
Here are some guidelines for projects whose goal is to write architecture-conscious code
for WaveScalar. We can develop the same sort of guidelines for other projects.

1. Choose an application. Either use one we have found (they will be on the course
web pages) or one of your own choice. The latter might be an algorithm from
your probably research area (if it is not computer architecture, that is). We already
have ideas from computational biology, vision, and graphics. Why do you think
your choice is a good program to execute on a spatial dataflow machine, such as
WaveScalar? Let Andrew know what you have chosen, as an early sanity check.

2. Profile the application to determine its hotspot code. What percentage of the time
is the hotspot executed? Is it small enough to code in WaveScalar assembly if
necessary? Would the second hottest spot be better (not as hot, but smaller)?

3. From eyeballing the source and understanding what the algorithm does, can you
tell if there are independent operations within the same iteration? Across
iterations? Are there independent memory operations within the same iteration?
Across iterations? How (in terms of operations) big are the iterations? Are the
same data memory locations used by multiple operations?

4. Milestone: discuss your application & the reasons for choosing it with me or
Andrew.

5. Compile the hotspot code using WaveScalar’s binary translator. Is it necessary to
compile the whole program, or can you construct a wrapper for the hotspot code
and just compile that (like was done in lcs)? Try to do the latter.

6. Simulate the hotspot on the WaveScalar simulator. How fast does it run? How
much parallelism does it exhibit? What is the performance of the memory
system? Are there any other metrics you think it important to gather before
beginning the WaveScalar-friendly design? Do they need to be added to the
WaveScalar simulator?

7. Milestone: discuss the performance of what will be the baseline for your
algorithmic designs with Andrew and me (make an appointment or come to office
hours).

8. Rework the hotspot code to make it WaveScalar-friendly. Some avenues you
might explore are:
• Exploiting more parallelism, i.e., creating more threads and, in particular,

lightweight threads.
• Using fewer memory operations, i.e., point-to-point operand transmission

rather than reloading a value.
• Using unordered memory operations for code that has no data dependences.

9. How much faster is the new code and why?

Now there are alternative paths you could take. Things of this nature may or may not
be doable in a quarter.
10. Are there other ways in which you could improve the performance of your code?

What is your evidence for thinking this? (Make sure you have experimental
evidence before embarking down this path. But if you do, what about:

• Changing the configuration of some key components of the WaveScalar
microarchitecture (your hypothesis spells out why your application is sensitive
to the design of this component, right?)

• Adding new components to the WaveScalar microarchitecture (same)
• How well does your new WaveScalar microarchitecture execute other

programs? We have applications from SPEC, SPLASH2 and Mediabench
you can use.

11. Put the hotspot results in context by comparing them to those you get when the
hotspot is simulated in its application.

12. Most parallel machines today can only support coarse-grain parallelism (or ILP),
because inter-thread communication is so expensive. WaveScalar is currently the
only architecture which can support granularities of parallelism of arbitrary size.
Take advantage of this by coarse-grain parallelizing the application and fine-grain
parallelizing the hot spot within each coarse-grain thread.

13. WaveScalar may or may not benefit from traditional compiler optimizations,
which usually assume a target machine that looks like a superscalar. For
example, it may be better to repeat calculations than apply common subexpression
elimination and ship the resulting value to all consumer instructions of the
expression. Implement the effect of a compiler optimization on your code. Does
it help or hurt, and why?

14. Milestone: discuss your new design & results with Andrew and me (make an
appointment or come to office hours).

15. Write the report.

