
Winter 2006 CSE 548 - WaveScalar 1

WaveScalar

Dataflow machine
• good at exploiting ILP
• dataflow parallelism + traditional coarser-grain parallelism

• cheap thread management
• memory ordering enforced through wave-ordered memory

Winter 2006 CSE 548 - WaveScalar 2

WaveScalar

Motivation:
• increasing disparity between computation (fast transistors) &

communication (long wires)
• increasing circuit complexity
• decreasing fabrication reliability

Winter 2006 CSE 548 - WaveScalar 3

Monolithic von Neumann Processors

A phenomenal success today.
But in 2016?

 Performance
Centralized processing & control,
e.g., operand broadcast networks

 Complexity
40-75% of “design” time is design
verification

 Defect tolerance
1 flaw -> paperweight

Winter 2006 CSE 548 - WaveScalar 4

WaveScalar Executive Summary

Distributed microarchitecture
• hundreds of PEs
• dataflow execution – no centralized control
• short point-to-point communication
• organized hierarchically for fast communication between

neighboring PEs
• defect tolerance – route around a bad PE

Low design complexity through simple, identical PEs
• design one & stamp out thousands

Winter 2006 CSE 548 - WaveScalar 5

Processing Element

distributed
tag matching

2 PEs
in a pod

Winter 2006 CSE 548 - WaveScalar 6

Domain

Winter 2006 CSE 548 - WaveScalar 7

Cluster

Winter 2006 CSE 548 - WaveScalar 8

Whole Chip

• Can hold 32K instructions
• Long distance communication

• Dynamic routing
• Grid-based network
• 2-cycle hop/cluster

• Normal memory hierarchy
• Traditional directory-based

cache coherence

Winter 2006 CSE 548 - WaveScalar 9

WaveScalar Execution Model

Dataflow

Place instructions in PEs to maximize data locality & instruction-level
parallelism.
• Instruction placement algorithm based on a performance model

that captures the conflicting goals
• Depth-first traversal of dataflow graph to make chains of

dependent instructions
• Broken into segments
• Snakes segments across the chip on demand
• K-loop bounding to prevent instruction “explosion”

Instructions communicate values directly (point-to-point).

Winter 2006 CSE 548 - WaveScalar 10

WaveScalar Instruction Placement

Winter 2006 CSE 548 - WaveScalar 11

WaveScalar Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Winter 2006 CSE 548 - WaveScalar 12

WaveScalar Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Winter 2006 CSE 548 - WaveScalar 13

WaveScalar Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Winter 2006 CSE 548 - WaveScalar 14

WaveScalar Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Winter 2006 CSE 548 - WaveScalar 15

WaveScalar Example

A[j + i*i] = i;

b = A[i*j];

*

Load

Store

+

j i

*

b

A

+

+

Winter 2006 CSE 548 - WaveScalar 16

WaveScalar Example

A[j + i*i] = i;

b = A[i*j];

Global load-store ordering issue

*

Load

Store

+

j i

*

b

A

+

+

Winter 2006 CSE 548 - WaveScalar 17

Wave-ordered Memory

• Compiler annotates memory
operations

• Send memory requests
 in any order
• Hardware reconstructs the

correct order

Load

Store

Load
Store

Load

Store

3

4

8

5

6
7

 Sequence #

4

?

9

6

8
8

 Successor

2

3

?

4

5
4 Predecessor

Winter 2006 CSE 548 - WaveScalar 18

Store bufferWave-ordering Example

4 ?3

7 84

8 9?

Load

Store

Load
Store

Load

Store

5

6

6

8

3 42

8 9?

4

5
7 84

4 ?3

3 42

Winter 2006 CSE 548 - WaveScalar 19

Wave-ordered Memory

Waves are loop-free sections of the
dataflow graph

Each dynamic wave has a wave number
Wave number is incremented between

waves

Ordering memory:
• wave-numbers
• sequence number within a wave

Winter 2006 CSE 548 - WaveScalar 20

WaveScalar Tag-matching

WaveScalar tag
• thread identifier
• wave number

Token: tag & value

<ThreadID:Wave#> . value

+

<2:5>.3 <2:5>.6

<2:5>.9

Winter 2006 CSE 548 - WaveScalar 21

Single-thread Performance

Performance per area

0

0.01

0.02

0.03

0.04

0.05
am
m
p

ar
t

eq
ua
ke

gz
ip

m
cf

tw
ol
f

dj
pe
g

m
pe
g2
en
co
de

ra
w
da
ud
io

av
er
ag
e

A
IP

C/
m

m
2

WS
OOO

Winter 2006 CSE 548 - WaveScalar 22

Multithreading the WaveCache

Architectural-support for WaveScalar threads
• instructions to start & stop memory orderings, i.e., threads
• memory-free synchronization to allow exclusive access to data

(TC)
• fence instruction to allow other threads to see this one’s memory

ops

Combine to build threads with multiple granularities
• coarse-grain threads: 25-168X over a single thread; 2-16X over

CMP, 5-11X over SMT
• fine-grain, dataflow-style threads: 18-242X over single thread
• combine the two in the same application: 1.6X or 7.9X -> 9X

Winter 2006 CSE 548 - WaveScalar 23

Creating & Terminating a Thread

Winter 2006 CSE 548 - WaveScalar 24

Thread Creation Overhead

Winter 2006 CSE 548 - WaveScalar 25

Performance of Coarse-grain Parallelism

Winter 2006 CSE 548 - WaveScalar 26

Performance of Fine-grain Parallelism

Winter 2006 CSE 548 - WaveScalar 27

Building the WaveCache

RTL-level implementation
• some didn’t believe it could be built in a normal-sized chip
• some didn’t believe it could achieve a decent cycle time and load-

use latencies
• Verilog & Synopsis CAD tools

Different WaveCache’s for different applications
• 1 cluster: low-cost, low power, single-thread or embedded

• 52 mm2 in 90 nm process technology, 3.5 AIPC on Splash2
• 16 clusters: multiple threads, higher performance: 436 mm2 , 15

AIPC

board-level FPGA implementation
• OS & real application simulations

