
Winter 2006 CSE 548 - Cache Coherence 1

Cache Coherency

Cache coherent processors
• most current value for an address is the last write
• all reading processors must get the most current value

Cache coherency problem
• update from a writing processor is not known to other processors

Cache coherency protocols
• mechanism for maintaining cache coherency
• coherency state associated with a block of data
• bus/interconnect operations on shared data change the state

• for the processor that initiates an operation
• for other processors that have the data of the operation

resident in their caches

Winter 2006 CSE 548 - Cache Coherence 2

A Low-end MP

Winter 2006 CSE 548 - Cache Coherence 3

Cache Coherency Protocols

Write-invalidate
(Sequent Symmetry, SGI Power/Challenge, SPARCCenter 2000)

• processor obtains exclusive access for writes (becomes the
“owner”) by invalidating data in other processors’ caches

• coherency miss (invalidation miss)
• cache-to-cache transfers
• good for:

• multiple writes to same word or block by one processor
• migratory sharing from processor to processor

Winter 2006 CSE 548 - Cache Coherence 4

A Low-end MP

Winter 2006 CSE 548 - Cache Coherence 5

Cache Coherency Protocols

Write-update
(SPARCCenter 2000)
• broadcast each write to actively shared data
• each processor with a copy snoops/takes the data
• good for inter-processor contention

Competitive
(Alphas)
• switches between them

We will focus on write-invalidate.

Winter 2006 CSE 548 - Cache Coherence 6

A Low-end MP

Winter 2006 CSE 548 - Cache Coherence 7

Cache Coherency Protocol Implementations

Snooping
• used with low-end MPs

• few processors
• centralized memory
• bus-based

• distributed implementation: responsibility for maintaining coherence
lies with each cache

Directory-based
• used with higher-end MPs

• more processors
• distributed memory
• multi-path interconnect

• centralized for each address: responsibility for maintaining
coherence lies with the directory for each address

Winter 2006 CSE 548 - Cache Coherence 8

Snooping Implementation

A distributed coherency protocol
• coherency state associated with each cache block
• each snoop maintains coherency for its own cache

Winter 2006 CSE 548 - Cache Coherence 9

Snooping Implementation

How the bus is used
• broadcast medium
• entire coherency operation is atomic wrt other processors

• keep-the-bus protocol: master holds the bus until the entire
operation has completed

• split-transaction buses:
• request & response are different phases
• state value that indicates that an operation is in progress
• do not initiate another operation for a cache block that has

one in progress

Winter 2006 CSE 548 - Cache Coherence 10

Snooping Implementation

Snoop implementation:
• snoop on the highest level cache

• another reason L2 is physically-accessed
• property of inclusion:

• all blocks in L1 are in L2
• therefore only have to snoop on L2
• may need to update L1 state if change L2 state

• separate tags & state for snoop lookups
• processor & snoop communicate for a state or tag change

Winter 2006 CSE 548 - Cache Coherence 11

An Example Snooping Protocol

Invalidation-based coherency protocol
Each cache block is in one of three states

• shared:
• clean in all caches & up-to-date in memory
• block can be read by any processor

• exclusive:
• dirty in exactly one cache
• only that processor can write to it

• invalid:
• block contains no valid data

Winter 2006 CSE 548 - Cache Coherence 12

State Transitions for a Given Cache Block

State transitions caused by:
• events caused by the requesting processor, e.g.,

• read miss, write miss, write on shared block
• events caused by snoops of other caches, e.g.,

• read miss by P1 makes P2’s owned block change from
exclusive to shared
• write miss by P1 makes P2’s owned block change from
exclusive to invalid

Winter 2006 CSE 548 - Cache Coherence 13

State Machine (CPU side)

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU read miss

CPU write miss

CPU read hit

Place read op
on bus

Place write op
on bus

CPU read miss
Place read op on bus
Write-back block

CPU write
Place write op on bus

CPU read miss
Place read op
on bus

CPU write miss
Place write op on bus
Write-back cache block

CPU read hit

CPU write hit

Winter 2006 CSE 548 - Cache Coherence 14

State Machine (Bus side: the snoop)

Invalid
Shared

(read/only)

Exclusive
(read/write)

Write miss for this
block
Write-back the block

Read miss for this block
Write-back the block

Write miss
for this block

Winter 2006 CSE 548 - Cache Coherence 15

Directory Implementation

Distributed memory
• each processor (or cluster of processors) has its own memory
• processor-memory pairs are connected via a multi-path

interconnection network
• snooping with broadcasting is wasteful
• point-to-point communication instead

• a processor has fast access to its local memory & slower access to
“remote” memory located at other processors

• NUMA (non-uniform memory access) machines

Winter 2006 CSE 548 - Cache Coherence 16

A High-end MP

Proc

Interconnection network

$ Proc $ Proc $

Proc $Proc $Proc $

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Winter 2006 CSE 548 - Cache Coherence 17

Directory Implementation

How cache coherency is handled
• no caches (Cray MTA)
• disallow caching of shared data (Cray 3TD)
• software coherence
• hardware directories that record cache block state

Winter 2006 CSE 548 - Cache Coherence 18

Directory Implementation

Coherency state is associated with memory blocks that are the size of
cache blocks
• cache state

• shared:
• at least 1 processor has the data cached & memory is up-

to-date
• block can be read by any processor

• exclusive:
• 1 processor (the owner) has the data cached & memory is

stale
• only that processor can write to it

• invalid:
• no processor has the data cached & memory is up-to-date

• directory state
• bit vector in which 1 means the processor has cached the data
• write bit to indicate if exclusive

Winter 2006 CSE 548 - Cache Coherence 19

Directory Implementation

Directories have different uses to different processors
• home node: where the memory location of an address resides (and

cached data may be there too)
• local node: where the memory request initiated
• remote node: an alternate location for the data if this processor has

requested & cached it

In satisfying a memory request:
• messages sent between the different nodes in point-to-point

communication
• messages get explicit replies

Some simplifying assumptions for using the protocol
• processor blocks until the access is complete
• messages processed in the order received

Winter 2006 CSE 548 - Cache Coherence 20

Read Miss for an Uncached Block

P2

Mem Mem

Mem

Interconnection network

$ P3 $

P4 $P1 $

1: read miss

2: data value reply
 Mem

 Dir

 Mem

 Dir

Winter 2006 CSE 548 - Cache Coherence 21

Read Miss for an Exclusive, Remote Block

P2

Mem

Interconnection network

$ P3 $

P4 $P1 $

1: read miss

4: data value reply
2: fetch Mem

 Dir

 Mem

 Dir

 Mem

 Dir

3: data write-back

Winter 2006 CSE 548 - Cache Coherence 22

Write Miss for an Exclusive, Remote Block

P2

Mem Mem

Interconnection network

$ P3 $

P4 $P1 $

1: write miss

4: data value reply
3: data write-back

2: fetch & invalidate Mem

 Dir

 Mem

 Dir

 Mem

 Dir

Winter 2006 CSE 548 - Cache Coherence 23

Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A
– Processor P writes data at address A;

make P the exclusive owner and arrange to send data back
Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; invalidate the block in
the cache

Data value reply Home directory Local cache Data
– Return a data value from the home memory (read or write miss response)

Data write-back Remote cache Home directory A, Data
– Write-back a data value for address A (invalidate response)

Winter 2006 CSE 548 - Cache Coherence 24

CPU FSM for a Cache Block

States identical to the snooping protocol
Transactions very similar

• read & write misses sent to home directory
• invalidate & data fetch requests to the node with the data replace

broadcasted read/write misses

Winter 2006 CSE 548 - Cache Coherence 25

CPU FSM for a Cache Block

Fetch/Invalidate
Send data write-back

Invalidate
Invalid

Shared
(read/only)

Exclusive
(read/write)

CPU read

CPU read hit

Send read miss

CPU write
Send write miss

CPU write
Send invalidate (write miss)

CPU write hit

CPU read miss

CPU write miss
Send write miss message
Data write-back message

CPU read hit

Fetch
Send data write-back
Read miss
Send read miss
Send data write-back

Winter 2006 CSE 548 - Cache Coherence 26

Directory FSM for a Memory Block

Same states and structure as for the cache block FSM
Tracks all copies of a memory block
Two state changes:

• update coherency state
• alter the number of sharers in the sharing set

Winter 2006 CSE 548 - Cache Coherence 27

Directory FSM for a Memory Block

(Data write-back)
Sharers = {}

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss
Send data reply
Sharers = {P}, W = 0

Write miss
Send invalidate to all
sharers
Send data reply
Sharers = {P}, W = 1

Write miss
Send data reply
Sharers = {P}, W = 1

Read miss
Send data fetch to owner
(Data write-back)
Send data reply
Sharers += {P}, W = 0

Read miss
Send data reply
Sharers += {P}, W = 0

Write miss
Send fetch/invalidate to
owner
(Data write-back)
Send data reply
Sharers = {P}, W = 1

Winter 2006 CSE 548 - Cache Coherence 28

False Sharing

Processors read & write to different words in a shared cache block
• cache coherency is maintained on a cache block basis

• processes share cache blocks, not data
• block ownership bounces between processor caches

Winter 2006 CSE 548 - Cache Coherence 29

A Low-end MP

Winter 2006 CSE 548 - Cache Coherence 30

False Sharing

Impact aggravated by:
• block size: why?
• cache size: why?
• large miss penalties: why?

Reduced by:
• coherency protocols (state per subblock)

• let cache blocks become incoherent as long as there is only
false sharing

• make them coherent if any processor true shares
• compiler optimizations (group & transpose, cache block padding)
• cache-conscious programming wrt initial data structure layout

