
Winter 2006 CSE 548 - Basics of Pipelining 1

Instruction-Level Parallelism (ILP)

Fine-grained parallelism

Obtained by:
• instruction overlap in a pipeline
• executing instructions in parallel (later, with multiple instruction

issue)

ILP hindered by:
• data dependence: arises from the flow of values through programs
• name dependence: instructions use the same register but no flow of

data between them
• control dependence: arises from the flow of control



Winter 2006 CSE 548 - Basics of Pipelining 2

Pipelining

Implementation technique (but it is visible in the architecture)
• overlaps execution of different instructions
• execute all steps in the execution cycle simultaneously, but on

different instructions
Exploits ILP by executing several instructions “in parallel”
Goal is to increase instruction throughput



Winter 2006 CSE 548 - Basics of Pipelining 3

Pipelining



Winter 2006 CSE 548 - Basics of Pipelining 4

Pipelining

Not that simple!
• pipeline hazards (structural, data, control)

• place a soft “limit” on the number of stages
• increase instruction latency (a little)

• write & read pipeline registers for data that is computed in a
stage

• information produced in a stage travels down the pipeline
with the instruction

• time for clock & control lines to reach all stages
• all stages are the same length which is determined by the

longest stage
• stage length determines clock cycle time

IBM Stretch (1961): the first general-purpose pipelined computer



Winter 2006 CSE 548 - Basics of Pipelining 5

Hazards

Structural hazards
Data hazards
Control hazards
What happens on a hazard

• instruction that caused the hazard & previous instructions complete
• all subsequent instructions stall until the hazard is removed

(in-order execution)
• only instructions that depend on that instruction stall

(out-of-order execution)
• hazard removed
• instructions continue execution



Winter 2006 CSE 548 - Basics of Pipelining 6

Structural Hazards

Cause: instructions in different stages want to use the same resource in
the same cycle
e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:
• more hardware (eliminate the hazard)
• stall (tolerate the hazard)

• less hardware, lower performance
• only for big hardware components



Winter 2006 CSE 548 - Basics of Pipelining 7



Winter 2006 CSE 548 - Basics of Pipelining 8

Data Hazards

Cause:
• an instruction early in the pipeline needs the result produced by an

instruction farther down the pipeline before it is written to a register
• would not have occurred if the implementation was not pipelined

Types
RAW (data: flow), WAR (name: antidependence), WAW (name:

output)
HW solutions

• forwarding hardware (eliminate the hazard)
• stall via pipelined interlocks

Compiler solution
• code scheduling (for loads)



Winter 2006 CSE 548 - Basics of Pipelining 9

Dependences vs. Hazards



Winter 2006 CSE 548 - Basics of Pipelining 10

Forwarding

Forwarding (also called bypassing):
• output of one stage (the result in that stage’s pipeline register) is

bused (bypassed) to the input of a previous stage
• why forwarding is useful

• results are computed 1 or more stages before they are written
to a register

• at the end of the EX stage for computational instructions
• at the end of MEM for a load

• results are used 1 or more stages after registers are read
• if you forward a result to an ALU input as soon as it has been

computed, you can eliminate the hazard or reduce stalling



Winter 2006 CSE 548 - Basics of Pipelining 11

Forwarding Example



Winter 2006 CSE 548 - Basics of Pipelining 12

Forwarding Implementation

Forwarding unit checks whether forwarded values should be used:
• between instructions in ID and EX

• compare the R-type destination register number in EX/MEM
pipeline register to each source register number in ID/EX

• between instructions in ID and MEM
• compare the R-type destination register number in MEM/WB

to each source register number in ID/EX
If a match, set MUX to choose bussed values from EX/MEM or MEM/WB



Winter 2006 CSE 548 - Basics of Pipelining 13

producer producerconsumer



Winter 2006 CSE 548 - Basics of Pipelining 14

Forwarding Hardware

Hardware to implement forwarding:
• destination register number in pipeline registers

(but need it anyway because we need to know which register to
write when storing an ALU or load result)

• source register numbers
(probably only one, e.g., rs on MIPS R2/3000) is extra)

• a comparator for each source-destination register pair
• buses to ship data and register numbers − the BIG cost
• larger ALU MUXes for 2 bypass values



Winter 2006 CSE 548 - Basics of Pipelining 15

Loads

Loads
• data hazard caused by a load instruction & an immediate use of the

loaded value
• forwarding won’t eliminate the hazard

why? data not back from memory until the end of the MEM stage
• 2 solutions used together

• stall via pipelined interlocks
• schedule independent instructions into the load delay slot

(a pipeline hazard that is exposed to the compiler) so that there
will be no stall



Winter 2006 CSE 548 - Basics of Pipelining 16

Loads



Winter 2006 CSE 548 - Basics of Pipelining 17

Implementing Pipelined Interlocks

Detecting a stall situation
Hazard detection unit stalls the use after a load

• is the instruction in EX a load?
• does the destination register number of the load = either source

register number in the next instruction?
• compare the load write register number in ID/EX to each read

register number in IF/ID
⇒ if both yes, stall the pipe 1 cycle



Winter 2006 CSE 548 - Basics of Pipelining 18

Implementing Pipelined Interlocks

How stalling is implemented:
• nullify the instruction in the ID stage, the one that uses the

loaded value
• change EX, MEM, WB control signals in ID/EX pipeline register

to 0
• the instruction in the ID stage will have no side effects as it

passes down the pipeline
• restart the instructions that were stalled in ID & IF stages

• disable writing the PC --- the same instruction will be fetched
again

• disable writing the IF/ID pipeline register --- the load use
instruction will be decoded & its registers read again



Winter 2006 CSE 548 - Basics of Pipelining 19

Loads

hazard detection

fetch again

decode again



Winter 2006 CSE 548 - Basics of Pipelining 20

Implementing Pipelined Interlocks

Hardware to implement stalling:
• rt register number in ID/EX pipeline register

(but need it anyway because we need to know what register to
write when storing load data)

• both source register numbers in IF/ID pipeline register
(already there)

• a comparator for each source-destination register pair
• buses to ship register numbers
• write enable/disable for PC
• write enable/disable for the IF/ID pipeline register
• a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway



Winter 2006 CSE 548 - Basics of Pipelining 21

Control Hazards

Cause: condition & target determined after the next fetch has already been
done

Early HW solutions
• stall
• assume an outcome & flush pipeline if wrong
• move branch resolution hardware forward in the pipeline

Compiler solutions
• code scheduling
• static branch prediction

Today’s HW solutions
• dynamic branch prediction


