
Parallel Visualization
Algorithms: Performance
and Architectural
Implications
Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy

Stanford University

Shared-address-space
multiprocessors are
effective vehicles for

speeding up
visualization and
image synthesis

algorithms. This article
demonstrates excellent
parallel speedups on

some well-known
sequential algorithms.

S everal recent algorithms have substantially sped up complex and time-
consuming visualization tasks. In particular, novel algorithms for radiosity
computation' and volume r e n d e r i r ~ g ~ . ~ have demonstrated performance far

superior to earlier methods. Despite these advances, visualization of complex scenes
or data sets remains computationally expensive. Rendering a 256 x 256 x 256-voxel
volume data set takes about 5 seconds per frame on a 100-MHz Silicon Graphics In-
digo workstation using Levoy's ray-casting algorithm2 and about a second per frame
using a new shear-warp algorithm.' These times are much larger than the 0.03 second
per frame required for real-time rendering or the 0.1 second per frame required for
interactive rendering. Realistic radiosity and ray-tracing computations are much
more time-consuming.

Multiprocessing provides an attractive solution to this computational bottleneck.
It is well known that ray-casting algorithms afford substantial parallelism, and we show
that the same is true for the radiosity and shear-warp methods. However, all these vi-
sualization algorithms have highly irregular and unpredictable data access patterns.
This makes data distribution and communication management very difficult in the ex-
plicit message-passing programming paradigm supported by most scalable multi-
processors (Intel's iPSC/860 and Paragon or Thinking Machines' CM-5, for example),
since these tasks have to be performed explicitly by the programmer. The need for
explicit communication management leads (I) to complicated parallel algorithms
that look very little like their sequential counterparts and (2) to substantial perfor-
mance inefficiencies.

Recently. a new class of scalable. shared-address-space multiprocessors has emerged.
Like message-passing machines. these multiprocessors have a distributed intercon-

July 1994

nection network and physically dis-
tributed main memory. However. they
provide hardware support for efficient
implicit communication through a shared
address space, and they automatically ex-
ploit temporal locality by caching both
local and remote data in a processor's
hardware cache.

In this article, we show that these ar-
chitectural characteristics make it much
easier to obtain very good speedups

on the best known visualization algo-
rithms. Simple and natural paralleliza-
tions work vel-y well. the sequential
implementations do not havc to be fun-
damentally restructured. and the high de-
gree of temporal locality obviates the
need for explicit data distribution and
communication management.

We demonstrate our claims through
parallel versions of three state-of-the-art
algorithms: a recent hierarchical radiosity

Cache-coherent shared-address-space multiprocessors

Figure A shows the generic shared-address-space multi-
processor that we assume in our parallelization. The multi-
processor consists of a number of processing nodes con-
nected by a general interconnection network. Every node
contains a processor, a cache, and a portion of the total
physical (main) memory on the machine. The address
space is shared, so that any processor can reference any
variable regardless of where it resides. When a processor
reads or writes a word, that word is brought into the proces-
sor's cache. Modifying locally cached shared data intro-
duces the cache coherence problem, which is solved by
using a distributed directory-based protocol supported in
hardware.'

The two important goals in parallelizing an algorithm to run
on such a machine are balancing the workload across the
cooperating processors and presewing locality of data refer-
encing. Locality is important because even though memory
is uniformly addressable, it is not uniformly accessible: The
cost of accessing a data item increases with the distance the
access must travel from the issuing processor. Load balanc-
ing and data locality are often at odds with each other and
must be traded off for good performance.

locality at three levels of th6 memay and interconnection
hierarchy:

The generalised multiprocessor shown in Figure A affords

Cache focality. This includes both the temporal locality
exploited by reusing data that a processor brings into its
cache (whether from its own local memory unit or from

network) and Me spatiat l o ~ a l i pfovided by
multiword cache lines.

algorithm by Hanrahan et al.,' a paral-
lelized ray-casting volume renderer by
Levoy.' and an optimized ray-tracer by
Spach and Pulleyblank.' We also discuss
a new shear-warp volume rendering al-
gorithm' that provides what is to our
knowledge the first demonstration of in-
teractive frame rates for a 256 x 256 x 256
voxel data set on a general-purpose mul-
tiprocessor. The images used in these
demonstrations are shown in Figure 1.

FigureA.The I
algorithms
were paral-
lelized to run
on a shared-
address-space
multiprocessor
with physically
distributed I I L I

I 1

Interconnection network I ' memory.

close as possible to the issuing processor in the network
topology.

Neither memory nor network locality is important in the visual-
ization algorithms we examine in this artide. The temporal
cache locality that obviates these problems falls naturally out of
the spatial coherence in the appliitions exploited by simple

physical memory on the ma&
mam on a

46 COMPUTER

Figure 1. Images rendered by the three applications: (a-b) hierarchical radiosity image and image showing the patches cre-
ated, (c) volume rendering, and (d) ray tracing. Figures (a) and (b) courtesy of Pat Hanrahan, (c) courtesy of North Carolina
Memorial Hospital, and (d) courtesy of Hewlett-Packard.

Hier arc hic a1
radiosity

The radiosity method computes the
global illumination in a scene containing
diffusely reflecting surfaces. I t is a view-
independent visualization method. which
means that the radiosity does not have to
be recomputed when the viewpoint
changes.

In traditional radiosity approaches, the
large polygonal surfaces that describe a
scene (such as walls or a desktop) are first
subdivided into small elements or patches
whose radiosity is approximately uniform
over their surfaces. The radiosity of a

patch i can be expressed as a linear com-
bination of the radiosities o f all other
patches j . leading to a linear system of
equations. The coefficients in the linear
combination are the "form factors" be-
tween the patches. where the form fac-
tor bi from patch j to patch i is the frac-
tion o f light energy leaving; that arrives
at i. The inherent form factor depends on
the shape of each patch i andj. the angle
the patches make with each other. and
the distance between them. However.
this must bc modified by the presence of
any intervening patches that occlude the
visibility between i and j.

The computation of form factors is the
most time-consuming part of a radiosity

algorithm. The number of form factors
among all pairs of n patches is O(n') .
and each of these pairs has to be tested
for intervisibility, making traditional
radiosity methods (including progressive
radiosity') very expensive.

A new hierarchical method' dramati-
cally reduces the complexity of comput-
ing radiosities. The method is inspired
by recent advances in using hierarchical
methods to solve the N-body problem.
A scene is initially modeled as compris-
ing a number. say k , of large input poly-
gons. Light-transport interactions are
computed among these polygons. and
polygons are hierarchically subdivided
as necessary to improve accuracy. Each

July 1904 47

Patches

Last patches

Polygon D

(3) After three more refinements

Figure 2. Refinements and interactions in the hierarchical radiosity application. In 2b, we show binary trees instead of quad-
trees and only one polygon's interaction lists for simplicity.

subdivision results in four subpatches.
leading to a quadtree per input polygon.
If the resulting final number of undivided
subpatches is n, the number of interac-
tions or form factors computed by this
algorithm is O(n + k?). A brief descrip-
tion of the algorithm follows. (Details
can be found in Hanrahan et al.' and in
Singh.')

Sequential algorithm. The input poly-
gons that constitute the scene are first in-
serted into a binary space partitioning
(BSP) tree to facilitate efficient visibility
computation between pairs of patches.
Every input polygon is given an interac-
tion list of other input polygons which are
potentially visible from it and with which
it must therefore compute interactions.
Then, polygon radiosities are computed
by the following iterative algorithm:

(1) For every polygon. compute its ra-
diosity due to all polygons on its in-
teraction list. subdividing it or other
polygons hierarchically as necessary.
Subdivided patches acquire their
own interactions lists and are pro-
cessed recursively (see Figure 2).

(2) Add all the area-weighted polygon
radiosities to obtain the total ra-
diosity of the scene and compare i t

with that of the previous iteration to
check for convergence. If the ra-
diosity has not converged to within a
user-specified tolerance. return to
step 1. Otherwise, go to step 3.

(3) Smooth the solution for display by
computing the radiosities at the ver-
tices of the leaf-level elements.

Most of the time in an iteration is spent
in step 1. In every iteration. each of the
quadtrees is traversed depth-first. starting
from the root. At every quadtree node
visited in this tra\ersal. we compute a
patch's (patch r . say) interactions with all
other patches./. in its interaction list. An
interaction may cause one of the inter-
acting patches to be subdivided and chil-
dren to be created for the subdivided
patch. if they don't already exist. If patch
i (the patch being visited) is subdivided.
patch j is removed from i's interaction list
and added to each of i's children's inter-
action lists. If patch j is subdivided. it is re-
place by its children on patch i 's interac-
tion list. Figure Zb shows an example of
this hierarchical refinement of interac-
tions. Patch i'\ interaction list is com-
pletely processed i n this manner before
\ isiting its childt-en in the tree traversal.

At the beginning of an iteration. ii

patch's intcraction list in anv quadtree is

exactly as it was at the end of the previous
iteration: It contains the patches with
which its interaction did not cause a sub-
division.

Exploiting parallelism. Parallelism is
available at three levels in this application:
across input polygons. across the patches
that a polygon is subdivided into, and
across the interactions computed for a
patch. Since the patch quadtrees are con-
structed as the application proceeds, all
three levels of parallelism involve com-
munication and synchronization among
processors. For example, a processor must
lock a patch to ensure that it has exclusive
access before subdividing the patch.

Statically assigning polygons or poly-
gon pairs to processors leads to severe
load imbalances. since the workload dis-
tribution across polygon pairs is highly
nonuniform and unpredictable. Our par-
allelization technique therefore uses dy-
namic task stealing for load balancing.
We obtain the best performance by defin-
ing a task to be either a patch and all its
interactions or a single patch-patch in-
teraction. depending on the size of the
problem and the number of processors
(the difference is usually small).

The parallel implementation provides
every processor u,ith its own task queue.

48 COMPUTER

U room scene, p = 1 4 Dash roomscene
-8- Challenge room scene

Number of processors Cache size (bytes)

Figure 3. Speedups (a) and working sets (b) for the radiosity application. The BF refinement threshold was set to 0.02 and the
area refinement threshold to 2,000 units.’The algorithm took seven iterations to converge on a uniprocessor.

A processor‘s task queue is initialized
with a subset of the initial polygon-poly-
gon interactions. When a patch is subdi-
vided, new tasks involving the subpatches
are enqueued on the task queue of the
processor that did the subdivision. A pro-
cessor consumes tasks from its task queue
until there are no tasks left. It then steals
tasks from other processors‘ queues.
which it can directly access in the shared
address space.

While task stealing provides load bal-
ancing. it can also compromise data lo-
cality. We try to preserve locality as fol-
lows.h A processor inserts tasks at the
head of its queue. It dequeues tasks from
the head of its own queue (to yield a
depth-first search of quadtrees and hence
reuse portions of the BSP tree efficiently
across visibility-testing interactions) but
steals from the tail of another processor‘s
task queue (increasing the likelihood of
stealing a large patch. within which lo-
cality can be exploited).

Results and discussion. This simple
parallelization is both conceptually natu-
ral and easy to implement in a shared ad-
dress space. As seen in Figure 3a. it also
yields very good speedups on the Dash
multiprocessor, even though no attempt
was made to distribute (or replicatc) data

in main memory. (Appropriate data dis-
tribution at page granularity would have
been very difficult, given the irregular,
dynamic data structures and fine-grained
data-sharing patterns of the algorithm.)
Good speedups are also obtained on the
Challenge (data distribution is not an is-
sue here given its centralized shared
memory). Because we used the relatively
small (174 input polygons) room scene in
Hanrahan et al.’ (Figure l a) , speedups
scale more slowly beyond 32 processors
on Dash. We expect even better
speedups with larger input scenes and
that the effectiveness of shared-address-
space multiprocessors will extend to
other radiosity algorithms, such as hier-
archical radiosity with glossy surfaces,
zonal radiosity. and even importance-
driven radiosity (since there appears to
be no need for data redistribution even if
the viewpoint changes).

We now show that the reason we ob-
tain good performance without attention
to locality in main memory is the appli-
cation‘s high degree of temporal locality
on shared, as well as private, data and the
effectiveness of automatic caching in ex-
ploiting this locality transparently. To an-
alyze temporal locality. we measure the
size and impact of the application‘s im-
portant per-processor working sets. We

measure working sets by using a simu-
lated multiprocessor with fully associa-
tive caches to plot the read-miss rate ver-
sus cache size, following the methodology
described by Rothberg et al.’ Figure 3b
indicates a very high degree of temporal
locality, given that a 4-Kbyte cache re-
duces the miss rate to a negligible quan-
tity. We can explain this significant tem-
poral locality as follows.

The algorithm spends most of its time
computing the visibility between inter-
acting patches (say i and;). Visibility for
an interaction is computed by firing a
number of “random” rays from i to; and
measuring the fraction of these rays that
reachjwithout being occluded. Since oc-
clusion is determined using the BSP tree,
the algorithm repeatedly traverses the
relevant portion of the BSP tree between
the input polygons that are the ancestors
of patches i and j . The processor’s next
visibility interaction will likely be be-
tween patch i and a child of patch ; and
will thus reuse the same portion of the
BSP tree. As a result, the important
working set for a processor is a fraction of
the BSP tree, which is very small com-
pared with the entire data set of
quadtrees. The size of the working set
(BSP tree) grows as the logarithm of the
number of input polygons and is inde-

July 1994 49

pendent of the number o f processors
used. Given the large (often multi-
megabyte) cache sizes on current shared-
address-space machines. there is little
chance of encountering problems whose
working sets will overflow) these caches.

The use of hierarchy allows this algo-
rithm to exploit temporal locality better
than traditional radiosity algorithms.
which sweep through all patches a s the!
shoot radiosity to them. The hierarchical
algorithm's use of gathering rather than
shooting also results in better communi-
cation behavior - since only a processor
that owns a patch writes the radiosity of
that patch - and avoids the trade-off he-
tween concurrency and the shooting ap-
proach's need to preserve the sorted or-
der of patchesh In fact. gathering has
been observed to work better than shoot-
ing in parallel even for traditional ra-
diosity algorithms on message-passing
machines.x

Volume rendering
Volume rendering techniques are very

important in the analysis and undcr-
standing of multi di m e nsio na 1 sam p I e d
data, such as those generated in various
scientific disciplines. The first parallel al-

Figure 4. Image
plane partition-
ing in the volume
renderer for four
processors.

gorithm we use. developed by Nieh and
Levoy.' renders volumes using optimized
ray-casting techniques. LJntil very re-
cently. the sequential algorithm was one
of the fastest algorithms known for vol-
ume rendering. We then examine a much
faster shear-warp algorithm that. when
parallelized. can produce interactive
frame rates for a rotation sequence of a
256 x 256 x 256-voxel data set on a gen-
eral-purpose multiprocessor.

Sequential raycasting algorithm. The
volume t o he rendered I S represented by
a cube of voxcls (or volume elements).
For each voxel. a color and a partial opac-

ity have been computed during a prior
shading operation. The outermost loop
o f the computation is over a sequence of
viewing frames. In a typical sequence.
successive frames correspond to chang-
ing the angle between the viewer and the
volume being rendered. For each frame,
rays are cast from the viewing position
into the volume data through pixels in
the image plane that corresponds to that
frame. Colors and opacities are com-
puted for a set of evenly spaced sample
locations along each ray by trilinearly in-
terpolating from the colors and opacities
of surrounding voxels. These samples are
blended using digital compositing tech-

48.0
Ideal

-e Dash adaptive

4- Dash nonadaptive
40.0- -0- Challenge adaptive

32.0 -
n
3

P Sec /frame

8 24.0- cn
16.0 -

8-0 -

50

40

ae
-30 s s
3 .E
& 20
I n:

i o

-0 head scene, p= l

Important
,working set

Figure 5. Speedups (a) and working sets (b) for the ray-casting volume renderer. The threshold opacity value for early ray
termination is set to 0.95, on a scale from 0 to 1.0. About 22,000 rays (245,000 samples) were traced in the case with adaptive
sampling and 173,000 rays (618,000 samples) with nonadaptive sampling.

I

COMPUTER 50

Y Image plane Y Final (warped) image

Figure 6. The recently developed shear-warp volume rendering method.

niques to yield a single color for the ray
and hence for the corresponding pixel.
Rays in a volume renderer typically are
not reflected, but pass straight through
the volume unless they encounter too
much opacity and are terminated early.

The algorithm uses three optimiza-
tions: (1) the early ray termination men-
tioned above, controlled by a user-de-
fined opacity threshold: (2) an octree
representation of space to avoid unnec-
essary sampling in transparent regions
of the volume; and (3) adaptive image
sampling.

Exploiting parallelism. In a shared ad-
dress space, each processor can directly
reference any voxel in the data set. Only
one copy of the voxel data set is main-
tained, and it is distributed round-robin
at the granularity of pages among the lo-
cal memories of processors. No attempt is
made at smart data distribution, both be-
cause this is very difficult at page granu-
larity and because it is impossible to de-
termine a good static distribution, given
that the viewpoint and hence the data
affinity of processors changes across
frames. The voxel data set is read-only. It
is therefore very easy to exploit the most
natural parallelism. which is across rays
(or pixels in the image plane). However.
owing to the nonuniformity of the vol-
ume data, an equal partitioning of the im-
age plane among processors is not nec-
essarily load balanced, and task stealing
is once again required.

Giveny processors, the image plane is
partitioned into p rectangular blocks of
comparable size.' Every image block or
partition is further subdivided into fixed-
size square image tiles, which are the
units of task granularity and stealing.
These tile tasks are initially inserted into
the task queue of the processor assigned
that block (a distributed task-queue sys-

tem is used. as in the radiosity applica-
tion). A processor ray-traces the tiles in
its block in scan-line order. When it is
done with its block. it steals tile tasks
from other processors that are still busy.
Figure 4 shows a four-processor example
of the image plane partitioning.

Results. Figure 5a shows speedups on
Dash for both adaptive and nonadaptive
sampling. and on the Challenge for non-
adaptive sampling. The results measure
rendering time only and do not include
the time to load in the data set, compute
opacities and build the octree, and trans-
fer the rendered image to the frame
buffer. We use a 256 x 2.56 x 256-voxel
data set showing a computed tomogra-
phy rendering of a human head; the re-
sulting image is shown in Figure IC. The
image measures approximately 41.5 x 41.5
pixels. and the total data set size is about
30 megabytes. A tile size of I: x 8 pixels is
the unit of task stealing.

Clearly, the parallel volume renderer
yields very good speedups on both
machines. Owing to the need for pixel
sharing and additional synchronization
at partition boundaries with adaptive
sampling.' the speedups in this case are
somewhat less than with nonadaptive
sampling. On a 48-processor Dash or a
16-processor Challenge. we are able to
come within a factor of three of interac-
tive rendering.

As in the radiosity algorithm, the ob-
served speedups on Dash are very good
even though we simply distribute data
round-robin among physical memories.
Figure 5b shows once more that the
speedups result from the high degree of
temporal locality on private as well as
shared data accesses. The important
working set in this case is the amount of
read-only voxel and octree data used in
sampling a ray that is typically reused by

the next ray. The reuse is possible be-
cause of the spatial coherence resulting
from the contiguity of partitions in the
image plane: Successive rays cast by a
processor pass through adjacent pixels
and tend to reference many of the same
voxels in the volume. The important
working set for the 30-megabyte data set
we use (too large to be rendered at inter-
active rates) is only 16 kilobytes in size.
The working-set size is independent of
the number of processors in this applica-
tion as well, and is proportional to the
number of voxels along a single dimen-
sion of the data set (along a ray) -that
is, to the cube root of the data set size. In
addition, the push in volume rendering
is toward real-time rendering rather than
rapidly increasing data set sizes. The im-
portant working set for this algorithm is
therefore likely to remain small for some
time to come.

Interactive frame rates with the paral-
lel shear-warp method. A new shear-
warp algorithm has recently been devel-
oped that can render a 256-cubed-voxel
data set in one second on a Silicon
Graphics Indigo workstation.' We have
parallelized this algorithm on Dash and
the Challenge.

The shear-warp algorithm proceeds in
two phases. It first factors the viewing
transformation into a 3D shear parallel
to the data slices and projects the data to
form a distorted intermediate (compos-
ited) image. Then it performs a 2D warp
on the composited image to produce a fi-
nal undistorted image. Unlike the image-
order ray-casting algorithm, this is an ob-
ject-order algorithm that streams through
slices of the sheared volume data set in
front-to-back order and splats voxels
onto the corresponding pixels in the com-
posited image. In contrast to the ray-cast-
ing approach. volume shearing has the
attractive property of exploiting spatial
cache locality (with multiword cache
lines) in both the object and image data.
The algorithm uses run-length encoding,
min-max pyramids, and multidimen-
sional summed area tables to achieve its
efficiency without sacrificing image qual-
ity. Its phases are depicted in Figure 6.

We parallelize the first (compositing)
phase by partitioning the intermediate or
composited image among processors.
This ensures that only one processor
writes a given pixel in the composited im-
age. If the original voxel data set were
partitioned among processors, different
processors would write the same pixels

July 1994 51

46.0
Ideal

+ Dash car

40.0- -3 Challenge car

32.0 -

n
3 24.0-

v)
8

P Seciframe 16.0 -

8.0 -

0.0 I I I I I

0 8 16 24 32 40 1

Number of processors

(a)

8 64 256 1K 2K 4K 8K 16K 32K64K128K512KlM
Cache size (bytes)

(b)

Figure 7. Speedups (a) and working sets (b) for the ray tracing application. The hierarchical uniform grid is subdivided to a
maximum of three levels, with five-way subdivision in each dimension and a maximum of 60 primitive objects per leaf cell of
the hierarchy. The size of a tile (the unit of task stealing) is 8 x 8 pixels.

(due to the shearing of the voxel data set)
and synchronization would be required
to ensure mutual exclusion when updat-
ing pixels and to preserve dependencies
between processing slices of the data set.
The composited image is divided into
groups of scan lines (the optimal group
size depends on the size of the problem
and the cache line size on the machine),
and the groups are assigned to processors
in an interleaved manner (Figure 6 shows
the partitioning for two processors). In-
stead of streaming through a full 2D slice
of the voxel data set before going to the
slice behind it, as in the serial implemen-
tation, a processor now streams through
the voxels that correspond to one group
of image scan lines that it is assigned, then
proceeds to the similar group in the next
slice, and so on. When it has gone through
all the slices for one group of image scan
lines, it processes the other groups it is as-
signed similarly, and finally steals groups
from other processors. The 2D warp is
also partitioned in groups of scan lines.
by partitioning the final warped image
among processors this time.

This parallelization achieves good
speedups and lets us obtain interactive-
rendering rates of 12 frames a second for
a rotation sequence on a 256-cubed-voxel
human-head data set. These speeds were
obtained on a general-purpose, 16-pro-

cessor Challenge machine (a single pro-
cessor takes about 1 second per frame).
Thus, both image-order and object-order
volume-rendering algorithms can be par-
allelized effectively on cache-coherent
multiprocessors.

Ray tracing
Our final application is an optimized

ray tracer. The ray tracer was originally
developed by Spach and Pulleyblank4for
a message-passing machine. with dupli-
cation of the entire scene data set on ev-
ery processing node. and was later
adapted to the current implementation
on a shared-address-space machine with-
out data set duplication.

Sequential algorithm. As in the ray-
casting volume renderer. primary rays
are fired from a viewpoint through the
pixels in an image plane and into a space
that contains the objects to be rendered.
When it encounters an object. the ray is
reflected toward each light source to de-
termine whether i t is shielded from that
light source and. if not. to compute the
contribution of the light source. The ray
is also reflected from, and refracted
through. the object as appropriate.
spawning new rays. The same operations

are performed recursively on the new
rays at every object they encounter. Thus,
each primary ray generates a tree of rays,
the rays being terminated when they
leave the volume enclosing the scene or
by some user-defined criterion (such as
the maximum number of levels allowed
in a ray tree). A hierarchical uniform grid
(similar to an octree but not necessarily
with binary subdivisions) is used to tra-
verse scene data efficiently," and early
ray tracing and adaptive sampling are im-
plemented.

Exploiting parallelism. Like the ray-
casting volume renderer, the ray-tracing
algorithm affords substantial parallelism
across rays, and the scene data is read-
only. Here again, only a single copy of
the scene database is maintained in
shared space. and it is physically dis-
tributed round-robin at page granularity
among the memories. The partitioning
scheme is almost identical to the one used
for the ray-casting volume renderer, with
a similar distributed task-queue system
for load balancing.

Results. Figure 7 shows the speedups
for the parallel ray tracer. The scene be-
ing rendered is a car on a checkerboard
floor. as shown in Figure Id , and the im-
age has 512 x 512 pixels. The data set size

52 COMPUTER

is about 10 megabytes. No antialiasing is
used in these measurements. We obtain
excellent speedups without any attention
to data distribution.

As in volume rendering. the important
working set in ray tracing consists of the
data encountered in processing one pri-
mary ray (and the tree of rays it gener-
ates) that can be reused in processing pri-
mary rays cast through neighboring
pixels. The difference is that the working
set is larger and not so well defined (as
compared to that for the ray-casting al-
gorithm shown in Figure 5) . owing to the
unpredictability of reflections. The work-
ing-set size is once again independent of
the number of processors. Its size de-
pends on the hierarchical grid parame-
ters discussed above. the reflectivity of
the scene, and the number o f levels al-
lowed in the ray tree. Modern second-
level caches should continue to keep the
miss rate low enough to provide good
performance.

On machines that require main mem-
ory to be managed at the granularity of
pages and under software control. sev-
eral characteristics of these applications
make it very difficult to manage data dis-
tribution and replication in main mem-
ory. These include (1) dynamic data
structures (the quadtrees) in radiosity
and changing viewpoints in the other ap-
plications, which make it extremely diffi-
cult to determine which processors access
which data most often: (2) fine-grained
data sharing, which makes pages an in-
appropriate granularity for locality man-
agement; and (3) dynamic task stealing.
Thus, it is fortunate that caches work
well. The same characteristics make i t
very difficult to program these visualiza-
tion algorithms for effective parallel per-
formance on message-passing machines
that do not support a shared address
space. as we shall now see.

Shared address
space versus
message passing

There are three primary aspects of
communication management that distin-
guish the communication abstractions of
a shared address space and message pass-
ing between private address spaces: (1)
the naming of logically shared data, (2)
exploiting temporal locality on logically
shared data. which includes both manag-
ing data replication and renaming as well

B S maintaining the coherence of repli-
cated data. and (3) the granularity and
overhead o f communication.

In a shared-addrcss-space abstraction,
any datum ~ local or nonlocal - can be
referenced by any processor using the vir-
tual address (name) of that datum in the
shared address space. In the message-pass-
ing abstraction. on the other hand. a pro-
cessor can directly reference only those
data that are allocatcd in its private ad-
dress space (local memory). A processor
must therefore know or determine which

The cost of hardware
support for a cache-

coherent shared
address space

is justified by the
ease of programming

and performance
it affords.

processor's address space a datum resides
in and send a message to that processor
requesting the datum if it is nonlocal.

As we have seen. temporal locality on
both local and nonlocal data is handled
automatically in shared-address-space ma-
chines that cache shared data (if the caches
are large enough). and machines like Dash
automatically keep the cached shared data
coherent as well. On message-passing ma-
chines. nonlocal data must be replicated
explicitly by the user and kept coherent
by explicit communication of messages in
the application program. The replicated
data is thus explicitly renamed in message-
passing programs. while hardware trans-
parently takes care of renaming in the
cache-coherent approach.

Finally. while hardware-coherent
shared-address-space machines support
communication efficiently at the fine
granularity of cache lines. the overhead
of initiating and receiving communication
is much larger on message-passing ma-
chines (owing to software involvement).
and it is therefore important to make mes-
sages large to amortize this overhead.
Note that a coherent shared-address-
space abstraction can be provided in soft-
ware on a machine that does not provide
any hardware support for i t (such as an

Intel iPSCi860 or Paragon message-pass-
ing machine): however, this is typically
too inefficient for complex programs with
fine-grained communication needs.

The disadvantage o f cache-coherent
machines is the cost and design com-
plexity of cache coherence. However.
recent efforts to build these machines
have shown that the costs are quite
small. In fact. the cost of the extra main
memory needed on message-passing
machines for explicit replication of op-
erating system code. application code,
and data often dominates the hardware
cost of cache coherence. In any case. we
argue that the cost of providing hard-
ware support for a cache-coherent
shared address space is more than justi-
fied by the ease of programming and
performance it affords.

Managing communication explicitly is
not very difficult for applications with
regular, predictable behavior (such as
those that solve systems of equations on
regular grids). However, this is not true of
visualization applications. Below. we use
the ray-tracing and radiosity applications
to discuss the difficulties of message-pass-
ing implementations for these irregular
applications. (The issues in volume ren-
dering are similar to those in ray tracing.)

Ray tracing. The main problems for
message passing in the ray tracer are (1)
managing the naming, replication, and
fine-grained communication overhead is-
sues in sharing the read-only scene data.
and (2) managing load balancing. A third
problem arises in managing synchroniza-
tion when adaptive sampling is used to
reduce computation time.

Numirig. Any processor may need to
access parts of the scene data set with
fairly unstructured access patterns. Repli-
cating the entire data set on all nodes is
not an acceptable solution, since it
severely limits the size of the problems
that can be solved and is not scalable. A
reasonable data distribution for message
passing is to assign every processor
(memory) a contiguous subvolume of the
scene space. so that a processor P can de-
termine which processor Q a ray goes to
when i t leaves P's partition. Processor P
then has two choices: It can send the ray
to Q. which will then continue to trace
the ray, or it can communicate with Q to
obtain the volume data the ray needs and
continue to process the ray itself. Both
approaches have been tried.'.9 Managing
the naming and naturally fine-grained

July 1994 53

communication in both approaches is
complex and inefficient compared with
using a hardware-supported shared ad-
dress space.

Replication. We have seen that replica-
tion of communicated scene data is very
important to good performance. This is
in fact accentuated on message-passing
machines. where the overheads of com-
munication are much larger. One ap-
proach to managing replication is to repli-
cate every remote data structure that is
touched and hold it locally for the dura-
tion of a frame, replacing data between
frames. However. this can lead to large
storage overheads without any benefits in
complexity. The best approach for man-
aging replication on a message-passing
machine, used by Green and Paddon." is
to emulate a fixed-size hardware cache
for nonlocal data in the application pro-
gram itself. Since this approach essentially
amounts to implementing a restricted
form of a shared address space with
caches in the application program. it sup-
ports the argument for a shared-address-
space machine (particularly since we have
seen that realistic hardware caches are
large enough to yield very good perfor-
mance in such a machine). In fact. imple-
menting this method of managing repli-
cation in software on a message-passing
machine has significant overheads, since
it introduces explicit renaming and in ir-
regular applications necessitates a check
in software on every reference to scene
data (to determine whether the refer-
enced item is locally allocated. remotely
allocated but in the local cache structure.
or remote). None of this is required in a
cache-coherent machine.

Communication overhead and granri-
larity. All of the above approaches natu-
rally generate fine-grained communica-
tion, which is very inefficient given the
high message overhead on message-pass-
ing machines. Coalescing messages to
make them larger requires substantial
implementation overhead in such an un-
structured application.

Task stealing and load balancing. In
the shared-address-space implementa-
tion, the load-balancing problem was re-
solved very simply by task stealing. All
that was required to implement stealing
was a lock per task-queue and simple ter-
mination detection. On message-passing
machines, task stealing must be done
through explicit messages. which must

be handled by the application program
while it is performing the main compu-
tation. Task stealing is therefore much
more complex to program and incurs
greater overheads on message-passing
machines. In a survey of message-passing
i m p I e me n t a t i o n s. G re en and Pad don
mention several attempts to address the
load-balancing problem. but not one of
them uses task stealing. Instead, they try
to prepartition the image and object
space intelligently to improve load bal-
ancing over a uniform decomposition
(see Kobayashi et al.."' for example).

We believe that
general-purpose
multiprocessors

will be very
effective at

realizing real-time
or interactive-time

visualization.

These complex approaches are input de-
pendent as well as view dependent. and
the best ones often require profiling low-
resolution runs to determine a desirable
partitioning.

Finally. optimizations such as adaptive
sampling (as used in the volume ren-
derer) further complicate message-pass-
ing implementations by requiring that the
necessary synchronization for corner
pixel values be performed through ex-
plicit messages while the processes are in
the midst of the main computation.

Radiosity. The hierarchical radiosity
algorithm is much more complex to im-
plement with explicit message passing. In
addition to the irregular. unpredictable
data accesses and the need for task steal-
ing that it shares with the ray tracer and
volume renderer. i t has two other com-
plicating properties: (I) the main data
structures (quadtrees of patches) are dy-
namically changing. since they are built as
the computation proceeds: and (2) these
data structures are not read-only but are
actively read and written by different pro-
cessors in the same computational phase.
which complicates coherence manage-

ment. Implementations of message-pass-
ing versions by graduate students on an
Intel iPSCi860 machine have been exer-
cises in frustration and only yielded
elevenfold speedups on 32 processors be-
fore the project was abandoned as not
being worthwhile. We briefly describe
some of the main problems here. (De-
tailed descriptions and explanations can
he found in Singh.")

Naming. Given the dynamic data
structures. we solve the naming problem
by giving every patch a unique identifier
of the form quadtree.patch, where
quadtree is the number of the quadtree
or polygon of which that patch is a part,
and patch is the (globally consistent)
number of the patch within that
quadtree. Thus. we essentially imple-
ment an application-specific shared ad-
dress space in software.

Replication rrritf coherence. We have ex-
perimented with two approaches to man-
age replication and coherence. In the first
approach. processors start a time step
with local copies of all the data corre-
sponding to their patches and interaction
lists. They modify these data by subdivid-
ing their and others' patches locally as
needed in an iteration, and they commu-
nicate the modifications to other inter-
ested processors only at iteration bound-
aries. Coherence is thus maintained at a
Lery coarse temporal granularity (an en-
tire iteration), stale local information is
often used or extrapolated from, and the
extra memory overhead is typically very
large. Special data structures also have to
be maintained dynamically to keep track
of which patches are interested in updates
made to a given patch. This is similar to
maintaining an application-specific direc-
tory for cache coherence.

The second approach is once again
to emulate a shared address space and
caches in the application program. A sin-
gle "master" copy of the forest of
quadtrees is maintained in distributed
form and manipulated dynamically
through message passing. This approach
leads to much finer grained communica-
tion and to localicachediremote checks
at every reference to quadtree data.

Tusk stealing and load balancing. The
complexity of maintaining coherence is
greatly increased by the need for task
stealing. particularly in the local
quadtrees approach. When a patch is
stolen, we must decide whether the

54 COMPUTER

patch's ownership remains with the old
processor or is passed on to the stealer:
either possibility complicates coherence
and communication management. Al-
though stealing does help load balancing.
its communication and bookkeeping
overheads are so large in our current im-
plementation that it improves speedups
from only ten- to elevenfold with 32 pro-
cessors on an Intel iPSCi860 machine.

The control and timing issues in han-
dling messages for data, control. coher-
ence. synchronization, and load balancing
while performing the main computation
are very difficult to program and debug in
message-passing hierarchical radiosity. On
the other hand, we have shown that cache-
coherent shared-address-space machines
solve this problem very well.

W e have shown that general-
purpose multiprocessors that
efficiently support a shared

address space and cache shared data are
very effective vehicles for speeding up
state-of-the-art visualization and image
synthesis algorithms. Excellent parallel
speedups were demonstrated on some of
the most efficient sequential algorithms.
including hierarchical radiosity, ray-cast-
ing and shear-warp volume rendering.
and ray tracing.

A shared address space allows us to
easily implement very natural paral-
lelizations. and transparent coherent
caching suffices to exploit enough tem-
poral locality to yield excellent parallel
performance. On the other hand. the dy-
namic nature and unstructured access
patterns of all the algorithms make i t
much harder to program them effec-
tively in an explicit message-passing
paradigm.

We therefore believe that scalable
multiprocessors should provide efficient
support for a cache-coherent shared ad-
dress space if they target computer
graphics and visualization among their
application domains. Such general-pur-
pose machines will be very effective at
realizing real-time or interactive-time vi-
sualization of interesting data sets in the
future. We have shown that they can al-
ready do this for volume rendering using
the new shear-warp algorithm.

Acknowledgments
We thank Takashi Totsuka, Jim Christy, Ja-

son Nieh. Philippe Lacroute. Mancesh

Agrawala. and David Ofelt for implementing
or helping implement the parallel versions.
This research was funded under ARPA Con-
tract No. N00039-9 1-C-0138. Anoop Gupta is
also supported by an NSF Presidential Young
Investigator Award.

References
Jaswinder Pal Singh is a research associate at

1 .

2.

3

4

5

6

7

8.

9.

I O

P. Hanrahan. D. Salzman, and L. Aup-
perle, "A Rapid Hierarchical Radiosity
Algorithm," Compirter Graphics (Proc.
Siggraph). Vol. 25. No. 4. July 1991. pp.
197-206.

J . Nieh and M. Lcvoy. "Volume Render-
ing on Scalable Shared-Memory MlMD
Architectures," Proc. Bosron Workshop
on V o l i i i ~ ~ c ~ Viciia1i:ation. ACM Press.
New York. 1992. pp. 17-24.

P. Lacroute and M. Levoy. "Fast Volume
Rendering Using a Shear-Warp Factor-
ization of the Viewing Transformation,"
to be published in Proc. Siggrlrph. 1994.

Susan Spach and Ronald Pulleyblank.
"Parallel Ray-Traced Image Generation.''
Hwlett-Packard J . . Vol. 33. No. 3. June
1992. pp. 76-X3.

M . Cohen et al.. "A Progressive Refine-
ment Approach to Fast Radiosity Image
Generation ..' C o r r i p i r fer Grcrphics (Proc.
Siggraph), Vol. 22 No.4. Aug. 1988, pp.
75-84.

J.P. Singh. Prirtrllel Hicrrirchictrl N-ho t l y
Methods tind their Iriiplictitions ,for Mirlti-
processors, doctoral dissertation (Tech.
Report No. CSL-TR-93.563). Stanford
Univ.. Stanford Calif.. Feb. 1993.

E. Rothberg. J.P. Singh. and A. Gupta.
"Working Sets. Cache Sizes. and Node
Granularity for Large-Scale Multiproces-
sors." Proc. 20th Ann. Iri t ' l Synip. Coni-
pirtrr Archirt~rirre. IEEE CS Press. Los
Alamitos, Calif., Order No. 3810-02T.
1993. pp. 14-25.

A.G. Chalmers and D.J. Paddon. "Parallel
Processing of Progressive Refinement Ra-
diosity Methods." Proc. Second Eirro-
graphics Workyhop on Rrndrring. North-
Holland. 1991.

S.A. Green and D.J. Paddon. "A Highly
Flexible Multiprocessor Solution for Ray
Tracing.'' The Visiicil Corripirtc.r. Vol. 6.
No. 2. 1990. pp. 62-73.

H. Kobayashi et al.. "Load Balancing
Strategies for a Parallel Ray-Tracing Sys-
tem Based on Constant Subdivision." The
Visird Compirter, Vol. 4. No. 4. Oct. 1988,
pp. 197-209.

Stanford University. His research interests are
parallel applications and parallel computer
systems. He received his BSE from Princeton
University in 1987. and his MS and PhD de-
grees from Stanford University in 1989 and
199.3. respectively.

Anoop Gupta is an associate professor of com-
puter science and electrical engineering at
Stanford University. Before joining Stanford.
he was on the research faculty of Carnegie
Mellon University. where he received his PhD
in 1986. His research interests are the design of
hardware and software for large-scale multi-
processors. Gupta received the NSF Presi-
dential Young Investigator Award in 1990 and
holds the Robert Noyce faculty scholar chair in
the School of Engineering at Stanford.

Marc Levoy is an assistant professor of com-
puter science and electrical engineering a t
Stanford University. His research interests in-
clude visualization of multidimensional sam-
pled data. digitization o f 3 D objects using ac-
tive sensing technologies, and the design of
languages and user interfaces for data visual-
ization.

Levoy received a B. Architecture and an
MS from Cornell University in 1976 and 1978.
respectively, and a PhD in computer science
from the University of North Carolina at
Chapel Hill. He was principal developer of the
Hanna-Barbera computer animation system,
and he received the NSF Presidential Young
Investigator Award in 1991.

Readers can contact the authors at the
Computer Systems Laboratory. Stanford
University. Stanford. C A 94305. Their
e-mail addresses are jps@samay.stanford.edu,
(gupta.lcvoyJ~cs.stanford.edu.

55 July 1994

mailto:jps@samay.stanford.edu

