
Winter 2006 CSE 548 - Synchronization 1

Synchronization

Coherency protocols guarantee that a reading processor (thread) sees the
most current update to shared data.

Coherency protocols do not:
• make sure that only one thread accesses shared data or a shared

hardware or software resource at a time
 Critical sections order thread access to shared data

• force threads to start executing particular sections of code together
 Barriers force threads to start executing particular sections of code

together

Winter 2006 CSE 548 - Synchronization 2

Critical Sections

A critical section
• a sequence of code that only one thread can execute at a time
• provides mutual exclusion

• a thread has exclusive access to the code & the data that it
accesses

• guarantees that only one thread can update the data at a time
• to execute a critical section, a thread

• acquires a lock that guards it
• executes its code
• releases the lock

The effect is to synchronize/order the access of threads wrt their accessing
shared data

Winter 2006 CSE 548 - Synchronization 3

Barriers

Barrier synchronization
• a barrier: point in a program which all threads must reach before

any thread can cross
• threads reach the barrier & then wait until all other threads

arrive
• all threads are released at once & begin executing code

beyond the barrier
• example implementation of a barrier:

• set a lock-protected counter to the number of processors
• each thread (assuming 1/processor) decrements it
• when the lock value becomes 0, all threads have crossed the

barrier
• code that implements a barrier is a critical section
• useful for:

• programs that execute in phases
• synchronizing after a parallel loop

Winter 2006 CSE 548 - Synchronization 4

Locking

Locking facilitates access to a critical section.

Locking protocol:
• synchronization variable or lock

• 0: lock is available
• 1: lock is unavailable because another thread holds it

• a thread obtains the lock before it can enter a critical section
• sets the lock to 1

• thread releases the lock before it leaves the critical section
• clears the lock

Winter 2006 CSE 548 - Synchronization 5

Acquiring a Lock

Atomic exchange instruction: swap a value in a register & a value in
memory in one operation
• set the register to 1
• swap the register value & the lock value in memory
• new register value determines whether got the lock

AcquireLock:
li R3, #1 /* create lock value
swap R3, 0(R4) /* exchange register & lock
bnez R3, AcquireLock /* have to try again */

• also known as atomic read-modify-write a location in memory

Other examples
• test & set: tests the value in a memory location & sets it to 1
• fetch & increment: returns the value of a memory location + 1

Winter 2006 CSE 548 - Synchronization 6

Releasing a Lock

Store a 0 in the lock

Winter 2006 CSE 548 - Synchronization 7

Load-linked & Store Conditional

Performance problem with atomic read-modify-write:
• 2 memory operations in one
• must hold the bus until both operations complete

Pair of instructions appears atomic
• avoids need for uninterruptible memory read & write
• load-locked & store-conditional

• load-locked returns the original (lock) value in memory
• if the contents of lock memory has not changed when the store-

conditional is executed, the processor still has the lock
• store-conditional returns a 1 if successful

GetLk: li R3, #1 /* create lock value
ll R2, 0(R1) /* read lock variable
...
sc R3, 0(R1) /* try to lock it
beqz R3, GetLk /* cleared if sc failed
... (critical section)

Winter 2006 CSE 548 - Synchronization 8

Load-linked & Store Conditional

Implemented with special lock-flag & lock-address registers
• load-locked sets lock-address register to memory address & lock-

flag register to 1
• store-conditional updates memory if lock-flag register is still set &

returns lock-flag register value to store register
• lock-flag register cleared when the address is written by another

processor
• lock-flag register cleared if context switch or interrupt

Winter 2006 CSE 548 - Synchronization 9

Synchronization APIs

User-level software synchronization library routines constructed with
atomic hardware primitives
• spin locks

• busywaiting until obtain the lock
• contention with atomic exchange causes invalidations (for

the write) & coherency misses (for the rereads)
• avoid if separate reading the lock & testing it
• spinning done in the cache rather than over the bus

getLk: li R2, #1
spinLoop: ll R1, lockVariable

blbs R1, spinLoop
sc R2, lockVariable
beqz R2, getLk

 (critical section)
st R0, lockVariable

• blocking locks
• block the thread after a certain number of spins

Winter 2006 CSE 548 - Synchronization 10

Synchronization Performance

An example overall synchronization/coherence strategy:
• design cache coherency protocol for little interprocessor contention

for locks (the common case)
• add techniques to avoid performance loss if there is contention for

a lock & still provide low latency if no contention

Have a race condition for acquiring a lock when it is unlocked
• O(n2) bus transactions for n contending processors (write-

invalidate)
• exponential back-off - software solution

• each processor retries at a different time
• successive retries done an exponentially increasing time later

• queuing locks - hardware solution
• lock is passed from unlocking processor to waiting processor
• also addresses fairness

Winter 2006 CSE 548 - Synchronization 11

Atomic Exchange in Practice

Alpha
• load-linked, store-conditional

UltraSPARCs (V9 architecture)
• several primitives

compare & swap, test & set, etc.
Pentium Pro

• compare & swap

