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Abstract 
Volume rendering is a useful visualization technique for under- 
standing the large amounts of data generated in a variety of scien- 
tific disciplines. Routine use of this technique is currently limited 
by its computational expense. We have designed a parallel volume 
rendering algorithm for MIMD architectures based on ray tracing 
and a novel task queue image partitioning technique. The combi- 
nation of ray tracing and MIMD architectures allows us to employ 
algorithmic optimizations such as hierarchical opacity enumera- 
tion, early ray termination, and adaptive image sampling. The use 
of task queue image partitioning makes these optimizations effi- 
cient in aparallel framework. We have implemented our algorithm 
on the Stanford DASH Multiprocessor, a scalable shared-memory 
MIMD machine. Its single address-space and coherent caches pro- 
vide programming ease and good performance for our algorithm. 
With only a few days of programming effort, we have obtained 
nearly linear speedups and near real-time frame update rates on a 
48 processor machine. Since DASH is constructed from Silicon 
Graphics multiprocessors, our code runs on any Silicon Graphics 
workstation without modification. 

1 Introduction 

Volume visualization techniques are becoming of key importance 
in the analysis and understanding of multidimensional sampled 
data. The usefulness of volume rendering for visualizing such 
data has been demonstrated [6,12]. but the computational expense 
of this technique limits its routine and interactive use. In most 
volume rendering algorithms, resampling and compositing of the 
voxel array to form image space samples constitutes the single 
greatest computational expense. 

A key advantage of ray tracing [12] over other volume resam- 
pling techniques [6, 8. 191 is that algorithmic optimizations have 
been developed which significantly reduce its image generation 
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time. Examples of these optimizations are hierarchical opacity 
enumeration, early ray termination, and spatially adaptive image 
sampling [13, 14, 16, 181. Optimized ray tracing is the fastest 
known sequential algorithm for volume rendering. Nevertheless, 
the computational requirements of the fastest sequential algorithm 
still preclude real-time volume rendering on the fastest computers 
today. 

Parallel machines offer the computational power to achieve real- 
time volume rendering on usefully large datasets. This paper con- 
siders how parallel computing can be brought to bear in reducing 
the computation time of volume rendering. We have designed 
and implemented an optimized volume ray tracing algorithm that 
employs a novel task queue image partitioning technique on the 
Stanford DASH Multiprocessor [lo], a scalable shared-memory 
MIMD (Multiple Instruction, Multiple Data) machine consisting 
of up to 64 (currently 48) high-performance RISC microproces- 
sors. Shared-memory architectures permit straightforward imple- 
mentations of our algorithm. The optimized ray tracer required 
only a few days to parallelize on DASH, as compared to several 
weeks to implement a similar algorithm using message-passing 
on the Intel iPSC/860 [4]. Performance results demonstrate that 
our parallel ray tracer achieves good speedups despite requiring 
communication of 3D voxel values. When the 64 processor ver- 
sion of DASH is available in a few months, we expect to obtain 
frame update rates of 4 frames/set on 2563 voxel datssets and 15 
frames/set on 1283 voxel datasets. 

The paper is organized as follows. Section 2 presents the de- 
velopment of our parallel volume rendering algorithm for MIMD 
machines. Section 3 describes the architecture of DASH and dis- 
cusses implementation issues for the algorithm on the target ma- 
chine. Section 4 discusses the performance of the algorithm on 
DASH. Finally, we present conclusions and possibilities for future 
work. 

2 A Parallel Rendering Algorithm 

Optlmlzed Ray Tracing. Our parallel volume rendering algo- 
rithm is based on ray tracing as described in [12]. Rays are cast 
from the viewing position through the volume data. The data is 
resampled at evenly spaced locations along each ray by trilinearly 
interpolating values of surrounding voxels. Finally, ray samples 
are composited to produce an image. The algorithms used for hier- 
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archical opacity enumeration, early ray termination, and adaptive 
image sampling are from [13. 141. Hierarchical opacity enumer- 
ation is performed by using a binary octree to avoid unneces- 
sary resampling in transparent regions of the volume. Early ray 
termination is performed by terminating resampling along a ray 
when its accumulated opacity exceeds a user-selected threshold of 
opaqueness. Adaptive image sampling is performed by dividing 
the image plane into square sample regions measuring w mao pix- 
els on a side and casting rays only from the four comer pixel of 
each region. Additional rays are cast only in those sample regions 
with high image complexity, as measured by the color difference 
of the comer pixels of the region. Any untraced pixels are then 
bilinearly interpolated from the traced pixels. Normals, opacities, 
and the octree are computed as a preprocessing step. A lookup 
table containing color as a function of local voxel gradient is used 
to accelerate shading. 

Task Queue Image Partitioning. Using a MlMD architecture, 
rays can be efficiently traced in parallel. Strategies for partitioning 
the ray tracing computation among the processors generally fall 
into two classes: static and dynamic. There are two basic options 
for static partitioning: contiguous and interleaved. Contiguous 
partitioning divides the image plane into a few large blocks and 
statically assigns one block to each processor [5, 201. Interleaved 
partitioning divides the image plane into many small image tiles 
and assigns the tiles to processors in round-robin order such that 
each procesrmr computes multiple tiles from different regions of 
the image plane. Contiguous schemes for volume rendering suf- 
fer from poor load distribution because different sections of the 
image differ in image complexity, and the distribution of image 
complexity changes with viewing position. Interleaved partition- 
ing distributes load better, but image tiles must be so small to 
achieve even modest load distribution that there will be excessive 
overlapping voxel accesses. 

Dynamic partitioning divides the image plane into image tiles 
and places the tiles on a single work queue. Processors grab 
tiles from the work queue to ray trace until the queue is empty. 
Dynamic partitioning provides better load distribution than static 
partitioning, but the centralized point of control becomes a bot- 
tleneck as more processors are used. Dynamic as well as static 
interleaved partitioning also incur excessive costs associated with 
pixel sharing in adaptive image sampling, as discussed later this 
section. 

To distributing the ray tracing computation among the proces- 
sors, we employ a hybrid scheme that provides good load distribu- 
tion and reduces overlapping voxel accesses, described as follows: 

1. For P processors, the image plane is statically partitioned 
into P contiguous rectangular blocks of comparable sire. 

2. Each image block is divided into fixed size square image 
tiles 

3. Each processor is statically assigned an image block and 
starts ray tracing the tiles in that block in scan line order. 

4. When a processor is done computing its block, it goes to the 
next processor in scan line order that is not done computing 

and grabs tiles in that processor’s image block to ray trace. 
Processors compute until all the tiles are completed. 

Figure 1 illustrates a four processor example of how the image 
plane is partiti.oned. 

~a& proc..,or ie initially amniqnad 
on. of thorn. imag. blocks. 

I 
1 I 

If . proc.m.or finisham l rly, it 
grabs m unprocamod image tile much 
.a thim on. from l nothar proc...or.- 

Figure 1: Task queue image partitioning example. 

The motivation for using image tiles as the unit of parallelism 
instead of scan lines [3, 5. 201 and for assigning spatially adja- 
cent tiles to the same processor is to minimize overlapping voxel 
accesses and to reduce the costs associated with pixel sharing 
in adaptive image sampling. The tiles, initially assigned to one 
processor but available for grabbing by other processors, can be 
thought of as a queue of tasks. Because it is dynamic, such a task 
queue image partitioning scheme provides better load distribution 
than static partitioning schemes, as demonstrated in Section 41. In 

addition, there are as many task queues as there are processors 
and the management of the queues is distributed, thereby provid- 
ing better scalability by avoiding the bottleneck of a centralized 
point of control in typical dynamic schemes. 

Pixel Sharing in Adaptive Image Sampling. While there are 
no computational dependencies between image tiles in nonadap- 
tive ray tracing, there are such dependencies with adaptive image 
sampling. This pixel sharing arises because adjacent image sam- 
ple regions share the corner pixel values required for measuring 
their image complexity. Note that sample regions are equal to 
or smaller than image tiles. The dependencies require replicated 
computation of rays or synchronized communication of the shared 
pixels. Our adaptive image sampling method avoids the cost of 
replicated ray tracing by communicating pixel values. Since task 
queue partitioning results in adjacent image tiles usually being 
ray traced by the same processor, the synchronization overhead is 
small. In the small percentage of cases where adjacent image tiles 
are ray traced by different processors, we delay the evaluatio:n of 
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sample regions whose pixel values are being computed by other 
processors as follows: 

1. Given an image sample region, ray trace those of the four 
corner pixels which have not already been ray traced during 
processing of adjacent sample regions or are not currently 
being ray traced by other processors as part of processing an 
adjacent region. 

2. Measure the image complexity of the sample region by com- 
puting the color difference of those of the corner pixels that 
have been ray traced. Pixels currently being ray traced by 
other processors are simply not included in the computation. 

3. If the color difference is larger than a user-selected color 
threshold, subdivide the sample region and recursively ray 
trace the subregions. 

4. Otherwise, if some of the comer pixels are currently being 
ray traced by other processors. store the state of the sample 
region in a local wait queue. If not, simply proceed to the 
next region. 

5. After all task queues have been emptied of image tiles, ray 
trace any sample regions stored in the local wait queue. 

6. For each sample region in the local wait queue, perform steps 
two through four, but this time instead of storing the state 
of a sample region when some of its comer pixels are being 
traced by other processors, busy wait until all are ray traced. 

This method reduces the cost of waiting for pixel values to be 
traced on other processors in two ways. First, it tries to make a 

subdivision decision based on available information. Failing that, 
it switches to a sample region on which useful work can be done. 

Data Distribution. A potential disadvantage of our parallel ray 
tracing algorithm is that it requires the communication of 3D voxel 
values. Since high-performance MIMD machines are designed to 
be configured with large numbers of processors, physical memory 
is necessarily distributed among the processors r. Thus, paralleliz- 
ing volume rendering for MIMD architectures requires not only 
partitioning the computation among the processors, but also par- 
titioning the data among the local memories and communicating 
the data among the processors. When a given processor resam- 
ples a region of the volume and finds that a voxel it needs for 
the computation is not in its local memory, communication with 
other processing nodes is required. Given that voxels are read- 
only, full data replication has been proposed to eliminate the voxel 
communication associated with ray tracing [20]. But this option 
makes poor utilization of memory resources and does not scale 
with dataset size, making it too expensive for most cases. 

Our parallel ray tracing algorithm distributes data in an inter- 
leaved fashion among the local memories to avoid hot spotting. 

‘Note that “distributed memory” refers to having memory physically 
distributed. This is not mutuahy exclusive with “shared-memory”, which 
refers to having a single address space. ‘Ibis terminology is admittedly 

confusing, but it is tot late to change standard usage. 

This scheme employs the usual linearized array structure for vox- 
els, and distributes pages of these arrays in round-robin fashion 
among the local memories. 

3 Implementation on DASH 
The DASH Architecture. We have implemented the parallel 
volume rendering algorithm on the DASH (Directory Architecture 
for SHared memory) Multiprocessor, a scalable shared-memory 
MIMD machine under construction in the Computer Systems Lab- 
oratory at Stanford University. DASH is designed to be a general- 
purpose machine capable of supporting a wide variety of applica- 
tions. 

The architecture consists of a set of processor clusters connected 
by a scalable interconnection network. A four cluster diagram 
of the system is shown in Figure 2. Each cluster consists of a 

Request Mesh 

Reply Mesh L 
z-- A 

I- - 

Figure 2: Block diagram of a 2 x 2 DASH system. 

small number of high-performance processors and a portion of the 
machine’s memory interconnected by a bus. Although the memory 
of the machine is partitioned and distributed among the clusters 
for scalability, DASH provides a single address space, enhancing 
programmabiiity by alleviating the user from much of the burden 
associated with data partitioning in a parallel machine. To sustain 

high-performance, DASH provides caching of memory, including 
shared writable data, to reduce memory latency. By associating a 
directory with each cluster’s main memory that keeps track of all 
memory blocks cached in other clusters, a distributed directory- 
based protocol [9] with an intracluster snoopy bus-based protocol 
[15] provides coherent caches, keeping memory consistent among 
the processors. 

The latency of a memory access depends on where it is ser- 
viced in the memory system of DASH. The memory system can 
be broken into four levels of hierarchy: processor, local cluster, 
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home cluster, and remote cluster. At the processor level of the 
hierarchy is a small fast cache &signed to match the processor 
speed. When a processor requests a given piece of data. the re- 
quest first goes to its own cache. If the data is not in the cache, the 
request goes to the local cluster level. If the data is cached in one 
of the processor caches in the cluster, the request can be serviced 
at the local cluster level. Otherwise, the request must be sent to 
the home cluster which contains the directory and physical mem- 
ory of the given memory address. Note that for some accesses, 
the home cluster and local cluster are the same, but often they 
are not and the request is communicated over the network. The 
home cluster can usually service the request immediately, unless 
the directory indicates that the data in memory is not updated or 
the request is for exclusive access to data that is cached in other 
clusters. In these cases, the request goes to the remote cluster 
level, consisting of all processor caches other than those in the 
local or home cluster. If the data in memory is not updated, the 
request is forwarded to the remote cluster with the updated copy 
of data to be serviced. If the request is for exclusive access, re- 
mote clusters caching the data invalidate their copies of the data. 
Since intercluster memory accesses can have latencies of over a 
hundred processor cycles, good performance requires that the vast 
majority of memory requests be serviced within clusters. 

The current DASH prototype consists of twelve processor clus- 
ters, with each cluster having four processing nodes for a to- 
tal of 48 nodes. Each cluster is a modified Silicon Graphics 
Power Station 4D/340 [l], which consists of four 33 MHz MIPS 
R3000 processors with R3010 floating-point coprocessors. The 
R3OOO/R3010 CPU is rated at 25 VAX MIPS and 10 MFLGPS. 
Each of the .four CPUs contains a 64 Kbyte first-level instruction 
cache, a 64 Kbyte first-level data cache, and a 256 Kbyte second- . 
level data cache. Caches are direct-mapped with line size of 16 
bytes. The single address space in DASH is distributed among the 
clusters, each cluster having 16 Mbytes of main memory, of which 
14 Mbytes are available to the user, CPUs within clusters are con- 
nected by a 64 Mbytes/set bus. while clusters are connected by a 
120 Mbytes/set 2D mesh network. 

Programming DASH for Volume Rendering. DASH’s archi- 
tectural support for shared-memory makes the implementation of 
the volume rendering algorithm easy. Our implementation was 
done in C with Argonne National Laboratory (ANL) parallel 
macros [2] for shared-memory programming primitives. Proces- 
sors share access to all large data structures, such as the voxel 
array, shading table, octree, and image array. The data storage 
requirements of our implementation are roughly four bytes per 
voxel: one byte for original data samples, one byte for opaci- 
ties, one bit for octree values, and about two bytes for normals. 
Normals are stored as 13-bit quantities: 6 bits each for Y and 2 
normal components, 1 bit for the X component. The normals are 
used to index a 2i3 entry lookup table for efficient shading [20]. 
Since DASH is constructed from Silicon Graphics multiproces- 
sors, our code runs on any Silicon Graphics workstation without 
modification. 

On DASH, the operating system can take care of the assign- 

ment of memory pages to cluster memories or the user can specify 
the initial ass:ignment explicitly. We use the interleaved mapping 
mentioned in Section 2 to explicitly distribute the pages of voxels 
and other shared data to the cluster memories. The pages are al- 
located only from clusters that are actively being used, as long as 
there is enopgh physical memory in those clusters. As for the nec- 
essary data communication in our distributed data implementation, 
the DASH hardware manages the movement of data automatically 
without requiring the programmer to write explicit communication 
calls. The programmer does not need to keep track of where all 
the data is in the memory system. Since all voxel data is read- 
only, the system can always cache multiple copies of voxel data 
without invalidating voxel data present in one processor’s cache 
because another processor wants to mcdii the voxel data. The 
system will therefore automatically partially replicate the data in 
the caches to reduce intercluster memory accesses, thereby making 
effective utilization of memory and network resources. 

4 Performance Results and Analysjis 

Experimental Setup. To demonstrate the performance of our 
parallel ray tracer on DASH, we present results from case stud- 
ies in medical imaging and molecular graphics. The results from 
medical imaging are based on rendering bony tissues of CT (com- 
puter tomography) datasets of a human head. The datasets are 256 
x 256 x 226 voxels and 128 x 128 x 113 voxels. The calculation 
of opacities from input values uses the region boundary surface 
method of [ 123. The results from molecular graphics are based on 
rendering concentric semi-transparent surfaces of a 300 x 300 x 91 
voxel portion of an electron density map of staphylococcus aureus 
ribonuclease. The calculation of opacities from input values: for 
this dataset uses the isovalue contour surface method of [12]. 

Results for nonadaptive and adaptive renderings are presented, 
as they represent differing degrees of image quality. These results 
are based on measurements of rendering time and do not include 
image I/O time or the time associated with fixed initialization c:osts 
such as loading in the dataset. All renderings used an opacity value 
of 0.95 as the threshold level for early ray termination. When 
performing adaptive image sampling, an initial grid spacing of 

W?IlaZ = 4 (defined in Section 2) was used along with a minimum 
color difference of 16. An 8 x 8 pixel image tile size was chosen 
for task queue partitioning to provide good load distribution and 
minimize task queue synchronization. 

Rendering Times and Speedups. Figures 3 and 4 show a non- 
adaptively and adaptively rendered visualization of the 256 x 256 x 
226 voxel CT dataset of the human head rendered on DASH. Fig- 
ure 5 shows an adaptively rendered visualization of the 300 x ‘300 
x 91 voxel electron density map of the ribonuclease. Rendering 
times on DASH for these images, as well as those for other case 
studies are given in Table 1. 

We calculated speedups on DASH relative to the performance 
of a sequential version of our ray tracer on a single processor of 
an SGI 4D/320 VGX workstation. Our SGI 4D/320 platform has 
the same CPUs and cache sizes as DASH, but contains 64 Mbytes 
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dataset name head 

dataset size (voxels) 256x256~226 
imaae size (vixelsl 416x416 

headsmall 
128x128~113 

209x209 

ribonuclease 
300x300x91 

432x432 
rendering quality nonadaptive adaptive nonadaptive adaptive nonadaptive adaptive 
# of traced rays 173056 21723 43681 7844 186624 38141 
# of samples trilirped 618428 245132 87683 62337 882553 456258 
retiring time (ms) 700 340 120 90 850 480 
sveeduv over univrocessor 40 33 40 30 40 33 

Table 1: Rendering times and speedups (48 processors). 

Figure 3: Nonadaptively rendered image of CT dataset. 

of local main memory as opposed to only 14 Mbytes of usable 
local memory in each DASH cluster. Speedups are calculate-d 
with respect to the SC1 workstation instead of a single processor 
on DASH to account for any intercluster memory accesses that 
may occur for the larger datasets due to their voxel storage re- 
quirements exceeding the amount of memory in a single DASH 
clustera. Speedup curves are plotted for nonadaptive and adaptive 
renderings of the 256 x 256 x 226 voxel CT dataset in Figure 6. 
Other speedup results are similar, as shown in Table 1. Nearly 
linear speedups were also measured for our ray tracer even with- 
out using an octree, demonstrating that the algorithm has good 
performance even if effective use cannot be made of an octree. 

Load Distribution. We ascribe the nearly linear speedup of our 
renderer partly to good load distribution. The distribution was 
measured by timing the rendering computation on each proces- 

%e SGI workstation actually has slightly better uniprocessor render- 
ing times than DASH even when there are no intercluster accesses due to 
cluster memory limits, as is the case for rendering the 128 x 128 x 113 
voxel dataset. This is because the SGI machine fetches 64 byte cache lines 
instead of 16 byte lines as on DASH. 

Figure 4: Adaptively rendered image of CT dataset. 

SOT. For nonadaptive and adaptive renderings of the 256 x 256 x 
226 voxel CT dataset on 48 processors of DASH, the variation in 
rendering time among processors was measured to be less than 4 
percent for our algorithm. For comparison we also implemented 
a static interleaved image partitioning algorithm on DASH. Com- 
parison results for nonadaptive rendering are presented in Table 2, 
which lists the range and variation of execution times across the 48 
processors for each partitioning method. Results for static inter- 
leaved partitioning are given for the image tile sizes that resulted 
in the best rendering time for that method. The variation in ex- 
ecution time among the processors is only 20 ms for task queue 
partitioning, as compared to more than five times that amount for 
static interleaved partitioning. 

Memory and Synchronization Overhead. We also ascribe the 
nearly linear speedup of our renderer to low memory and synchro- 
nization overhead, as measured using MTOOL 171, a performance 
debugging tool. Table 3 presents results characterizing the behav- 
ior of the renderer on a single processor of the SGI workstation 
and on 48 processors of DASH. These results are based on non- 
adaptive and adaptive renderings of the 256 x 256 x 226 voxel 
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Figure 5: Adaptively rendered image of electron density map. 

1 Dartitioniwz used 11 task aueue 1 static interleaved I 
image tile size 8x8 I 8x8 I 4x4 
min-max time 11 680-700 ms 1 570-780 ms 1 690-800 ms 

variation in time II 20ms I 210 ms I 110ms I 

Table 2: Load distribution (48 processors). 

CT dataset. 
As shown in Table 3, memory overhead is not the dominant 

percentage of execution time. Although the increase in memory 
stall time over the SC1 uniprocessor case is 84 percent for non- 
adaptively rendering on 48 processors of DASH, only 20 percent 
of the uniprocessor execution time is due to memory overhead, and 
only 30 percent of the 48 processor execution time is due to mem- 
ory overhead. Memory overhead is larger for adaptive rendering 
because of 3ccesses to additional shared writable data structures 
not needed In nonadaptive rendering, and because of reduced lo- 
cality of voxel accesses due to the sparsity of rays cast. The large 
increase in memory stall time does not have a significant effect 
on the percentage of execution time due to memory overhead be- 
cause of good cache performance and a higher than expected ratio 
of computations to voxel accesses, as verified by disassembling the 
ray tracing kernel code. Just trilinearly interpolating a ray sample 
requires the execution of roughly 320 assembly code instructions, 
of which only 16 instructions (8 for normals, 8 for opacities) are 
voxel accesses. This result is somewhat surprising, and suggests 
that counting the number of arithmetic operations in the filtering 
and compositing expressions themselves is not representative of 
the true cost of volume rendering; address calculations and loads 
and stores of non-voxel data in fact dominate. 

The caches on DASH are important to the performance of our 
algorithm because they reduce the frequency of expensive inter- 
cluster accesses when referenced data is not stored in the memory 
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Figure 6: Speedups for Nonadaptive and Adaptive Rendering. 
(Note that adaptive exhibits worse speedup than nonadaptive, ren- 
dering, but has lower rendering time. See Table 1.) 

local to the processor. With data caching turned off, nonadaptive 
speedups are only 23 times with respect to the uniprocessor case 
without caching. Of course, ren&ring times are much slower. 
Rendering the 256 x 256 x 226 voxel CT dataset nonadaptively 
on 48 processors without caching takes 2.7 seconds, about 3.9 
times longer than with caching. 

Table 3 also shows that synchronization overhead is a small 
percentage of execution time for both nonadaptive and adaptive 
rendering. Since processors wait until all processors have finished 
rendering one frame before rendering the next one, the synchro- 
nization idle time includes the time due to variations in rendering 
time. Other synchronization time is due to waiting for all pmces- 
sors to complete shading table computations before ray tmsing. 
For the adaptive case, additional synchronization time is due to 
waiting for all processors to complete ray tracing before untraced 
pixels are interpolated from the traced pixels. 

Temporal Locality. The data caches on DASH allow our algo- 
rithm to exploit interframe temporal locality to reduce memory 
overhead in multiple frame rotation sequences. Since successive 
frames in rotation sequences only vary slightly in viewpoint, much 
of the voxel data brought into the cache for rendering a given frame 
may still be cached and reused on subsequent frames, thereby re- 
ducing cache read misses on subsequent frames. We measured the 
effects of interframe temporal locality for a ten frame sequence 
with viewpoint rotation of 3 degrees between frames. The data 
caches were completely flushed between frames to measure the 
rotation sequence without interframe effects. 

While there is no mechanism to directly measure first-level 
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rendering quality nonadaptive adaptive 

rendering platform 1 proc. SGI 48 proc. DASH 1 proc. SGI 48 proc. DASH 

CPU utilization 80% 67% 76% 54% 

percentage of rendering time due to memory overhead 20% 30% 24% 38% 

increase in memory overhead over 1 proc. SGI 0% 84% 0% 142% 

Dercentane of renderinp time due to idle svnchronization 0% 3% 0% 8% 

Table 3: Memory and synchronization overhead. 

cache misses, we did use the hardware performance monitor on 
DASH [l l] to measure the difference in the number of second- 
level cache read misses with and without interframe effects. The 
vast majority of these read references were for data whose home 
cluster was not the local cluster. We measured these read misses 
on remote data and found that interframe effects do not notice- 
ably affect the number of read misses on remote data that can 
be serviced by another processor’s cache within the local clus- 
ter. But interframe effects do noticeably affect the number of 
read misses on remote data that cannot be serviced at the local 
cluster level and must be serviced over the network. Figure 7 
shows the average number of these remote read misses per cluster 
for nonadaptively and adaptively rendering the 256 x 256 x 226 
and 128 x 128 x 113 CT datasets. The figure shows that inter- 
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Figure 7: Temporal locality effects (48 processors). 

frame effects do reduce cache misses of remote data which cannot 
be serviced at the local cluster level. These remotely serviced 
misses are reduced by as much as 50 percent due interframe ef- 
fects, as for the case of adaptively rendering the 128 x 128 x 113 
voxel CT dataset. Nevertheless, the difference in misses with and 
without interframe effects is no more than 15,000 references per 
four-processor cluster for any of the cases in Figure 7. Given that 
remote access latency is about 3 ~LS for reading shared data, this 
difference amounts to only about a 10 ms (3~s*15000 references 
/4 processors) maximum difference in rendering time. 

We also directly measured the rendering time with and without 

interframe effects. For any given frame of the 256 x 256 x 226 
voxel CT dataset, the rendering time without interframe effects 
was no more than 20 ms longer than the rendering time with 
interframe effects. For the 128 x 128 x 113 voxel CT dataset, the 
difference in rendering times with and without interframe effects 
was less than 10 ms. Although interframe temporal locality does 
significantly reduce expensive intercluster voxel accesses, it has 
little effect on rendering performance because these accesses do 
not represent a dominant percentage of the rendering time. 

5 Conclusions and Future Work 

We have presented a parallel ray tracing algorithm that takes ad- 
vantage of hierarchical opacity enumeration, early ray termina- 
tion, and adaptive image sampling. Our algorithm uses a task 
queue image partitioning scheme to provide good load distribution 
and reduce overlapping voxel accesses. It was easy to implement 
the algorithm on the Stanford DASH Multiprocessor because of 
its architectural support for shared-memory. Performance results 
on DASH demonstrate that our algorithm achieves nearly linear 
speedups and fast rendering times. Although DASH is designed 
to be a general-purpose machine, its combination of programming 
ease and high performance make such scalable shared-memory 
MIMD machines well-suited for volume rendering. Perhaps the 
most important lesson here is that, given a suitable architecture, 
parallelization of volume rendering need not require intricate al- 
gorithms that require weeks of programming. 

It would be interesting to consider the performance of our al- 
gorithm on other architectures. An implementation for message- 
passing machines could be done using software managed voxel 
caches to reduce communication, although our experience indi- 
cates that it would require significantly more time to program. 
An alternative large-scale multiprocessor to consider is a cache 
only memory architecture (COMA) [17]. Its dynamic migration 
and replication of data at the main memory level may prove even 
more ideal for volume rendering. 

The analysis of memory performance presented in this paper ad- 
mittedly focuses on aggregate behavior. A more thorough study 
would include examining the cache contents at each moment dur- 
ing image generation. We have not aggressively pursued this line 
of inquiry because, for this algorithm and architecture, memory 
overhead is not the dominant component of image generation cost. 
We are currently investigating alternative volume rendering algo- 
rithms that drastically reduce the number of arithmetic and non- 
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arithmetic instructions executed. If successful, these algorithms 
may cause us to reexamine the issues of cache contents and inter- 
frame temporal locality in greater detail. 
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