
Winter 2006 CSE 548 - Dataflow Machines 1

Wavescalar Assembly: Dataflow

Winter 2006 CSE 548 - Dataflow Machines 2

Wavescalar Assembly: Format
• Wavescalar is an extension of the Alpha ISA

– RISC (more or less)

– “Register to register” becomes “PE to PE”

– Tagged-tokens

• Instructions have a basic format
operand {outputs}, {inputA}, {inputB}, {inputC}

– Each port may hold a list of inputs or outputs

– Some instructions have less inputs

– The curly braces are optional

Winter 2006 CSE 548 - Dataflow Machines 3

Referring to Arcs
• Named arcs

– You have infinite “registers”
ldq a, addr, 0
ldq b, addr, 8
addq c, a, b

• Use labels
– The linker resolves symbols (if possible)

L0:
ldq { }, addr, 0
ldq ^L1:2, addr, 8

L1:
addq c, ^L0:0, { }

Winter 2006 CSE 548 - Dataflow Machines 4

Wavescalar Assembly: Instructions

Alpha-based

• Computation

• Memory
– Ordered interface

– Unordered

Wavescalar Specific

• Control
– Branches/Joins

• Tag management
– Wavescalar is

dynamic dataflow

• Synchronization

For a list of all instructions and formats, run:
lc-devel/src/drip/printInsts

Winter 2006 CSE 548 - Dataflow Machines 5

Alpha-based Instructions
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15740-

f98/public/doc/alpha-guide.pdf

• Arithmetic
– add, sub, mul, div, …
– Long word (32 bit) arithmetic

addl {outputs}, {inputAs}, {inputBs}
– Quad word (64 bit) arithmetic

addq {outputs}, {inputAs}, {inputBs}

• Comparison
– cmple, cmpeq, …

• Logical
– and, bis, xor, …

Winter 2006 CSE 548 - Dataflow Machines 6

Using Immediates

• Almost all instructions have immediate forms
– AddI, sll_I, s4subq_I, …

Addi {outputs}, {inputs}, immediate

• Otherwise, create a constant and send it
– cnst creates an immediate when a trigger is received

cnst {outputs}, {triggers}, immediate

Winter 2006 CSE 548 - Dataflow Machines 7

Accessing Memory
Ordered
• ldq, stq, mnop, …
• The system

manages
dependences
– Store buffer

• Memory operations
are tagged
– Wave-ordered

memory

Unordered

• ldq_U, stq_U

• The programmer
manages
dependences
– Dataflow firing rule

• Stores have an
output arc
– Reports when store

completes

Winter 2006 CSE 548 - Dataflow Machines 8

Wave-Ordered Memory
• Programs are partitioned into

DAGs (“waves”)
• Memory operations are given

“sequence numbers”
– <previous, current, next>.ripple

ld {outputs}, {address}, immediate
<p, c, n>.r

• No-ops may be required to
totally order operations

Winter 2006 CSE 548 - Dataflow Machines 9

Ripples
• A sequence of loads

need not be ordered
– The hazards are RAW,

WAR, WAW

• Fully ordering loads
decreases parallelism

• Add a “ripple number”
– The previous store’s

sequence number

Winter 2006 CSE 548 - Dataflow Machines 10

Tagged Tokens
• Wavescalar is a tagged-token architecture

– Each token has two components
• A value
• A tag

– Each tag has two components
• A thread number
• A wave number

• Tags allow re-entrant code
– The dataflow firing rule is modified
An instruction executes when all of its operands for a

given thread and wave have arrived.

Winter 2006 CSE 548 - Dataflow Machines 11

Re-entering a Wave
• Each dynamic wave is assigned a wave

number

• Tokens entering a wave are tagged with
that wave number
– Wave advance (wa)

• Increments the wave number on a token

– Canonical wave advance (cwa)
• Increments the wave number

• Creates a new memory ordering for that
wave

• Multiple memory orderings can
exist…but talk to us first

Winter 2006 CSE 548 - Dataflow Machines 12

Ordered and Unordered

Winter 2006 CSE 548 - Dataflow Machines 13

Control: Token Steering
• No branch instructions

• Two control instructions
– rho (split): conditional

rho {T-output}, {F-output}, {value}, {predicate}

– phi (join): speculative

phi {output}, {T-value}, {F-value}, {predicate}

+ predicate

T path F path

value

+ predicate

T path F path

value

Winter 2006 CSE 548 - Dataflow Machines 14

Steering Example

Winter 2006 CSE 548 - Dataflow Machines 15

Control: Jumps
• Sometimes, destinations must be resolved dynamically

– Indirect send, indirect receive

– Dynamic resolution is fairly slow

• Macros will be provided for function calls and returns

Winter 2006 CSE 548 - Dataflow Machines 16

Control: Wave Management
• Wave advance is an optimization

– Only increments wave numbers

• Wave number manipulation is used to pass
values around loops or complex control
– Wave-to-data (wtd): outputs the wave number

wtd {wave-as-output}, {input}

– Data-to-wave (dtw): sets a wave number

dtw {output}, {new-wave-input}, {value-input}

Winter 2006 CSE 548 - Dataflow Machines 17

Control: Thread Management
• Values can be passed between threads by

altering the tags
– Thread-to-data (ttd): outputs the thread id

ttd {thread-as-output}, {input}

– Data-to-thread (dtt): sets the thread id

dtt {output}, {new-thread-input}, {value-input}

– dttw: sets the thread id and wave number

dttw {output}, {thread}, {wave}, {value}

Winter 2006 CSE 548 - Dataflow Machines 18

Concerns about Thread Management
• Sending values to a new thread is equivalent to an

indirect send
– Each thread has its own set of instructions
– Destinations are resolved when the thread id is received

• Two kinds of threads exist
– Light: unordered (or no) memory

• Easy to create, requires very little support

– Heavy: requires memory ordering support
• If you want multiple memory orderings, talk to us first

• Thread ids should be unique across the system
– Operating system concern

Winter 2006 CSE 548 - Dataflow Machines 19

Synchronization
• For lightweight threads, lightweight

synchronization is needed
– Thread Coordinate (tc): implements a m-structure

• Requires a different firing rule

