be worse.

This optimizer was improved to replace the NOP by the
instruction at the target of a jump. This technique can be
applied to conditional branches if the optimizer deter-
mines that the target instruction modifies temporary
resources-for example, an instruction that only-mod-
ifies the condition codes. In quicksort, this removes all
NOPs except those that follow return instructions, drop-
ping NOPs from 12 percent statically to three percent.
The dynamic effectiveness of the delayed branch must
now include the NOPs plus the instructions after condi-
tional branches that need not be executed for a particular
jump condition. The total percentages of either type of in-
struction are again program dependent, ranging from 4 to
22 percent.

Overall performance. Prototype versions of a RISC 1
compiler for C, optimizer, linker, assembler, and simu-
lator were developed early in the project to predict the
code size and performance of RISC I. The minicomputers
and microprocessors chosen for this comparison are
described in Table 11. We didn't have working hardware
for either the 68000 or RISC I, so we used simulators to
predict performance. The cycle time for the first RISC I
prototype is expected to be 400 nsec to read and add two
32-bit registers, store the result in a register, and prefetch
the next instruction. This estimate is both optimistic and
pessimistic: optimistic in that it is unlikely that students
can successfully build something that fast on their first

Table 11.
Characteristics of six machines.

MICROPROCESSORS-NMOS VLSI
RISC 68000 Z8002

MINICOMPUTERS-SHOTTKY TTL MSI

VAX- 11/780 PDP- 11/70 C/70

YEAR OF INTRODUCTION

BASIC INSTRUCTIONS
GENERAL REGISTERS

ADDRESSING MODES

ADDRESS SIZE (BITS)

BASIC CLOCK FREQUENCY
REG TO REG. ADD (,asec)

MODIFY INDEX, BRANCH
IF ZERO (BRANCH TAKEN)

1981

31
32

1 980 1979

61 110
15 14

2 14 12

32 24 16

7. 5M Hz 1OMHz 6MHz
0.4 0.4 0.7
1.2 1.0 2.2

1 978 1 975 1980

248 65 40
13 6 8

18 12 17

32 16 20

5MHz 7.5M Hz 6.7MHz

0.4 0.5 ?

1.4 0.8 ?
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try, and pessimistic because an experienced IC design
team could build a much faster machine.
We chose 11 C programs for the performance com-

parison. The first five programs are HLL versions of the
EDN benchmarks.25 The other C programs range from
toy programs (e.g., towers of Hanoi) to programs from
the Unix environment that are used every day (e.g., SED,
a batch-oriented text editor).
The compilers used are quite similar: the VAX, C/70,

Z8002, 68000, and RISC I C compilers are based on a
Unix portable C compiler,26 and the one for the PDP- 1 I is
based on the Ritchie C compiler.27 Experiments compar-
ing the Ritchie and portable C compilers for the PDP- 11
have shown that the average difference in the size of
generated code is within one percent.28

Tables 12 and 13 compare the relative performance and
code size of these minicomputers and microprocessors on
the 11 C programs. A surprising result is that, even though
size optimization was virtually ignored, RISC I programs

are-at worst-a factor of two larger than programs for
the other machines. To us, the most important figure of
merit for a new architecture is execution time. Table 13
shows that RISC I executes C programs faster than cur-
rently available microprocessors-faster even than most
minicomputers.

Discussion

The presentation of the RISC concept has led to many
stimulating discussions. Listed below are frequently
heard comments followed by a short discussion of that
comment.

CISCs provide better support of HLLs since they
include HLL primitives (CASE, CALL).

CISC architectures support HLLs by narrowing the
gap between the semantics of the assembly language and

Table 12.
C benchmarks: RISC I program size (in bytes) and RISC I size ratio.

PROGRAM SIZE RELATIVE TO RISC
BENCHMARK RISC 68000 Z8002 VAX-11/780 11/70 C/70
E-STRING SEARCH 144 .8 .9 .7 .8 .7

F-BIT TEST 120 l.2 1.5 1.2 1.4 1.0

H-LINKED LIST 176 .7 .8 1.2 1.7 .8

K-BIT MATRIX 288 1.1 1.3 1.0 1.3 1.1

I-QUICKSORT 992 .7 1.1 .9 1.1 .9

ACKERMAN(3.6) 144 - 2.1 .5 .6 .5

PUZZLE(SUBSCRIPT) 2736 - .5 .5 .6 .6

PUZZLE(POINTER) 2796 .9 5 .5 5 .6

RECURSIVE OSORT 752 - .8 .6 .8 .6

SED(BATCH EDITOR) 17720 1.0 .6 .5 .5

TOWERS HANOI(18) 96 - 2.5 .8 1.0 .7

AVERAGE .9 ±.2 1.2 ±.6 .8 ±.3 .9 ±.4 .7 ±.2

Table 13.
C benchmarks: RISC I execution time (in milliseconds) and RISC I performance ratio.

BENCH MARK

E-STRING SEARCH

F-BIT TEST

H-LINKED LIST

K-BIT MATRIX

I- QUICKSORT

ACKERMAN(3 6)

RECURSIVE OSORT

PUZZLE(SU BSCRI PT)

PUZZLE( POINTER)

SED(BATCH EDITOR)
TOWERS HANO1(18)

AVERAGE

RISC
.46

.06

.10

.43

50.4

3200
800

4700

3200

5100
6800

68000
2.8
4.8
1.6

4.0
4.1

4.2

3.5+1.8

NUMBER OF TIMES SLOWER THAN RISC
Z8002 VAX-1 1/780
1.6 1.3

7.2 4.8

2.4 1.2

5.2

5.2

2.8

5.9

4.2

2.3

4.4

4.2

4.1 ± 1.6

3.0

3.0

1.6

2.3

2.0

1.3

1.1

1.8

2.1 ± 1.1
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11/70
0.9

6.2
1.9

4.0

3.6

1.6
3.2

1.6
2.0

1.1

2.3

2.6± 1.5

C/70
2.2

9.2

2.5
9.3
5.8

1.3

3.4
2.1

2.6
1.6

4.0 ± 2.8



the semantics of an HLL. Support can also, however, be
measured as the inverse of the "costs" of using typical
HLL constructs on a particular machine. If the architect
provides a feature that "looks" like the HLL construct
but runs slowly, the compiler writer will omit the feature
or, worse, the HLL programmer concerned with perfor-
mance will avoid the construct. A recent study shows that
CISCs penalize the use of HLLs far more than RISCs.29

It is more difficult to write a compilerfor a RISC than a
CISC.

A recent paper by Wulf30 helps explain why this is not
true. He says that compiling is essentially a large "case
analysis." The more ways there are to do something
(more instructions and addressing modes), the more cases
must be considered. The compiler writer must balance the
speed of the compiler with his desire to get good code. In
CISCs there may not be enough time to analyze the poten-
tial usage of all available instructions. Thus, Wulf recom-
mends, "There should be precisely one way to do some-
thing, or all ways should be possible." In RISC we have
taken the former approach. There are few choices; for ex-
ample, if an operand is in memory, it must first be loaded
into a register. Simple case analysis implies a simple com-
piler, even if more instructions must be generated in each
case.

time of NMOS RISC I, it would still be faster than most
present-day microprocessors.

Thegoodperformance is due to the overlapped register
windows; the reduced instruction set has nothing to do
with it.

Certainly, a significant portion of the speed is due to
the overlapped register windows of RISC I. A key point is
that there would have been no room for register windows
if control had not dropped from 50 to 6 percent. Further-
more, control is so simple in RISC that microprogram-
ming is unnecessary; this eliminates the control loop as
the limiting factor of the machine cycle, as is frequently
the case in microprogrammed machines.

There is no difference between overlapped register
windows and a data cache.

A cache is ineffective if it is too small. An effective data
cache would require a much larger area than our register
file, especially if it must provide the same number of ports
as the register file. The more complicated virtual address
translation and decoding would likely stretch the basic
CPU cycle time. Finally, the more complicated cache con-
trol would have extended the design phase of RISC I.

RISC I is tailored to C and will not work well with
other HLLs.

Studies of other HLLs23'31 indicate that the most fre-
quently executed operations are the same simple HLL
constructs found in C, for which RISC I has been opti-
mized. Unless an HLL significantly changes the way peo-
ple program, we expect to see similar results. For lan-
guages that have unusual data types, such as Cobol, we
need to find the simple operations that are used repeatedly
in that environment and incorporate them into a RISC.
Even if the RISC I architecture does not map Cobol effi-
ciently, we believe this philosophy can lead to a RISC that
does.

Comparisons ofRISCI with the VAXare unfair in that
the VAX provides a virtual address space; RISC I
would be much slower if it had virtual memory.

To answer the question "How much slower?" we
looked at solutions used by other microprocessors. Na-
tional Semiconductor has announed the 16082, a memory
management chip with an address cache that normally
translates virtual address into physical addresses in 100
nsec.32 If we were to put this chip in a system with a RISC
CPU, it would add another 100 nsec to every memory ac-
cess. Memory is referenced every 400 nsec in RISC I, so
such a combination would reduce RISC performance by
20 percent. Because 80 to 90 percent of memory refer-
ences in RISC I are to instructions,l more sophisticated
approaches, such as translating addresses only when
crossing a page boundary, might limit performance
reduction to only five percent. A final observation is that
even if the addition of virtual memory doubled the cycle

RISC I represents a new style of computers that take
less time to build yet provide higher performance. While
traditional machines "support" HLLs with instructions
that look like HLL constructs, this machine supports the
use ofHLLs with instructions that HLL compilers can use
efficiently. The loss of complexity has not reduced
RISC's functionality; the chosen subset, especially when
combined with the register window scheme, emulates
more complex machines. It also appears we can build such
a single-chip computer much sooner and with less effort
than traditional architectures.
As we go to press, we are just testing the RISC I chips.

Unfortunately, the polysilicon layer was processed im-
properly, and we believe this accounts for the fact that the
chips are only partially operational. We have not yet
found any circuit design errors.

This research area is by no means closed. For example,
an investigation of a RISC with two ALU operations per
cycle and dual-port main memory has begun at Stan-
ford,33 and we are working on a new implementation with
a denser register file and a more sophisticated timing
scheme.34 Some of the other topics to be investigated in-
clude the applicability of RISCs to other HLLs (e.g.,
Lisp, Cobol, Ada), the effectiveness of an operating
system on RISC (e.g., Unix), the architecture of co-
processors for RISC (e.g., graphics, floating point),
migration of software to RISC (e.g., a 370 emulator written
in RISC machine language), and the implementation of
RISC in other technologies (CMOS, TTL, ECL). This list
is too big for one project; we hope to cooperate with in-
dustry and academia in exploring RISCy architectures. a
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