
Volume Rendering
on Scalable Shared-Memory MIMD Architectures

Jason Nieh and Marc Levoy
Computer Systems Laboratory

Stanford University

Abstract
Volume rendering is a useful visualization technique for under-
standing the large amounts of data generated in a variety of scien-
tific disciplines. Routine use of this technique is currently limited
by its computational expense. We have designed a parallel volume
rendering algorithm for MIMD architectures based on ray tracing
and a novel task queue image partitioning technique. The combi-
nation of ray tracing and MIMD architectures allows us to employ
algorithmic optimizations such as hierarchical opacity enumera-
tion, early ray termination, and adaptive image sampling. The use
of task queue image partitioning makes these optimizations effi-
cient in aparallel framework. We have implemented our algorithm
on the Stanford DASH Multiprocessor, a scalable shared-memory
MIMD machine. Its single address-space and coherent caches pro-
vide programming ease and good performance for our algorithm.
With only a few days of programming effort, we have obtained
nearly linear speedups and near real-time frame update rates on a
48 processor machine. Since DASH is constructed from Silicon
Graphics multiprocessors, our code runs on any Silicon Graphics
workstation without modification.

1 Introduction

Volume visualization techniques are becoming of key importance
in the analysis and understanding of multidimensional sampled
data. The usefulness of volume rendering for visualizing such
data has been demonstrated [6,12]. but the computational expense
of this technique limits its routine and interactive use. In most
volume rendering algorithms, resampling and compositing of the
voxel array to form image space samples constitutes the single
greatest computational expense.

A key advantage of ray tracing [12] over other volume resam-
pling techniques [6, 8. 191 is that algorithmic optimizations have
been developed which significantly reduce its image generation

Author’s addresses: Jason Nieh, Stanford University, ERL 411, Stanford,
CA 94305. e-mail nieh@leland.stanford.edu; Marc Levoy, Stanford Uni-
versity, CIS 207. Stanford, CA 94305, email levoy@cs.stanford.edu.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

1992 Workshop on Volume Visualization/l 0/92/Boston, MA

@ 1992 ACM 0-89791-528-3/92/0010/0017...$1.50

time. Examples of these optimizations are hierarchical opacity
enumeration, early ray termination, and spatially adaptive image
sampling [13, 14, 16, 181. Optimized ray tracing is the fastest
known sequential algorithm for volume rendering. Nevertheless,
the computational requirements of the fastest sequential algorithm
still preclude real-time volume rendering on the fastest computers
today.

Parallel machines offer the computational power to achieve real-
time volume rendering on usefully large datasets. This paper con-
siders how parallel computing can be brought to bear in reducing
the computation time of volume rendering. We have designed
and implemented an optimized volume ray tracing algorithm that
employs a novel task queue image partitioning technique on the
Stanford DASH Multiprocessor [lo], a scalable shared-memory
MIMD (Multiple Instruction, Multiple Data) machine consisting
of up to 64 (currently 48) high-performance RISC microproces-
sors. Shared-memory architectures permit straightforward imple-
mentations of our algorithm. The optimized ray tracer required
only a few days to parallelize on DASH, as compared to several
weeks to implement a similar algorithm using message-passing
on the Intel iPSC/860 [4]. Performance results demonstrate that
our parallel ray tracer achieves good speedups despite requiring
communication of 3D voxel values. When the 64 processor ver-
sion of DASH is available in a few months, we expect to obtain
frame update rates of 4 frames/set on 2563 voxel datssets and 15
frames/set on 1283 voxel datasets.

The paper is organized as follows. Section 2 presents the de-
velopment of our parallel volume rendering algorithm for MIMD
machines. Section 3 describes the architecture of DASH and dis-
cusses implementation issues for the algorithm on the target ma-
chine. Section 4 discusses the performance of the algorithm on
DASH. Finally, we present conclusions and possibilities for future
work.

2 A Parallel Rendering Algorithm

Optlmlzed Ray Tracing. Our parallel volume rendering algo-
rithm is based on ray tracing as described in [12]. Rays are cast
from the viewing position through the volume data. The data is
resampled at evenly spaced locations along each ray by trilinearly
interpolating values of surrounding voxels. Finally, ray samples
are composited to produce an image. The algorithms used for hier-

17

archical opacity enumeration, early ray termination, and adaptive
image sampling are from [13. 141. Hierarchical opacity enumer-
ation is performed by using a binary octree to avoid unneces-
sary resampling in transparent regions of the volume. Early ray
termination is performed by terminating resampling along a ray
when its accumulated opacity exceeds a user-selected threshold of
opaqueness. Adaptive image sampling is performed by dividing
the image plane into square sample regions measuring w mao pix-
els on a side and casting rays only from the four comer pixel of
each region. Additional rays are cast only in those sample regions
with high image complexity, as measured by the color difference
of the comer pixels of the region. Any untraced pixels are then
bilinearly interpolated from the traced pixels. Normals, opacities,
and the octree are computed as a preprocessing step. A lookup
table containing color as a function of local voxel gradient is used
to accelerate shading.

Task Queue Image Partitioning. Using a MlMD architecture,
rays can be efficiently traced in parallel. Strategies for partitioning
the ray tracing computation among the processors generally fall
into two classes: static and dynamic. There are two basic options
for static partitioning: contiguous and interleaved. Contiguous
partitioning divides the image plane into a few large blocks and
statically assigns one block to each processor [5, 201. Interleaved
partitioning divides the image plane into many small image tiles
and assigns the tiles to processors in round-robin order such that
each procesrmr computes multiple tiles from different regions of
the image plane. Contiguous schemes for volume rendering suf-
fer from poor load distribution because different sections of the
image differ in image complexity, and the distribution of image
complexity changes with viewing position. Interleaved partition-
ing distributes load better, but image tiles must be so small to
achieve even modest load distribution that there will be excessive
overlapping voxel accesses.

Dynamic partitioning divides the image plane into image tiles
and places the tiles on a single work queue. Processors grab
tiles from the work queue to ray trace until the queue is empty.
Dynamic partitioning provides better load distribution than static
partitioning, but the centralized point of control becomes a bot-
tleneck as more processors are used. Dynamic as well as static
interleaved partitioning also incur excessive costs associated with
pixel sharing in adaptive image sampling, as discussed later this
section.

To distributing the ray tracing computation among the proces-
sors, we employ a hybrid scheme that provides good load distribu-
tion and reduces overlapping voxel accesses, described as follows:

1. For P processors, the image plane is statically partitioned
into P contiguous rectangular blocks of comparable sire.

2. Each image block is divided into fixed size square image
tiles

3. Each processor is statically assigned an image block and
starts ray tracing the tiles in that block in scan line order.

4. When a processor is done computing its block, it goes to the
next processor in scan line order that is not done computing

and grabs tiles in that processor’s image block to ray trace.
Processors compute until all the tiles are completed.

Figure 1 illustrates a four processor example of how the image
plane is partiti.oned.

~a& proc..,or ie initially amniqnad
on. of thorn. imag. blocks.

I
1 I

If . proc.m.or finisham l rly, it
grabs m unprocamod image tile much
.a thim on. from l nothar proc...or.-

Figure 1: Task queue image partitioning example.

The motivation for using image tiles as the unit of parallelism
instead of scan lines [3, 5. 201 and for assigning spatially adja-
cent tiles to the same processor is to minimize overlapping voxel
accesses and to reduce the costs associated with pixel sharing
in adaptive image sampling. The tiles, initially assigned to one
processor but available for grabbing by other processors, can be
thought of as a queue of tasks. Because it is dynamic, such a task
queue image partitioning scheme provides better load distribution
than static partitioning schemes, as demonstrated in Section 41. In

addition, there are as many task queues as there are processors
and the management of the queues is distributed, thereby provid-
ing better scalability by avoiding the bottleneck of a centralized
point of control in typical dynamic schemes.

Pixel Sharing in Adaptive Image Sampling. While there are
no computational dependencies between image tiles in nonadap-
tive ray tracing, there are such dependencies with adaptive image
sampling. This pixel sharing arises because adjacent image sam-
ple regions share the corner pixel values required for measuring
their image complexity. Note that sample regions are equal to
or smaller than image tiles. The dependencies require replicated
computation of rays or synchronized communication of the shared
pixels. Our adaptive image sampling method avoids the cost of
replicated ray tracing by communicating pixel values. Since task
queue partitioning results in adjacent image tiles usually being
ray traced by the same processor, the synchronization overhead is
small. In the small percentage of cases where adjacent image tiles
are ray traced by different processors, we delay the evaluatio:n of

18

sample regions whose pixel values are being computed by other
processors as follows:

1. Given an image sample region, ray trace those of the four
corner pixels which have not already been ray traced during
processing of adjacent sample regions or are not currently
being ray traced by other processors as part of processing an
adjacent region.

2. Measure the image complexity of the sample region by com-
puting the color difference of those of the corner pixels that
have been ray traced. Pixels currently being ray traced by
other processors are simply not included in the computation.

3. If the color difference is larger than a user-selected color
threshold, subdivide the sample region and recursively ray
trace the subregions.

4. Otherwise, if some of the comer pixels are currently being
ray traced by other processors. store the state of the sample
region in a local wait queue. If not, simply proceed to the
next region.

5. After all task queues have been emptied of image tiles, ray
trace any sample regions stored in the local wait queue.

6. For each sample region in the local wait queue, perform steps
two through four, but this time instead of storing the state
of a sample region when some of its comer pixels are being
traced by other processors, busy wait until all are ray traced.

This method reduces the cost of waiting for pixel values to be
traced on other processors in two ways. First, it tries to make a

subdivision decision based on available information. Failing that,
it switches to a sample region on which useful work can be done.

Data Distribution. A potential disadvantage of our parallel ray
tracing algorithm is that it requires the communication of 3D voxel
values. Since high-performance MIMD machines are designed to
be configured with large numbers of processors, physical memory
is necessarily distributed among the processors r. Thus, paralleliz-
ing volume rendering for MIMD architectures requires not only
partitioning the computation among the processors, but also par-
titioning the data among the local memories and communicating
the data among the processors. When a given processor resam-
ples a region of the volume and finds that a voxel it needs for
the computation is not in its local memory, communication with
other processing nodes is required. Given that voxels are read-
only, full data replication has been proposed to eliminate the voxel
communication associated with ray tracing [20]. But this option
makes poor utilization of memory resources and does not scale
with dataset size, making it too expensive for most cases.

Our parallel ray tracing algorithm distributes data in an inter-
leaved fashion among the local memories to avoid hot spotting.

‘Note that “distributed memory” refers to having memory physically
distributed. This is not mutuahy exclusive with “shared-memory”, which
refers to having a single address space. ‘Ibis terminology is admittedly

confusing, but it is tot late to change standard usage.

This scheme employs the usual linearized array structure for vox-
els, and distributes pages of these arrays in round-robin fashion
among the local memories.

3 Implementation on DASH
The DASH Architecture. We have implemented the parallel
volume rendering algorithm on the DASH (Directory Architecture
for SHared memory) Multiprocessor, a scalable shared-memory
MIMD machine under construction in the Computer Systems Lab-
oratory at Stanford University. DASH is designed to be a general-
purpose machine capable of supporting a wide variety of applica-
tions.

The architecture consists of a set of processor clusters connected
by a scalable interconnection network. A four cluster diagram
of the system is shown in Figure 2. Each cluster consists of a

Request Mesh

Reply Mesh L
z-- A

I- -

Figure 2: Block diagram of a 2 x 2 DASH system.

small number of high-performance processors and a portion of the
machine’s memory interconnected by a bus. Although the memory
of the machine is partitioned and distributed among the clusters
for scalability, DASH provides a single address space, enhancing
programmabiiity by alleviating the user from much of the burden
associated with data partitioning in a parallel machine. To sustain

high-performance, DASH provides caching of memory, including
shared writable data, to reduce memory latency. By associating a
directory with each cluster’s main memory that keeps track of all
memory blocks cached in other clusters, a distributed directory-
based protocol [9] with an intracluster snoopy bus-based protocol
[15] provides coherent caches, keeping memory consistent among
the processors.

The latency of a memory access depends on where it is ser-
viced in the memory system of DASH. The memory system can
be broken into four levels of hierarchy: processor, local cluster,

19

home cluster, and remote cluster. At the processor level of the
hierarchy is a small fast cache &signed to match the processor
speed. When a processor requests a given piece of data. the re-
quest first goes to its own cache. If the data is not in the cache, the
request goes to the local cluster level. If the data is cached in one
of the processor caches in the cluster, the request can be serviced
at the local cluster level. Otherwise, the request must be sent to
the home cluster which contains the directory and physical mem-
ory of the given memory address. Note that for some accesses,
the home cluster and local cluster are the same, but often they
are not and the request is communicated over the network. The
home cluster can usually service the request immediately, unless
the directory indicates that the data in memory is not updated or
the request is for exclusive access to data that is cached in other
clusters. In these cases, the request goes to the remote cluster
level, consisting of all processor caches other than those in the
local or home cluster. If the data in memory is not updated, the
request is forwarded to the remote cluster with the updated copy
of data to be serviced. If the request is for exclusive access, re-
mote clusters caching the data invalidate their copies of the data.
Since intercluster memory accesses can have latencies of over a
hundred processor cycles, good performance requires that the vast
majority of memory requests be serviced within clusters.

The current DASH prototype consists of twelve processor clus-
ters, with each cluster having four processing nodes for a to-
tal of 48 nodes. Each cluster is a modified Silicon Graphics
Power Station 4D/340 [l], which consists of four 33 MHz MIPS
R3000 processors with R3010 floating-point coprocessors. The
R3OOO/R3010 CPU is rated at 25 VAX MIPS and 10 MFLGPS.
Each of the .four CPUs contains a 64 Kbyte first-level instruction
cache, a 64 Kbyte first-level data cache, and a 256 Kbyte second- .
level data cache. Caches are direct-mapped with line size of 16
bytes. The single address space in DASH is distributed among the
clusters, each cluster having 16 Mbytes of main memory, of which
14 Mbytes are available to the user, CPUs within clusters are con-
nected by a 64 Mbytes/set bus. while clusters are connected by a
120 Mbytes/set 2D mesh network.

Programming DASH for Volume Rendering. DASH’s archi-
tectural support for shared-memory makes the implementation of
the volume rendering algorithm easy. Our implementation was
done in C with Argonne National Laboratory (ANL) parallel
macros [2] for shared-memory programming primitives. Proces-
sors share access to all large data structures, such as the voxel
array, shading table, octree, and image array. The data storage
requirements of our implementation are roughly four bytes per
voxel: one byte for original data samples, one byte for opaci-
ties, one bit for octree values, and about two bytes for normals.
Normals are stored as 13-bit quantities: 6 bits each for Y and 2
normal components, 1 bit for the X component. The normals are
used to index a 2i3 entry lookup table for efficient shading [20].
Since DASH is constructed from Silicon Graphics multiproces-
sors, our code runs on any Silicon Graphics workstation without
modification.

On DASH, the operating system can take care of the assign-

ment of memory pages to cluster memories or the user can specify
the initial ass:ignment explicitly. We use the interleaved mapping
mentioned in Section 2 to explicitly distribute the pages of voxels
and other shared data to the cluster memories. The pages are al-
located only from clusters that are actively being used, as long as
there is enopgh physical memory in those clusters. As for the nec-
essary data communication in our distributed data implementation,
the DASH hardware manages the movement of data automatically
without requiring the programmer to write explicit communication
calls. The programmer does not need to keep track of where all
the data is in the memory system. Since all voxel data is read-
only, the system can always cache multiple copies of voxel data
without invalidating voxel data present in one processor’s cache
because another processor wants to mcdii the voxel data. The
system will therefore automatically partially replicate the data in
the caches to reduce intercluster memory accesses, thereby making
effective utilization of memory and network resources.

4 Performance Results and Analysjis

Experimental Setup. To demonstrate the performance of our
parallel ray tracer on DASH, we present results from case stud-
ies in medical imaging and molecular graphics. The results from
medical imaging are based on rendering bony tissues of CT (com-
puter tomography) datasets of a human head. The datasets are 256
x 256 x 226 voxels and 128 x 128 x 113 voxels. The calculation
of opacities from input values uses the region boundary surface
method of [123. The results from molecular graphics are based on
rendering concentric semi-transparent surfaces of a 300 x 300 x 91
voxel portion of an electron density map of staphylococcus aureus
ribonuclease. The calculation of opacities from input values: for
this dataset uses the isovalue contour surface method of [12].

Results for nonadaptive and adaptive renderings are presented,
as they represent differing degrees of image quality. These results
are based on measurements of rendering time and do not include
image I/O time or the time associated with fixed initialization c:osts
such as loading in the dataset. All renderings used an opacity value
of 0.95 as the threshold level for early ray termination. When
performing adaptive image sampling, an initial grid spacing of

W?IlaZ = 4 (defined in Section 2) was used along with a minimum
color difference of 16. An 8 x 8 pixel image tile size was chosen
for task queue partitioning to provide good load distribution and
minimize task queue synchronization.

Rendering Times and Speedups. Figures 3 and 4 show a non-
adaptively and adaptively rendered visualization of the 256 x 256 x
226 voxel CT dataset of the human head rendered on DASH. Fig-
ure 5 shows an adaptively rendered visualization of the 300 x ‘300
x 91 voxel electron density map of the ribonuclease. Rendering
times on DASH for these images, as well as those for other case
studies are given in Table 1.

We calculated speedups on DASH relative to the performance
of a sequential version of our ray tracer on a single processor of
an SGI 4D/320 VGX workstation. Our SGI 4D/320 platform has
the same CPUs and cache sizes as DASH, but contains 64 Mbytes

20

dataset name head

dataset size (voxels) 256x256~226
imaae size (vixelsl 416x416

headsmall
128x128~113

209x209

ribonuclease
300x300x91

432x432
rendering quality nonadaptive adaptive nonadaptive adaptive nonadaptive adaptive
of traced rays 173056 21723 43681 7844 186624 38141
of samples trilirped 618428 245132 87683 62337 882553 456258
retiring time (ms) 700 340 120 90 850 480
sveeduv over univrocessor 40 33 40 30 40 33

Table 1: Rendering times and speedups (48 processors).

Figure 3: Nonadaptively rendered image of CT dataset.

of local main memory as opposed to only 14 Mbytes of usable
local memory in each DASH cluster. Speedups are calculate-d
with respect to the SC1 workstation instead of a single processor
on DASH to account for any intercluster memory accesses that
may occur for the larger datasets due to their voxel storage re-
quirements exceeding the amount of memory in a single DASH
clustera. Speedup curves are plotted for nonadaptive and adaptive
renderings of the 256 x 256 x 226 voxel CT dataset in Figure 6.
Other speedup results are similar, as shown in Table 1. Nearly
linear speedups were also measured for our ray tracer even with-
out using an octree, demonstrating that the algorithm has good
performance even if effective use cannot be made of an octree.

Load Distribution. We ascribe the nearly linear speedup of our
renderer partly to good load distribution. The distribution was
measured by timing the rendering computation on each proces-

%e SGI workstation actually has slightly better uniprocessor render-
ing times than DASH even when there are no intercluster accesses due to
cluster memory limits, as is the case for rendering the 128 x 128 x 113
voxel dataset. This is because the SGI machine fetches 64 byte cache lines
instead of 16 byte lines as on DASH.

Figure 4: Adaptively rendered image of CT dataset.

SOT. For nonadaptive and adaptive renderings of the 256 x 256 x
226 voxel CT dataset on 48 processors of DASH, the variation in
rendering time among processors was measured to be less than 4
percent for our algorithm. For comparison we also implemented
a static interleaved image partitioning algorithm on DASH. Com-
parison results for nonadaptive rendering are presented in Table 2,
which lists the range and variation of execution times across the 48
processors for each partitioning method. Results for static inter-
leaved partitioning are given for the image tile sizes that resulted
in the best rendering time for that method. The variation in ex-
ecution time among the processors is only 20 ms for task queue
partitioning, as compared to more than five times that amount for
static interleaved partitioning.

Memory and Synchronization Overhead. We also ascribe the
nearly linear speedup of our renderer to low memory and synchro-
nization overhead, as measured using MTOOL 171, a performance
debugging tool. Table 3 presents results characterizing the behav-
ior of the renderer on a single processor of the SGI workstation
and on 48 processors of DASH. These results are based on non-
adaptive and adaptive renderings of the 256 x 256 x 226 voxel

21

Figure 5: Adaptively rendered image of electron density map.

1 Dartitioniwz used 11 task aueue 1 static interleaved I
image tile size 8x8 I 8x8 I 4x4
min-max time 11 680-700 ms 1 570-780 ms 1 690-800 ms

variation in time II 20ms I 210 ms I 110ms I

Table 2: Load distribution (48 processors).

CT dataset.
As shown in Table 3, memory overhead is not the dominant

percentage of execution time. Although the increase in memory
stall time over the SC1 uniprocessor case is 84 percent for non-
adaptively rendering on 48 processors of DASH, only 20 percent
of the uniprocessor execution time is due to memory overhead, and
only 30 percent of the 48 processor execution time is due to mem-
ory overhead. Memory overhead is larger for adaptive rendering
because of 3ccesses to additional shared writable data structures
not needed In nonadaptive rendering, and because of reduced lo-
cality of voxel accesses due to the sparsity of rays cast. The large
increase in memory stall time does not have a significant effect
on the percentage of execution time due to memory overhead be-
cause of good cache performance and a higher than expected ratio
of computations to voxel accesses, as verified by disassembling the
ray tracing kernel code. Just trilinearly interpolating a ray sample
requires the execution of roughly 320 assembly code instructions,
of which only 16 instructions (8 for normals, 8 for opacities) are
voxel accesses. This result is somewhat surprising, and suggests
that counting the number of arithmetic operations in the filtering
and compositing expressions themselves is not representative of
the true cost of volume rendering; address calculations and loads
and stores of non-voxel data in fact dominate.

The caches on DASH are important to the performance of our
algorithm because they reduce the frequency of expensive inter-
cluster accesses when referenced data is not stored in the memory

48

i44

t

0 Nonadaptive Ray Tracing :*
:

0 Adaptive Ray Tracing :*
:-

40

36 : .,...“>
32

28

24

20

16

12

8

4

0
0 4 8 12 16 20 24 28 32 36 40 44 48

Figure 6: Speedups for Nonadaptive and Adaptive Rendering.
(Note that adaptive exhibits worse speedup than nonadaptive, ren-
dering, but has lower rendering time. See Table 1.)

local to the processor. With data caching turned off, nonadaptive
speedups are only 23 times with respect to the uniprocessor case
without caching. Of course, ren&ring times are much slower.
Rendering the 256 x 256 x 226 voxel CT dataset nonadaptively
on 48 processors without caching takes 2.7 seconds, about 3.9
times longer than with caching.

Table 3 also shows that synchronization overhead is a small
percentage of execution time for both nonadaptive and adaptive
rendering. Since processors wait until all processors have finished
rendering one frame before rendering the next one, the synchro-
nization idle time includes the time due to variations in rendering
time. Other synchronization time is due to waiting for all pmces-
sors to complete shading table computations before ray tmsing.
For the adaptive case, additional synchronization time is due to
waiting for all processors to complete ray tracing before untraced
pixels are interpolated from the traced pixels.

Temporal Locality. The data caches on DASH allow our algo-
rithm to exploit interframe temporal locality to reduce memory
overhead in multiple frame rotation sequences. Since successive
frames in rotation sequences only vary slightly in viewpoint, much
of the voxel data brought into the cache for rendering a given frame
may still be cached and reused on subsequent frames, thereby re-
ducing cache read misses on subsequent frames. We measured the
effects of interframe temporal locality for a ten frame sequence
with viewpoint rotation of 3 degrees between frames. The data
caches were completely flushed between frames to measure the
rotation sequence without interframe effects.

While there is no mechanism to directly measure first-level

22

rendering quality nonadaptive adaptive

rendering platform 1 proc. SGI 48 proc. DASH 1 proc. SGI 48 proc. DASH

CPU utilization 80% 67% 76% 54%

percentage of rendering time due to memory overhead 20% 30% 24% 38%

increase in memory overhead over 1 proc. SGI 0% 84% 0% 142%

Dercentane of renderinp time due to idle svnchronization 0% 3% 0% 8%

Table 3: Memory and synchronization overhead.

cache misses, we did use the hardware performance monitor on
DASH [l l] to measure the difference in the number of second-
level cache read misses with and without interframe effects. The
vast majority of these read references were for data whose home
cluster was not the local cluster. We measured these read misses
on remote data and found that interframe effects do not notice-
ably affect the number of read misses on remote data that can
be serviced by another processor’s cache within the local clus-
ter. But interframe effects do noticeably affect the number of
read misses on remote data that cannot be serviced at the local
cluster level and must be serviced over the network. Figure 7
shows the average number of these remote read misses per cluster
for nonadaptively and adaptively rendering the 256 x 256 x 226
and 128 x 128 x 113 CT datasets. The figure shows that inter-

7

6

5

4

3

2

1

0 I

nonadaptive adaptive nonadaptive adaptive
rendering of rendering of

256x256~226
rendering of

256x256~226
rendering of

128x128~113 128x128~113
CT dataset CT dataset CT dataset CT dataset

Figure 7: Temporal locality effects (48 processors).

frame effects do reduce cache misses of remote data which cannot
be serviced at the local cluster level. These remotely serviced
misses are reduced by as much as 50 percent due interframe ef-
fects, as for the case of adaptively rendering the 128 x 128 x 113
voxel CT dataset. Nevertheless, the difference in misses with and
without interframe effects is no more than 15,000 references per
four-processor cluster for any of the cases in Figure 7. Given that
remote access latency is about 3 ~LS for reading shared data, this
difference amounts to only about a 10 ms (3~s*15000 references
/4 processors) maximum difference in rendering time.

We also directly measured the rendering time with and without

interframe effects. For any given frame of the 256 x 256 x 226
voxel CT dataset, the rendering time without interframe effects
was no more than 20 ms longer than the rendering time with
interframe effects. For the 128 x 128 x 113 voxel CT dataset, the
difference in rendering times with and without interframe effects
was less than 10 ms. Although interframe temporal locality does
significantly reduce expensive intercluster voxel accesses, it has
little effect on rendering performance because these accesses do
not represent a dominant percentage of the rendering time.

5 Conclusions and Future Work

We have presented a parallel ray tracing algorithm that takes ad-
vantage of hierarchical opacity enumeration, early ray termina-
tion, and adaptive image sampling. Our algorithm uses a task
queue image partitioning scheme to provide good load distribution
and reduce overlapping voxel accesses. It was easy to implement
the algorithm on the Stanford DASH Multiprocessor because of
its architectural support for shared-memory. Performance results
on DASH demonstrate that our algorithm achieves nearly linear
speedups and fast rendering times. Although DASH is designed
to be a general-purpose machine, its combination of programming
ease and high performance make such scalable shared-memory
MIMD machines well-suited for volume rendering. Perhaps the
most important lesson here is that, given a suitable architecture,
parallelization of volume rendering need not require intricate al-
gorithms that require weeks of programming.

It would be interesting to consider the performance of our al-
gorithm on other architectures. An implementation for message-
passing machines could be done using software managed voxel
caches to reduce communication, although our experience indi-
cates that it would require significantly more time to program.
An alternative large-scale multiprocessor to consider is a cache
only memory architecture (COMA) [17]. Its dynamic migration
and replication of data at the main memory level may prove even
more ideal for volume rendering.

The analysis of memory performance presented in this paper ad-
mittedly focuses on aggregate behavior. A more thorough study
would include examining the cache contents at each moment dur-
ing image generation. We have not aggressively pursued this line
of inquiry because, for this algorithm and architecture, memory
overhead is not the dominant component of image generation cost.
We are currently investigating alternative volume rendering algo-
rithms that drastically reduce the number of arithmetic and non-

23

arithmetic instructions executed. If successful, these algorithms
may cause us to reexamine the issues of cache contents and inter-
frame temporal locality in greater detail.

Acknowledgements

The authors wish to thank Prof. Monica Lam for many enlight-
ening discu.ssions. We thank David Nakahira, Dave Ofelt. Luis
Stevens, snd Jonathan Chew for DASH systems support. Thanks
also to Dan Lenoski for providing the DASH figures, and Jolly
Chen, Steve Tjiang, and Bob Wilson for helpful comments on
drafts of this paper. This research was supported by DARPA con-
tract NOOO39-91-C-0138, the National Science Foundation, (NSF),
the National Aeronautics and Space Administration (NASA), and
the sponsoring companies of the Stanford Center for Integrated
Systems (CCS). The SGI 4D/320 VGX workstation was donated
by Silicon Graphics, Inc. The CT scan was provided by North
Carolina Memorial Hospital. The electron density map was pro-
vided by Dr. Chris Hi1 of the University of York Chemistry
Department.

References

111

PI

131

[41

Forest Baskett, Tom Jermoluk, and Doug Solomon. The 4D-
MP Graphics Superworkstation: Computing + Graphics =
40 MIPS + 40 MFLOPS and 100,ooO Lighted Polygow Per
Second. In Proceedings of the 33rd IEEE Computer Society
Internutional Co$erence - COMPCON 88. pages 468-471.
February 1988.

James Boyle, Ralph Butler, Terrence Disz, Barnett Glick-

feld, Ewing Lusk, Ross Overbeek, James Patterson, and Rick
Stevens. Portable Programs for Parallel Processors. Holt,
Rineh&art, and Winston, Inc., 1987.

Judy Challinger. Parallel Volume Rendering on a Shared-
Memory Multiprocessor. Technical Report UCSC-CRL-91-
23. University of California at Santa Cruz. March 1992.

Intel Scientific Computers. iPSCI2 and iPSCl860 User’s
Guide, June 1990.

[S] Tim Cullip. Personal communication, May 1991.

[6] Robert A. Drebin, Loren Carpenter. and Pat Hanrahan. Vol-
ume Rendering. Proceedings of SIGGRAPH ‘88 (Atlanta,
Georgia, August 1-5, 1988). In Computer Graphics, volume
22(4). pages 65-74, August 1988.

[7] Aaron J. Goldberg and John L. Hennessy. MTOOL: An Inte-
grated System for Performance Debugging Shared Memory
Multiprocessor Applications. To appear in IEEE Transac-
tions on Parallel and Distributed System.

[8] Pat Hanrahan. ‘Three-Pass Affine Transforms for Volume
Rendering”, Proceedings of the San Diego Workshop on Vol-
ume Visualization (San Diego, CA, December 10-11. 1990).
In Computer Graphics, pages 71-78, November 1990.

191

WI

[ill

WI

u31

v41

t151

W51

1171

WI

1191

1201

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Anoop Gupta, and John Hennessy. The Directory-Based
Cache Coherence Protocol for the DASH Multiprocessor. In
Proceedings of the 17th Annual International Symposium on
Computer Architecture, pages 148-159, May 1990.

Daniel Lenoski, James Laudon, Kourosh Gharachcaloo,
Wolf-Diet&h Weber, Anoop Gupta, John Hennessy, IMark
Horowitz, and Monica S. Lam. The Stanford DASH Multi-
processor. Computer, pages 63-79. March 1992.

Daniel Lenoski. James Laudon, Truman Joe, David
Nakahira, Luis Stevens, Anoop Gupta, and John Hennessy.
The DASH Prototype: Implementation and Performance. In
Proceed,@ of the 19th Annual International Symposium on
Computer Architecture, pages 92-103, May 1992.

Marc Levoy. Display of Surfaces from Volume Data. ZEEE
Co@uter Graphics & Applications, pages 29-37, May 1988.

Marc Levoy. Efficient Ray Tracing of Volume Data. .4CM
Transactions on Graphics, pages 245-261, July 1990.

Marc Levoy. Volume Rendering by Adaptive Refinement.
The Visual Computer, pages 2-7. February 1990.

Mark S. Papamarcos and Janak H. Patel. A Low Overhead
Coherence Solution for Multiprocessors with Private Cache
Memories. In Proceedings of the 11 th Annual Infernational
Symposium on Computer Architecture, pages 348-354, June
1984.

Renben Shu and Alan Liu. A Fast Ray Casting Algorithm
Using Adaptive Isotriangular Subdivision. In Visudization
‘91, pages 232-238, October 1991.

Per Stenstrom, Truman Joe, and Anoop Gupta Compsra-
tive Performance Evaluation of Cache-Coherent NUMA and
COMA Architectures. In Proceedings of the 19th Annual
International Symposium on Computer Architecture, pages
80-91, May 1992.

K. R. Subramanisn and Donald S. Fussell. Applying Space
Subdivision Techniques to Volume Rendering. In Visuoliza-
tion ‘90, pages 150-159, October 1990.

Lee Westover. Footprint Evaluation for Volume Rendering.
Proceedings of SIGGRAPH ‘90 (Dallas, Texas, August 6-10,
1990). In. Computer Graphics, volume 24(4), pages 367-376,
August 1990.

Teny S. Yoo. Ulrich Neumann, Henry Fuchs, Stephen M.
Pizer. Tim Cullip, John Rhoades, and Ross Whitaker.
Achieving Direct Volume Visualization with Interactive Se-
mantic Region Selection. In Visualization ‘91, pages 58-65,
October ‘1991.

24

