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Abstract

We examine the performance benefits of integrating a mechanism for block data transfer (message passing)
in a cache-coherent shared address space multiprocessor. We do this through a detailed study of five important
computations that appear to be likely candidates for block transfer. We find that while the benefits on a realistic
architecture are significant in some cases, they are not as substantial as one might initially expect. The main
reasons for this are (i) the relatively modest fraction of time that applications spend in communication that
is amenable to block transfer, (ii) the difficulty of finding enough independent computation to overlap with
the communication latency that remains even after block transfer, and (iii) the fact that long cache lines
often capture many of the benefits of block transfer. Of the three primary advantages of block transfer, fast
pipelined data transfer appears to be the most successful, followed by the ability to overlap computation
and communication at a coarse granularity, and finally the benefits of replicating communicated data in main
memory. We also examine the impact of varying important network parameters and processor speed on the
relative effectiveness of block transfer, and comment on useful features that a block transfer engine should
support for real applications.
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1 Introduction

A shared address space with coherent caches has been shown to provide an effective communication abstraction
for multiprocessors. The shared address space greatly simplifies the parallel programming task—particularly
for irregular, dynamically changing communication patterns—by making communication implicit rather than
requiring explicit communication in the user program. Also, automatic coherent caching of shared data often
reduces the implicit communication to levels that yield good performance.

One shortcoming of existing cache-coherent shared address space architectures is that they have relied
on implicit communication through loads and stores in the shared address space as theonly means of commu-
nication. While this works well for fine-grained data sharing patterns, applications often require the movement
of a known large amount of data from one processing node to another, in which case moving the data in large
messages is likely to be more efficient than moving the data one cache line at a time through processor loads
and stores. Such block transfer of data also naturally brings with it the replication of communicated data in
main memory, and the ability to overlap the communication with computation more effectively at a coarser
granularity. All these advantages are increased as communication latencies become larger and communication
bandwidths become smaller relative to processor speeds. Since block data transfer is clearly not mutually
exclusive with a cache-coherent shared address space, and since the core mechanisms for moving data with
low latency and high bandwidth are very similar for cache coherence and block transfer, architects have begun
to design machines with hardware support for both a cache-coherent shared address space and block transfer
of data [1].

Structuring communication in large blocks is clearly crucial on current message-passing machines
(and workstation networks), since the overheads and latencies of sending messages are very high. However,
it is not clear what the role of coarse-grained messages is on tightly coupled, hardware cache-coherent shared
address space architectures. Several questions arise about (i) the performance advantages of selectively using
block transfer over relying completely on a standard load-store shared address space model, (ii) how these
advantages vary with processor, memory system and network performance, (iii) the desirable capabilities of
a block transfer mechanism (other than the ability to move large contiguous pieces of data efficiently), (iv)
whether or not applications or algorithms have to be changed substantially to use block transfer on top of cache
coherence, and (v) the implications for the programming model for such an architecture, since block transfer
can clearly be provided by various mechanisms including explicit message passing and software distributed
shared memory protocols [3, 4]. In this paper, we focus primarily on the performance advantages of using block
transfer and how they change with architectural parameters. We address block transfer features and algorithmic
changes where they are relevant in the applications we consider. We do not explicitly address the programming
model question, but use an explicitmemory copyprimitive for block transfer to enable us to study performance
without the overheads of a specific high-level software system.

Section 2 discusses different ways to structure coarse-grained communication in a cache-coherent
multiprocessor with a block transfer facility, and the performance advantages that can potentially be obtained
by using block transfer. Section 3 describes the architecture and simulation environment that we use in our
experiments. In Section 4, we discuss our choice of applications, our experimental methodology and the values
we use for various architectural parameters in our base machine. Section 5 discusses the results for different
applications on the base machine. The impact of varying network and processor speed parameters is addressed
in Section 6. Finally, Section 7 summarizes our main conclusions.

2 Structuring Communication in a Shared Address Space

Given a cache-coherent shared address space machine with a facility for block transfer, there are several ways
in which the communication of a large chunk of data might be organized. The two primary issues are: (i)
who initiates or requests the communication, i.e. is itreceiver-initiatedor sender-initiated, and (ii) is the
communication done through standard loads and stores of shared data or through block transfer. The key
sources of performance difference among the four resulting communication models are:

� Fast pipelined transferof large amounts of data. This is achieved in the models that use block transfer,
since the overhead of message request, initiation, and management of a data message is incurred only
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once per large block rather than once per cache line, and since the datapath between main memory and
the network is shorter through the block transfer engine than it is through the main processor.

� Overlap of communication with computationor with other communication.

� Replication of communicated data in main memory.

There are other issues, such as the ability to naturally combine synchronization and data transfer in a single
message with block transfer, but these are less important for our applications and we do not consider them.

Two points bear emphasis. First, we are by no means restricted to using only one communication
model in a given application, but are free to use whichever model is most appropriate for any particular
communication. In fact, we rely on the implicit, usually receiver-initiated, load-store model for all but block
communication, thus retaining the major advantages of a cache-coherent shared address space. Second, given
that we have a shared address space, the most appropriate way to do block transfer is not through asend
operation to a processor that requires a matchingreceive, but by performing a memory copy from the source
directly into the destination data structures.

Initiator
Receiver Sender

— —
Load- — Overlap
Store — Replication

Fast Transfer Fast Transfer
Block — Overlap

Transfer Replication Replication

Table 1: Performance Advantages of Different Communication Models

Table 1 summarizes how the three performance advantages naturally fit into the communication models.
A couple of notes on the table follow. First, overlap of communication with computation can be achieved in
receiver-initiated models as well, by using advanced techniques such as prefetching, multithreading and even
dynamic scheduling with relaxed consistency models. The last two techniques are beyond the scope of this
paper, and we comment on prefetching in the discussion at the end of the paper (Section 7). Among the load-
store models, the sender-initiated can overlap communication with computation more easily, since the latency
of write misses is much easier to hide than that of read misses. However, sender-initiated communication is
not as natural to the load-store model as receiver-initiated, and its potential advantages rely on the relationships
between communication latency and other architectural features such as write buffer depth and sophistication.
We do not discuss sender-initiated load-store communication in this report, but note that with realistic write
buffers, we found it to not help too much over a receiver-initiated load-store model.

Second, replication in main memory can also be obtained in the receiver-initiated load-store model,
either explicitly by the user or automatically by the system1. We assume that it must be done explicitly by the
user. We experiment with explicit replication at different levels, in every case getting to essentially the level
at which all important communicated data are replicated locally. We also explicitly replicate certain seemingly

1Automatic mechanisms include cache-only memory architectures (COMA), page replication by the operating system, or replication
by the runtime system at the granularity of user-defined “objects”. Pages are often too coarse a granularity for replication, coherence and
data movement, especially in the presence of fine-grained data sharing. And objects have problems too: the objects that are useful from
the “object-oriented” programming elegance points of view (encapsulation, modularity etc.) are often not appropriate for communication,
and communication in a given phase of a program often requires only a part of a logical object.
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insignificant but frequently referenced read-only shared variables that do not get automatically replicated in
main memory in our system2.

Block transfer can be done either into the receiver’s cache or into its main memory. We assume
block transfers into main memory for two reasons. First, particularly when communication is overlapped with
computation, pushing into the cache might interfere with data that the receiving processor needs, and potentially
generate more communication. Second, the replication in main memory is useful if the data need to be reused
later but do not stay in the cache. Replication in main memory thus goes hand-in-hand with our block transfer
communication.

Although receiver-initiated block transfer does not naturally provide overlap like sender-initiated, it
may have advantages when: (i) the sender does not know where to send data, (ii) it is important to restrict
the amount of replication in main memory, and (iii) the receiver can better determine the order in which it
needs to receive messages than the sender can determine the order in which its destinations need to receive
them. We experiment with receiver-initiated block transfer only when some of the above are important issues
(see Section 5.3). Thus, the two models that we focus on mostly are receiver-initiated load-store, which is the
most natural way of programming a cache-coherent machine without block transfer, and sender-initiated block
transfer, which is usually the natural way to do block transfer. Given the advantages in Table 1, the goal of our
block transfer versions is to reduce communication costs through fast data transfer and replication, and hide
the remaining costs as far as possible by overlapping communication with computation. We shall examine the
extent to which we are able to achieve this goal, and analyze the specific reasons why we fall short (such as
the overheads of block transfer, contention with load-store memory accesses and coherence transactions, and
the inability to overlap communication with computation).

3 System Architecture and Simulator

Every node in the cache-coherent multiprocessor we assume contains a processor with a single-level cache, a
directory controller, a network interface, and an equal fraction of the main memory. The directory controller
contains a programmable control “processor” that is used to process local memory accesses, standard directory-
based cache-coherence protocol transactions and block transfers. The network interface connects the node to a
2-dimensional, bidirectional mesh network. The architecture is based closely on the FLASH architecture that
is currently being designed.

To perform a block transfer, the processor initiating the transfer notifies the directory controller on
the source node. We assume a fairly sophisticated block transfer engine which allows us to specify different
strides at the source and destination (this is quite feasible with a programmable directory controller, since all the
functionality does not have to be provided in hardware). Block transfers are handled entirely by the directory
controllers, so that both the source and destination main processors may continue to compute while the transfers
are in progress (although they may contend for resources with the transfers or have to wait for the transfers to
complete for other reasons).

The source directory controller retrieves cache-line sized memory blocks of data from main memory, if
they are not cached, and transmits them in a pipelined fashion to the receiving node, where the controller stores
these lines into main memory at the specified addresses. Synchronization for message arrival is performed by
checking the status of a flag associated with the transfer, or through higher-level constructs such as barriers.
No restrictions are placed on the number of message transfers that a processor can be involved in at a given
time. Multiple transfers from a source are interleaved at a cache line granularity. Processors are not allowed
to send block transfer messages to themselves.

Three important issues arise when implementing block transfer on top of a cache-coherence protocol.
First, the data (addresses) involved in the block transfer may be cached by the sending node and/or the receiving
node, which adds time to the block transfer for retrieval and invalidation of cached data. In fact, in general
the most up-to-date copy of a data item may be cached at a third node (and the “source” processor initiating
the transfer may not even be the node on which the storage for the data is allocated). This general case
requires block-transferred data to be kept globally coherent, which is complicated to implement and expensive

2These variables can otherwise cause substantial extra communication and hot-spotting if they are replaced in the cache. This in fact
can often be an important advantage of systems that replicate automatically (such as COMA machines), particularly with direct-mapped
caches and for such variables that are not strictly read-only and therefore must be kept coherent as well.
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at runtime. Early designs of block transfer protocols have therefore restricted themselves to assuming that data
are sent only from the node where their storage is allocated, and ensuring only that the sender and receiver’s
caches stay coherent with their respective local memories [6]. These restrictions actually suffice for all our
versions of the applications we consider, and we comment on cases where versions of the applications would
violate the assumptions and complicate block transfer (see Section 5.2, for example). The second issue is
that the directory controller is needed both for transactions related to load-store accesses as well as for block
transfer, which may occur simultaneously. Since block transfer messages are likely to be large, and we do
not want to stall other accesses that are short, we give priority to other accesses and allow them to interrupt
and temporarily suspend a block transfer. Third, transfers may include partially written cache lines (memory
blocks). At the destination, the controller must retrieve the line and merge it with the valid portion of the
transmitted line, which also increases message transfer time.

The architecture is simulated using the Tango event-driven reference generator [8]. Our detailed,
variable-latency memory system simulator models contention at the directory controller and memory system,
but not in the network itself. An invalidation-based cache-coherence protocol similar to that used in the Stanford
DASH machine [9] is simulated. Processors are forced to block on read misses, but write buffering hardware
is included to reduce processor stalls on write misses. To help reduce miss latencies, speculative reads are
performed at the home node at the same time that line state is checked. The processor is assumed to have a
100% hit rate in the instruction cache.

Parameter Value

Main Processor Clock Rate 100 MHz
Internal Data Bus Width 64 bits
Queueing Delay into and out of Directory Controller 8 cycles
Memory Block State Lookup Time 15 cycles
Memory Block Remote Request Message Construction Time10 cycles
Overhead for Cached Blocks at Sender and Receiver 5 cycles
Memory Block Access Time (independent of block size) 25 cycles
Network Width (each direction) 16 bits
Network Topology 2D Mesh
Network Clock Rate 200 MHz
Network Cache Line Header Size 32 bytes
Message Latency Between Adjacent Nodes 5 cycles
Block Transfer Message Startup Time 100 cycles

Table 2: Important Simulation Parameters and their Values in the Base Architecture.

Several parameters affect the time to service memory accesses and block transfers, some of which are
listed in Table 2. The time required for a block transfer also depends on the three issues discussed above. In
performing a block transfer, accesses to main memory and data transfer into the network are assumed to be
pipelined. The effective pipeline stage time for block transfer operations is therefore the greater of the time to
retrieve a line from memory and the time to push a line and its associated header into the network.

4 The Applications and Methodology

4.1 Choice of Applications

We do not try to study a “representative” mix of parallel applications and determine the “average” effectiveness
of block transfer. Rather, we choose a few applications and computational kernels based on two criteria: (i)
they appear likely to be aided by block transfer, and (ii) they are each representative of important classes of
applications/algorithms for parallel computing, so that it makes sense for architectures to include features to
support them efficiently, even if other applications may not benefit from these features.
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Kernel/Application Representative of

Radix
p
n Fast Fourier Transform Convolution/Transform Methods

Blocked Dense LU Factorizaton Dense Linear Algebra
Blocked Sparse Cholesky Factorization Sparse Linear Algebra
Ocean Simulation with Multigrid Solver Regular Grid Iterative Methods
Radix Sort Sorting

Table 3: The Applications.

The applications/kernels we study are listed in Table 3. Our ocean simulation application is a scalable
version of the Ocean application in the SPLASH suite [11]. It uses a different solver and partitioning. The
blocked Cholesky factorization is also a more scalable alternative to the panel Cholesky kernel in SPLASH.
It is statically scheduled for locality of reference, unlike the dynamically scheduled code in SPLASH. We do
not use either of the other two scalable applications in SPLASH (Water and Barnes-Hut), since they (i) are
well-suited to fine-grained cache coherence, (ii) have very low communication volume, and (iii) do not benefit
from replication in main memory since their working sets are small. Barnes-Hut also cannot be easily structured
for block transfer.

4.2 Experimental Methodology

For each application, we examine the performance gains obtained by sender- or receiver-initiated block transfer
over the receiver-initiated load-store model. We start with the best versions of the applications that we can
develop for the load-store model, discuss different ways to incorporate block transfer, and examine the perfor-
mance benefits of replication, overlap and fast data transfer, trying to isolate their effects as much as possible.
To help isolate effects, we also examine the receiver-initiated load-store model with explicit replication. In
each application, we identify the primary reasons that limit block transfer from achieving its goal of reducing
and hiding all the communication costs.

We also examine how the effectiveness of the block-transfer models changes with the data set size
and number of processors in each application, and comment on how the results might scale to larger problems
and machines. We choose cache sizes based on the working sets of the applications, so that the cache size in
our simulations is large enough to accommodate the working set if this would indeed be the case in practical
problems running on real machines. We also vary the cache line size in all cases, since larger lines can in
many cases provide some of the advantages of block transfer even in the load-store model. In the individual
application sections that follow, we use a base set of machine parameters that might be found on a machine
that can be built today. Then, in Section 6, we examine the effects of varying some key parameters on the
advantages of block transfer in these applications. The variations we study reflect possible technology trends or
other types of systems that provide different communication latencies and bandwidths than the base architecture.
In particular, we examine the effects of using (i) a slower network, (ii) a faster network, and (iii) a much faster
processor with the same local memory access time and network.

The important machine parameters we consider, as well as their values in the base architecture, are
shown in Table 2. The cache line size is varied between 32 and 128 bytes. The processor is assumed to take
1 cycle per instruction. With 64 byte cache lines, the latency for a local read miss is about 40 cycles, that for
a remote read miss is about 120 cycles, and the node-to-network interface has a peak bandwidth of about 380
MB/sec for block transfer, which is actually quite an aggressive network for this processor.

5 Results for Base Architectural Parameters

5.1 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a dominant computation in a wide variety of fields ranging from signal
processing to climate modeling. The FFT analyzed in this section is a complex 1-D version of thesix-step
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FFT algorithm described in [2]. This algorithm utilizes a high radix (radix
p
n, where n is the number of

data points) to optimize memory referencing and communication behavior by minimizing the number of passes
through the data set. The data set for the FFT consists of thencomplex data points to be transformed, and
anotherncomplex data points referred to as theroots of unity. Both sets of data are organized as

p
nx

p
n

matrices in the radix
p
ncomputation. The six steps of the algorithm are shown in Figure 1(a).

Both the data matrix and the roots of unity matrix are partitioned among processors in contiguous
chunks of rows, with a processor’s partition of rows being allocated in its local memory3. The roots of unity
matrix is read-only once it is initialized. The first row of this matrix is accessed heavily by all processors, and
is therefore replicated at the beginning of the program. This helps performance substantially since it eliminates
hot-spotting.This is the only replication that is of any use in the FFT. The working set of each 1-D FFT (

p
n

points) is assumed to fit in the cache—which is true with our 8KB cache for both the problem sizes that we
use—since even if

p
npoints don’t fit a smaller radix can be used within the 1-D FFTs to make the working

set fit.

Owned By
Proc 0

Owned By
Proc 1

Owned By
Proc 2

Owned By
Proc 3

crosses traversal order 
Long cache line

doesn’t cross traversal order 
   Long cache line

Destination MatrixSource Matrix

(b) FFT Transpose Phase(a) Algorithm Steps

patch

1. Transpose data matrix
2. Perform 1−D FFT on each row
     of data matrix
3. Apply roots of unity to data
     matrix
4. Transpose data matrix
5. Perform 1−D FFT on each row
     of data matrix
6. Transpose data matrix

The Six−Step FFT Algorithm

Figure 1: FFT: Algorithm and Transpose

The only communication is in the transpose phases, which require all-to-all communication of a large
amount of data. Figure 1 illustrates how the transpose is done. Contiguous subcolumns in the

p
n

p
rows

assigned to a processor are grouped intopatchesof size
p
n

p
-by-

p
n

p
, which are transposed and placed into the

proper location of the destination matrix. Every processor transposes one patch locally, and sends one patch
to each of the other processors in the system. Let us look at the different ways of structuring the transpose
communication.

Receiver-initiated load-store Although there is no reuse of individual words in the transpose, with long cache
lines it makes sense to block the transpose to take advantage of the spatial locality afforded by long lines in the
source matrix (or temporal locality at the cache line level). The source matrix is viewed as being divided into
blocks of sizeB byB, whereBis proportional to the number of cache lines (not elements) that fit in the cache.
When a processor moves from one subcolumn of a source block to the next, if a cache line straddles these
subcolumns then the elements of the second subcolumn are likely to already be in the cache. This makes abig
difference to performance, reducing overall execution time by 40% for a 64K-point FFT with 16 processors,
8KB caches and a 128-byte cache line (and reducing transpose time from 50% of overall execution time to
only 15%). We use this blocked transpose FFT as our reference point in subsequent comparisons.

Sender-initiated block transfer: Since replication of communicated data is not an issue in the FFT, and since
receiver-initiated block transfer ends up looking almost exactly like one of our sender-initiated cases (other than
the one additional request message per block), we do not discuss receiver-initiated results for space reasons.
Let us examine sender-initiated block transfer. Even with our fairly sophisticated block transfer primitive,
the transposition of a patch cannot be entirely performed in a single block transfer message: It requires both
specifying a number of elements at each stride point, and more importantly, telling the transfer engine to
transpose the data layout. One way to do the block transfer is to send one subcolumn of a patch at a time

3We have structured the roots of unity matrix differently than in [2], arranging it so that a processor mostly needs to access the rows
that are in its own partition; this yields vastly superior performance on a parallel machine.
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Figure 2: FFT: Unblocked BT versus Blocked LS (8KB Cache)

and put it in a subrow at the destination (thus using different strides)4. Figure 2 shows the performance of
this version. Unless otherwise specified, all our graphs (in all applications) show performance relative to the
receiver-initiated load-store (LS) version. When a graph shows three curves labeled by line size, the y-axis
value of a point for each curve is the application’s execution time for that number of processors and that
line size, normalized to the execution time with the same number of processorsand the same line sizein the
receiver-initiated LS version. Thus, every point shows at a glance how much better or worse the version being
compared is relative to the receiver-initiated LS version for the same set of parameters.

While the block transfer (BT) version in Figure 2 does well for small cache lines and small numbers of
processors (for this small problem), it performs much worse as the line size and number of processors increase.
There are three reasons for this. First, the transposes using BT are not blocked for cache line reuse like the
LS version. Second, the destination node receives many partially valid memory lines, since a cache line may
straddle consecutive subcolumns, which decreases performance as discussed earlier. Both these differences
exist only for cache lines larger than a single element. Finally, more processors for the same problem implies
smaller patch subcolumns, and hence smaller transfers and an even greater impact of transfer overhead.

All of these overhead problems can be alleviated by using the flexibility afforded by the programmable
directory controller to write a special block transfer handler that blocks the transpose in the controller itself.
Figure 3 illustrates the performance improvement from utilizing such a handler in the FFT. The FFT (or any
matrix transpose) is thus clearly an example of more sophisticated support being needed in the block transfer
system than simply the ability to move large chunks of data efficiently.

Figure 3 reveals some expected trends. First, the effectiveness of block transfer is greatest at the
“sweet spot” where the communication to computation ratio is high enough that speeding up communication
is important, and yet the individual block transfer size is large enough that the overheads of block transfer
don’t dominate. This sweet spot in terms of number of processors clearly increases with increasing data set
size. As long as the messages are large enough, larger data sets don’t help the magnitude of the improvement
with block transfer much for a given number of processors (since the achieved communication bandwidth
improvement mostly depends on the ratio of the remote read miss time to the block transfer pipeline stage time
(see Section 3); however, larger data sets allow block transfer to be effective for larger numbers of processors.
Second, as in almost all our applications, the relative advantage of block transfer is larger with smaller cache
lines. This is mostly because larger cache lines capture some of the effects of block transfer anyway, and
sometimes because as partitions become small larger cache lines can lead to partially written cache lines and
false-sharing, which hurt block transfer substantially.

So far, the only advantage of block transfer we have explored is the fast transfer of data. No replication
was needed, and we have not tried to overlap the remaining communication costs with 1-D FFT computation
(the only overlap has been between computing the local patch transpose and sending the patches to remote

4Another possibility is to transfer a block in a non-transposed way, and have the receiver transpose each received block before using
it. Transferring a block in a single message requires more than a stride capability: It also requires the ability to specify the number of
elements at the stride points. In addition this method also requires the user to either use a buffer per processor to receive data into or use
a temporary buffer to transpose the received blocks in the destination matrix, and requires the main processor to do the transpose. Finally,
the blocking in the controller method discussed next is the best method anyway.
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Figure 3: FFT: Blocked BT versus Blocked LS (8KB Cache)

destinations). The FFT can, however, be rewritten to overlap communication with computation. To do this,
the rows of a processor’s partition are divided into subpartitions that can be efficiently transposed. The idea is
illustrated in Figure 4. Once the 1-D FFTs for a subpartition have been performed, the component subpatches
of that subpartition can be block transferred. While the directory controller is sending these transfers, the main
processor continues performing one-dimensional FFTs on its next subpartition. Since the working set of the
1-D FFT fits in the cache, there should not be too much contention between load-store requests and the block
transfer. The main potential disadvantage of this approach is that more messages are sent, since subpatches are
smaller than patches or blocks.

Cache Line

Before Transpose After Transpose

Subpartition 0

Subpartition 1

Subpartition width 
determined by 
number of elements 
per cache line

Transpose of subpartition 0 can be overlapped 
with computation of one−dimensional FFT’s 
for rows in subpartition 1

Matrix

Figure 4: Subpartitioning to Allow Overlap of Communication and Computation

Figure 5 illustrates the performance of this method. Compared to the results in Figure 3, we see
that subpartitioning and overlap is helpful when there are at least a few subpartitions per processor (that is,
whenp is small relative ton), but actually hurts performance slightly when there is only one subpartition per
processor (since there is overhead involved in managing the subpartitioning). Closer analysis of contention and
the ability to fill the communication time with overlapped computation reveals the following results. Contention
effects between block transfer and load-store accesses are very small (only a few percent of execution time in
the worst of our cases), and diminish with larger cache lines since the load-store accesses incur less misses.
The effects tend to diminish with increasing numbers of processors (since there is less work to overlap) and
are expectedly larger in the subpartitioning case than in the no overlap case. However, the idle time waiting
for communication to complete is smaller in the subpartitioning case, and this has a much greater impact on
performance. The problem is that the 1-D FFT’s do not take as long to complete as the communication does,
so that overlapping is not able to hide all the latency. This effect gets better with larger cache lines (since these
improve communication more than computation), but worse as communication bandwidths diminish relative to
processor speed and as the number of processors increases. The idle time waiting for communication is about
16% of execution time with a 32B line size for our larger problem, and 10% with a 128B line size. Because
of the dependence structure of the program, there is not much other computation we can overlap with this idle
time, which limits the effectiveness of block transfer even where the overheads aren’t too high.
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Figure 5: FFT: Subpartitioning to Allow Overlap of Communication and Computation (8KB Cache)

Scaling: We have seen how the effectiveness of block transfer changes with the number of processors for
a fixed problem size: It diminishes after the sweet spot. We have also seen that the sweet spot moves to a
larger number of processors as the data set size is increased. However, the movement of the sweet spot is
not linear with the data set size. If the data set size is increased proportionally to the number of processors
(memory-constrained scaling), a processor’s partition remains the same, but is divided into as many block
transfers as there are processors. The size of each transfer therefore decreases, and the number of transfers that
a given processor is involved in increases. This leads to diminishing advantages for block transfer, albeit more
slowly diminishing than in the constant problem size case. Under time-constrained scaling, which is likely to
be the most realistic in practice for a real application that uses the FFT, the data set does not grow as quickly as
the number of processors [10]. The communication to computation ratio grows but the message size becomes
smaller, and the effectiveness of block transfer diminishes faster than under memory-constrained scaling once
the sweet spot is passed. Block transfer is therefore at its most effective for a moderate number of processors
and a relatively large data set size.

5.2 Blocked Dense LU Factorization

LU factorization of a dense matrix is representative of many dense linear algebra computations, such as
QR factorization, Cholesky factorization, and eigenvalue methods. DenseLUfactorization can be performed
efficiently if the densen�nmatrixA is divided into anN�Narray ofB�Bblocks, (n= NB). The pseudo-
code in Figure 6(a), expressed in terms of these blocks, shows the most important steps in the computation.
The dominant computation is Step 6, which is simply a dense matrix multiplication of two blocks.

The parallel computation corresponding to a singleK iteration in the above pseudo-code is shown
symbolically in Figure 6(b). Two details are important for reducing interprocessor communication and thus

P0 P1 P2

P3 P4 P5

P6 P7 P8

Akk

Grid of Processors
  (cookie cutter)

Perimeter Blocks
Interior BlockDiagonal Block

indicate flow of
data toward blocks
to be updated

kk

ij ik kjij

Blocked Dense LU Factorization

(a) Algorithm Steps (b) Pictorial Representation

1. For k=0 to N do
2.   Factor diagonal block A
3.   Compute values for all
      perimeter blocks in column k
      and row k
4.   For j=k+1 to N do
5.      For i=k+1 to N do
6.         A    =   A    − A   * A  

          /* Update interior blocks using
            corresponding perimeter blocks */  

Figure 6: Blocked Dense LU Factorization.

obtaining high performance. First, the blocks of the matrix are assigned to processors using a 2-D scatter
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decomposition. That is, the processors are thought of as aP �Qgrid, and block(I; J) in the matrix is
assigned to processor(ImodP; JmodQ). A simple 3�3 processor example is shown in Figure 6(b).
Second, the matrix multiplication in Step 6 above is performed by the processor that owns the destination block
AI;J . The block sizeBis chosen to be large enough to keep the cache miss rate low, and small enough to
reduce the time spent in the less parallel parts of the computation (Steps 2 and 3) and to maintain good load
balance in Step 6. Relatively small block sizes (B=8 or B=16) strike a good balance.

A natural way to code LU factorization of a 2-D matrix in a shared address space is to use a 2-D array
to represent the matrix. Since blocks are allocated in a scattered decomposition, and a block is not contiguous
in the address space in a 2-D array, this makes it very difficult to allocate blocks in the local memories of the
processors that own them, and causes false-sharing problems with long cache lines. This is a problem for the
load-store model, but causes even greater complications for block transfer since memory allocation problems
and false sharing imply that global coherence is required for correctness (see Section 3). This is both complex
to provide and slows block transfer substantially. The solution is to ensure that blocks assigned to a processor
are allocated locally and contiguously by using a 4-D array (with the first two dimensions specifying the block
number in the 2-D grid of blocks, and the next two specifying the element in the block). We use such a
structure in the versions that follow.

Receiver-initiated load-store: We examine three versions with different degrees of replication in main mem-
ory: (i) the receiver simply fetches data on demand and relies on the cache for replication, (ii) the receiver has
one block-sized replication buffer in which it explicitly replicates the important remote block that it is currently
using, and (iii) the receiver replicates all blocks that it receives during a given step (or iteration of the outer-
most,K, loop). Figure 7 compares the schemes, using the no replication case as the base. Replicating a single
block is worse than not replicating for all numbers of processors, and particularly so for larger numbers, since
the cache keeps the miss rate to this block very low. Explicit replication of all communicated (perimeter, see
Figure 6(b)) blocks helps when each processor has enoughinterior blocks so that it reuses the perimeter blocks
several times. Otherwise, the overhead of replication hurts performance. Thus, replication helps only for very
small numbers of processors for our small problem, and the number of processors up to which it helps increases
with problem size (as we have verified through limited simulations with a 512-by-512 matrix). However, the
situation in which replicated blocks are reused a lot is one in which the number of blocks per processor is
high and the communication to computation ratio therefore low, which reduces the performance advantages of
explicit replication. Note that the active working set for LU factorization is very small and does not depend on
problem size or number of processors (only on block sizeB), so that the benefits of explicit replication would
be further reduced with larger caches than the 8KB cache we use. However, since the performance differences
are not large at small number of processors, we use no replication as our base case in comparing with block
transfer.
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Figure 7: LU: Comparison of Various Replication Strategies (256x256 Matrix, B=16, 8KB Cache)

Sender-initiated block transfer: Since only the diagonal block and perimeter blocks (see Figure 6(b)) within
a step are replicated, the storage overhead for replication is not high and there is no advantage to receiver-
initiated block transfer. In sender-initiated block transfer, the processor that updates the diagonal block in a
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step sends a copy of the block to all the processors that own perimeter blocks. When a processor updates a
perimeter block it owns, it sends that block to all processors that own interior blocks which need that block,
and proceeds to update the next perimeter block it owns. Having sent all its perimeter blocks, it barriers until
all block transfers have been done before updating its interior blocks. Thus, this scheme has all the replication
that could possibly be useful, and overlaps computation and communication in processing the perimeter blocks.
The main limitation on the effectiveness of masking communication with overlap is the relatively small amount
of time it takes for a processor to update all its perimeter blocks compared to the amount of time taken to
communicate all blocks (note also that processors that don’t own perimeter blocks are completely idle during this
phase). In general, as in FFT there is not enough opportunity to fill the communication time with independent
computation. All communication latency therefore cannot be hidden. Contention between block transfer and
load-store accesses is very small in this application.

The left graph in Figure 8 compares the performance of the block transfer scheme to that of the
receiver-initiated load-store scheme with no explicit replication. Once again, there is a sweet spot for block
transfer, beyond which the overheads of a processor doing many simultaneous block transfers dominate and
little is gained from the replication. This sweet spot moves to a larger number of processors as the matrix size
is increased. The effectiveness of block transfer also diminishes with increasing cache line size, as we expect
since a block is contiguous in virtual memory.
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Figure 8: LU: Comparison of BT Communication Methods versus LS No Replication (256x256 Matrix, B=16,
8KB Cache)

With a regular scattered decomposition, every processor sends blocks only to other processors in its
row or column of the mesh. This suggests that support for broadcasting block transfers to all nodes in the same
row (a row broadcast), the same column (acolumnbroadcast), and the same row and column (anrc broadcast,
for diagonal blocks) may be beneficial5. Broadcast reduces the number of block transfers a processor is
simultaneously involved in by a factor of

p
p. This reduces overhead and contention at the directory controller,

thus reducing communication costs and making it easier for the overlapped computation to fill the reduced
block transfer time. The right hand graph in Figure 8 shows that broadcast improves performance substantially
as the number of processors (p) increases.

Overall, block transfer does not have as large an effect on the parallel performance of dense LU factor-
ization on our base architecture as one might initially expect (we shall see how this changes with architectural
parameters in Section 6). The main reason for this is that it is difficult to find a good sweet spot; that is, a
ratio of problem size to number of processors such that the communication to computation ratio is high enough
for block transfer to have substantial gains, yet the number of blocks per processor is high enough that load
imbalances don’t take over as the dominant effect limiting performance. The communication to computation
ratio is much larger when similar direct factorization methods are applied to sparse rather than dense matrices,
so we examine blocked sparse Cholesky factorization next.

5To accomplish a row or column broadcast, processors which are not originating the broadcast notify their directory controllers that
incoming data corresponding to a broadcast message identifier must be forwarded to the next processor in the row or column. A node can
be involved in multiple broadcasts at the same time. Note that a broadcast to all nodes in the system can easily be constructed from a row
broadcast followed by column broadcasts from the row broadcast receivers.
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5.3 Blocked Sparse Cholesky Factorization

Blocked sparse Cholesky factorization, which is used in a variety of applications including finite element meth-
ods and circuit simulation methods, has a similar structure and partitioning to blocked dense LU factorization.
However, it operates on sparse matrices. This has two important consequences for our purposes: (i) the com-
munication to computation ratio for a given data set size (including only nonzeroes in the sparse case) is about
a factor of 10 larger in the sparse case, and (ii) the algorithm is not globally synchronized between steps and
phases like dense LU factorization, which means that the amount of replication that is useful at any given time
is not as well-bounded.

When a processor computes an update to a block and thus makes it ready, it sends a notification for
that block to all processors in that row/column that need the block. At the receiving end, a processor’s control
flow is essentially as follows. The processor has an input queue of ready notifications that other processors
have sent to it. It repeatedly picks a notification off the queue, and for each notification does the following:

� Checks an auxiliary data structure to see which of the other “companion” source blocks that this block
collaborates with—to modify a local destination block—have already been specified as ready.

� If some companion blocks’ notifications have not been received, records in the auxiliary data structure
that this block’s notification has been received.

� For the companions that are available, performs the modifications.
� When all modifications to a local block have been done, sends out ready notifications for that block.

We use the benchmark matrix BCSTTK15 from the Boeing-Harwell suite for our sparse Cholesky experiments,
since this matrix is small enough to simulate but large enough to be realistic. We use a 16KB cache, since this
fits the important working set for a block-block update with our block size B=32.

Receiver-initiated load-store: When a processor takes a notification for a nonlocal block off the queue, it
has two options. First, it could simply fetch the new block, perform all modifications with it and then throw
it away. In this case, if some block notification that arrives later needs this block as a companion, this block
will have to be referenced remotely again. The other option is to replicate nonlocal blocks locally when they
are referenced, and then free them when they are no longer needed (when all modifications from that source
column of blocks have arrived). We find that replication does not help much for this matrix, and in fact hurts a
little at larger numbers of processors, since the benefits of reduced communication are small and the overhead
of dynamic memory management needed for replication dominate (even though this is user-level memory
management, without system calls). One reason that the benefits of replication are small is that a ready block
is immediately used to update all blocks for which its companion is also ready. Blocks that arrive after several
of their companions are therefore not very useful to replicate, since they will not be reused much later.

Receiver-initiated block transfer: For two reasons, sender-initiated block transfer is actually not as ap-
propriate as receiver-initiated for sparse Cholesky factorization. First, since the amount of replication is not
well-bounded, and since the sender sends blocks when they are ready—not when the receiver needs them—
sender-initiated transfer can lead to too much replication. Second, the order in which the sender may send
blocks to different receivers may not match the order in which receivers need to use them, which can lead to
worse performance at the receivers. Receiver-initiated block transfer is therefore preferable to sender-initiated,
even though it incurs communication latency the first time a block is referenced.

In the simplest form of receiver-initiated block transfer, the receiver simply sends request messages to
the directory controller of the block’s owner, which then transfers the block to it. The receiver has the option of
keeping only a single, block-sized receive buffer, in which case the block is not kept around after it is used, or
of replicating all received blocks in local memory until they are no longer useful (just as in the load-store case).
The former option provides fast data transfer but not replication, while the latter provides both. These options
reduce communication costs, but cannot hide them since they do not overlap computation with communication.
Overlap can be provided by prefetching through “double-buffering”. Every time a processor goes to its input
queue, it issues a block transfer request for the next block on the queue if there is one. Thus, when it actually
picks that next block off the queue on its next queue access, it should find that block already arrived and can
issue a prefetch for the next one. If the block hasn’t arrived yet, it waits for the block and, if possible, issues
another prefetch. This scheme requires space for two blocks in the input buffer, one of which is currently being
worked on and the other which is being prefetched (hence the name double-buffering). Full replication may or
may not be coupled with this scheme, as before.
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Figure 9: Cholesky: Comparison of BT Buffering Strategies versus LS No Buffering (TK15, B=32, 16KB
Cache)

We examine three schemes for block transfer: the single buffer with no replication (only gets fast
data transfer), double-buffering with no replication (gets fast data transfer and overlap) and double-buffering
with replication (gets all three). Results for the cases without replication are shown in Figure 9. While the
fast transfer helps to reduce communication costs, we find that overlap through double-buffering does not help
much (the improvement is only noticeable at 32 processors). There are several reasons for this. First, we
find that only 30-40% of the time does a processor find something on the queue to issue a prefetch for. This,
combined with the fact that often the prefetch might not have returned by the time the processor queries the
queue again, results in prefetching reducing the time spent waiting for communication by only a few percent.
Since communication time is not a very large fraction of runtime in our base architecture, particularly with
long cache lines, this translates to only a couple of percent improvement in overall time in the best case for
prefetching. Overlap through prefetching does increase the contention at the directory controllers between block
transfer and memory accesses; however, the effects of this contention are once again very small. The sweet
spot for prefetching with this matrix is at 32 processors, which is also the sweet spot for the fast data transfer
effect of block transfer. Both fast data transfer and overlap through prefetching are likely to have a larger
impact with a faster processor for the same network, since communication costs then are relatively higher. We
shall examine this in Section 6. As in the load-store case, dynamic memory management for replication in
main memory hurts performance significantly with block transfer as well.

5.4 Ocean Simulation

The ocean simulation studies large-scale ocean movements based on eddy and boundary currents. It is an
enhanced version of the Ocean application in the SPLASH application suite, a description of which can be
found in [11]. The major differences between this version and the SPLASH version are: (i) It is written in C
rather than FORTRAN; (ii) it partitions the grids into squarish subgrids rather than strips of columns to improve
the communication to computation ratio; (iii) it uses dynamically allocated four-dimensional arrays designed to
allow appropriate data distribution and reduce false sharing; and (iv) it uses a Red-Black Gauss-Seidel Multigrid
technique to solve the elliptic equations associated with the problem, whereas the SPLASH version utilizes a
relaxed Gauss-Seidel SOR solver. The multigrid solver is much more efficient and scalable to large problems
than SOR.

A lot of the execution time of the application is spent in the multigrid solver. The multigrid solver
performs near-neighbor sweeps on ahierarchy of gridsrather than a single grid as in SOR. At every grid level,
a processor’s partition is maintained as a contiguous subgrid padded with a border to store communicated data.
This border replication is done not for reuse (since there is almost none that a cache wouldn’t exploit) but for
programming ease. Since borders are sent as soon as they are computed, communication may be overlapped
with computation to a limited extent. The communication at any grid level is proportional to the perimeter of
a processor’s partition, and computation is proportional to the partition area. This means that communication
to computation ratios become larger at coarser levels of the grid hierarchy. While this appears to be an added
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advantage for block transfer, coarser levels have smaller partition borders and hence smaller block transfer
messages. It is therefore difficult to find a sweet spot for block transfer. Also, other parts of the application
than the multigrid solver do not have nearly so much communication, so there is not much to be gained by
block transfer at all, as the results in Figure 10 demonstrate. Regular-grid near-neighbor iteration problems
such as Ocean may improve from block transfer for much larger communication latencies and overheads, but
not much for those that are realistic in tightly-coupled multiprocessors.
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Figure 10: Ocean: Comparison of BT versus LS

5.5 Radix Sort

The radix sort kernel also has a wide range of applications, including database management systems and
aerospace applications (it is one of the NAS kernels [5]). It is interesting from our viewpoint because it
requires the movement of large amounts of data (keys) from one processor to another during each phase of
the computation, and hence appears to be a likely candidate for block transfer. Our radix sort is based on that
described in [7], and sorts integer keys. If the input keys haves radix-r digits, the sort makesspasses starting
from the least significant digit. Each pass sorts the keys according to the corresponding digit. For each digit,
a processor performs the following steps:

1. Iterate over all local keys and create a local histogram of the number of keys per value of the current
digit.

2. Accumulate the local histogram into a global histogram over all processors.

3. Iterate over all local keys again and, based on local and global histograms, write the permuted keys into
the appropriate locations of ann-key array so that it is stably sorted by that digit. Thisn-key array is
then the input for the next pass.

Interprocessor communication is involved in Steps 2 and 3, with the potential for block transfer
being in Step 3. The communication in step 3 is a sender-determined permutation, so thatreceiver-initiated
communication does not make sensein either the load-store or block transfer paradigms. In the block transfer
case, when a processor iterates over its keys in step 3, it does not write them directly into the newn-key array
but rather uses the local histogram to write them into a locally sorted (by that digit)n

p
-key array. The processor

then uses the global histogram to determine whom to send keys to and where to put them in the destination
processor’sn

p
-sized part of the newn-key array, and block transfers the keys (digit value by digit value) to the

appropriate processor(s).
A key issue in the performance of radix sort is the choice of radix size. A larger radix implies less

digits and hence fewer passes through the algorithm. However, a larger radix also implies a larger histogram
and hence larger cache requirements. The optimal radix size is empirically determined. In the load-store model,
the number of passes and cache performance are the only constraints on how large the radix should be. In the
block transfer model, there is an additional constraint. Since the block transfers are done digit value by digit
value, a larger radix implies that then=p local keys will be divided into more transfers so that each transfer
will be smaller. The unevenness of the key distribution exacerbates this effect. Results for our base problem
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Figure 11: Radix: Comparison of Fastest BT Sort versus Fastest LS Sort (65,536 Integer Keys)

using two different cache sizes are shown in Figure 11. At the smaller cache size, the number of keys per
processor is much larger than the cache size, while at the larger number the keys are expected to fit in the
cache for the larger numbers of processors.

The performance trends of radix sort are not nearly as clean as in the other applications. For this
reason, rather than compare the two versions for each number of processors, Figure 11 compares the best BT
sort at each number of processors to the single best sorting time obtained in the load-store case (which is at 32
processors). We see that the optimal radix changes with cache size for the load-store version, but not for the
block transfer version. Although radix sort seems like an application that is amenable to block transfer since
it needs to communicate almost the entire data set, the block transfer version does not perform as well for two
reasons: (i) the small messages problem mentioned earlier, and (ii) the fact that communication is done through
writes in the LS version allows a fair amount of the communication latency to be hidden even with realistic
write buffers. Since the keys are integers, several of them fit on a cache line in the LS version, and the writes
that generate communication are mostly to consecutive integers in the destination array (which makes write
buffers perform well). A problem configuration that gives block transfer significant advantages will require a
very large number of keys per processor and the same optimal radix for the BT and LS schemes. We will
experiment more with this in the future.

6 Varying Architectural Parameters

Since block transfer essentially helps reduce and hide communication costs, its effectiveness is a strong function
of such factors as the communication latency relative to processor speed and local memory access time, network
bandwidth, and the computational power. So far, we have examined results with a single set of machine
parameters (varying only the problem size, number of processors and cache line size). In this section, we
examine the effects of two critical variations. First, we look at what happens when the processing speed and
local memory access costs stay the same, but the network latency changes (with network bandwidth staying
the same). Second, we keep the network and memory system constant but use a much faster processor.

6.1 Varying Network Latency

In our base architecture, the latency for a one-hop remote miss was three times as large as that for a local miss.
Even for tightly-coupled cache-coherent machines, the trend for remote to local miss latencies could go in
two directions. Some believe that there is substantial unexploited scope in improving communication networks
relative to local access, so that an assumption of a two to one ratio between one-hop remote and local misses
is likely, while others believe that communication is likely to become even more expensive. We therefore
experiment with both options. Higher-latency communication is also more representative of systems in which
communication is not as closely integrated into the processing nodes, such as message-passing machines (and
perhaps networks of workstations), particularly as the latencies in these systems continue to be reduced.
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To simulate a longer-latency network, we changed the “message latency between adjacent nodes” in
Table 2 from 5 cycles to 20 cycles. Note that we do not change the network bandwidth for block transfer.
To simulate a faster network with 2 to 1 remote to local miss cost however, we have to increase the network
speed by a factor of 4.
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Figure 12: FFT: Impact of Varying Network Speed (65,536 Complex Reals, 8KB Cache; also compare with
base architecture results in Figure 5)

Our general results are as follows. For applications in which the communication to computation ratio
is high (such as FFT), changing the network latency has a strong impact on the relative advantage of block
transfer. Figure 12 shows the results for FFT corresponding to the larger problem size in Figure 5. The main
reason for improved relative performance with the longer-latency network is fast pipelined transfer of data: In
block transfer, pipelining of the transfer implies that the increased communication latency is not multiplied by
the number of cache lines communicated, as it is in the load-store case. Thus, the achieved communication
bandwidth for block transfer essentially stays the same, while the achieved communication bandwidth for
load-store remote-read communication decreases by a factor equal to the increase in remote read latency. The
average number of network hops in the communication grows with the number of processors in the FFT (since
communication is all-to-all), so that increasing the hop latency from 5 to 20 cycles has a substantial impact on
average communication latency. This also causes the relative impact of block transfer to improve more with
larger numbers of processors compared to the original and faster network. Finally, the curves for different line
sizes in the figures move further apart for slower networks, since there are more cache misses for smaller line
sizes and each incurs the full communication latency in the load-store case, making block transfer all the more
important.

In cases where the communication to computation ratio is low (or other factors like load imbalance
dominate), such as LU and to a lesser extent Cholesky, the changes in network latency do not affect the relative
performance of the block transfer and load-store versions nearly as much. LU and Cholesky also have the
property that the number of network hops traversed by the average miss is much smaller than in FFT, so the
latency increases are not as marked. This last effect is further accentuated in Ocean, where even the larger
latency does not allow block transfer to help performance very much.

6.2 Changing Processor Speed

Our other variation is to examine the effect of having processor speeds increase much faster than memory and
network speeds, with the latter two staying the same relative to each other. In particular, we show results for
processors that have peak performance a factor of four larger.

Using a faster processor mostly helps block transfer in those cases that have a relatively low commu-
nication to computation ratio (such as LU and Cholesky, see Figure 13). LU is a striking example. The much
faster processor reduces the local computational phases of LU substantially (despite the relatively much higher
local memory access cost) since LU uses its cache very effectively for local computation. This means that
communication costs are much more important now, and the improvements due to block transfer a lot more
marked. Replication is not the issue that helps (since local access costs are the same relative to communication
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Figure 13: Impact of Varying Processor Speed on LU and Cholesky (compare with base architecture results in
Figures 8 and 9, respectively).

costs—only the processor has become faster); nor is overlap, since the faster processing of already overlapped
computation does not help at all, and it is more difficult to fill communication time with computation.

For applications with a high communication to computation ratio, making the computation go a lot
faster does not help the relative performance of block transfer nearly as much (although it does help by a few
percent). Once again, the absolute communication costs are about the same, and overlap doesn’t get any better.

One alternative that we do not discuss in detail due to space limitations is to alter algorithms to account
for increased processor speed. In [2], the author describes a method known as thedynamic block scheme for
roots of unity, which allows the processor to dynamically compute roots of unity values based on a small subset
that can be stored in the processor cache. By dynamically computing desired values, memory accesses to a
statically computed set of all values are eliminated. This in turn eliminates interruptions to any block transfers
that are in progress, allowing them to complete more quickly. Our results show that for the faster processor, the
dynamic block scheme increases block transfer performance marginally over the statically computed methods
assumed for the base architectural parameter set.

7 Discussion and Conclusions

We have studied the performance benefits of using a block transfer facility on top of cache-coherent shared
address space multiprocessors. In the introduction to the paper, we set out to address three questions: (i) how
useful is block transfer, and how does its utility vary with problem size, machine size and machine parameters,
(ii) what special features are useful to provide in a block transfer engine, and (iii) does one have to change an
algorithm significantly to achieve good performance with block transfer. Let us now summarize our answers
to these questions.

We leave performance to the end since it is the most involved discussion. In terms ofblock transfer
facilities, we found flexibility to be fairly important. While some of the applications required bulk movement of
only data that were contiguous in virtual memory, others could make good use of more sophisticated features.
These features include the ability to specify different fixed strides at the source and destination, and also the
ability to specify a different but constant number of elements at each stride point. While these two features
can be hardwired into a controller, the FFT was greatly helped by the ability of the block transfer controller
to do a blocked transpose, which clearly requires a programmable controller. A facility to broadcast block
transfers (at least along a row or a column) was also very useful in LU factorization, which again could easily
be done in software with a programmable controller. Finally, keeping block transfer data globally coherent
was not found to be needed in our applications (local coherence at source and destination sufficed), but the use
of less sophisticated and more natural data structures would require global coherence due to false-sharing (see
Section 5.2 for an example).

The FFT was the only computation that neededalgorithmic changesto exploit block transfer well.
These changes include using subpartitioning to overlap communication with computation, and the dynamic
computation of the roots of unity to reduce data accesses when processing speeds become much faster than the
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memory and communication system. Radix sort required a temporary data structure to collect the data to be
block transferred in, since the transfer couldn’t be done directly from the source to destination key arrays. The
other cases were conceptually straightforward extensions of the best load-store algorithms.

Overall, block transfer did not really helpperformancequite as much as we initially thought it would.
There are several reasons for this. First, the fraction of execution time spent in communication that is amenable
to block transfer is often not very high. This is true for some of the computational kernels we have looked
at, and is likely to be even more true for real applications that use these kernels. Second, even though block
transfer often greatly reduces the communication costs, we were unable to overlap enough of the remaining
communication with independent computation. This problem becomes more severe as processor speed increases
relative to communication bandwidth in which case reducing communication costs is important, and is funda-
mentally limited by the dependence structure of the computation. Third, long cache lines often capture much
of the benefit of block transfer. Long cache lines may have the disadvantage of false sharing, both in general
as well as for block transfer through partially written cache lines. In the examples we have seen, however,
data structures that can be block transferred can also be quite easily structured to not suffer much false sharing,
particularly when messages are large enough for block transfer to be useful in the first place.

The final reason is a scaling argument. We have seen that block transfer usually has a sweet spot
in its relationship between data set per processor and number of processors. If the number of processors is
increased beyond the sweet spot for the same data set size, the communication to computation ratio increases,
but the message size is reduced so that block transfer is less useful. Under memory-constrained scaling, the
communication to computation ratio is often kept constant. In some cases (Ocean, LU), the message size also
stays fixed and the number of block transfers that a processor is involved in at a time does not increase, so that
the performance advantages of block transfer persevere. In other cases (FFT, radix sort), however, the message
size is inversely proportional to the number of processors, so that as message sizes decrease, a processor is
involved in more block transfers at a time, and the advantages of block transfer diminish. As discussed in
Section 5.1, the most realistic scaling model for applications is time-constrained scaling, in which case the data
set size does not grow as quickly as the number of processors. The communication to computation ratio gets
larger but the message size becomes smaller in all cases (and the number of simultaneous block transfers still
increases in FFT and radix sort), so that the effectiveness of block transfer diminishes under time-constrained
scaling starting from the sweet spot. Of course, how the advantages of block transfer scale depends on where
the starting point is relative to the sweet spot.

Most of the advantages we obtain from block transfer in these applications are due to fast data transfer.
Replication of important data structures in main memory was not useful in three applications (Ocean, FFT,
and radix sort) and its benefits did not outweigh its costs by much in others (LU and Cholesky)6. Overlap of
block communication with computation was not very useful for Ocean and radix sort, had a small effect for
LU and Cholesky, and had a relatively important effect for FFT (although the effect diminishes as processor
speeds increase relative to communication speeds). Contention at the controller (and hence memory) between
the block transfer and load-store accesses was in all cases not a significant problem compared to other sources
of performance loss.

Software controlled prefetching in a load-store model is an alternative way to hide communication
costs. It is quite successful when communication is very predictable from the receiver’s perspective. Among
our applications, prefetching is not of much use in radix sort, since the communication is fundamentally sender-
determined. And in cases like LU and Cholesky, the compiler can only easily determine what to prefetch at
the beginning of a task (such as a block-block update), which may not be very useful when the communication
latency is very high relative to the computation speed and hence the time it takes to compute the task (i.e. the
startup cost of the prefetching pipeline dominates and the steady state is very short). Block transfer allows
us to overlap communication and computation at a much coarser grain (across tasks), and to schedule task
computation and communication more explicitly, and thus hides latencies more effectively. Prefetching is also
limited by the number of outstanding prefetches allowed. We would like to experiment quantitatively with
prefetching in the future, as well as with the impact of including contention in the network itself.

6Automaticreplication is, however, often useful in compensating for programmer carelessness (or easing the programmer’s task) by
replicating small, seemingly insignificant shared data structures and variables (see Section 2). For this and various other reasons—such as
avoiding the complications of explicit data placement, and for robustness in the presence of process migration and multiprogramming—a
system that provides automatic replication and migration of data in addition to the replication that comes with block transfer (such as a
COMA machine with a block transfer facility) might be a nice design point.
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Overall, the computations that benefited substantially from block transfer with our base architectural
parameters are FFT and Cholesky factorization, and to a lesser extent LU factorization (the benefits for the
latter two would be significantly greater if we used faster processors in the base architecture). Regular-
grid applications such as Ocean are not helped much by block transfer, since either the communication to
computation ratio is not high enough or the messages are too small. Dense matrix factorizations like LU also
have the problem that at the ratio of problem size to number of processors where communication becomes
important, load imbalance takes over as the dominant source of performance loss. In radix sort, the messages
are too short unless the number of keys per processor ishugerelative to the number of processors. In addition,
the natural load-store version works very well with write buffers.

We also examined the effects of varying network and processor speeds on the advantages of block
transfer relative to load-store communication. Generally, we found network latency to have a greater impact
on the advantages of block transfer in applications with a high computation to communication ratio (such
as FFT), and increased processor speed (for the same memory system and network bandwidth) to improve
the advantages for applications with relatively low communication to computation ratios (such as LU). Thus,
increased processor speed did not have a large impact for FFT, and increased latency did not for LU.

Other Applications: We also looked at other applications from the viewpoint of improving performance
through block transfer. Many application classes (such as N-body problems) have the property that the com-
munication to computation ratios are low, working sets are small, and the data sharing is very fine-grained, so
that standard cache coherence works very well. Using block transfer would require a complete restructuring
of some of these algorithms, and would probably hurt performance or at least not help significantly. A case
where block transfer has been said to be useful is in manipulating global task queues in dynamically scheduled
computations [6]. We looked at several real applications that use dynamic task-queue scheduling. In most
cases, the scheduling can be managed with distributed queues such that the frequency of accessing nonlocal
queues is small. Also, the time spent manipulating queues is only a very small fraction of the time spent doing
useful computation, so that block transfer is unlikely to help significantly. We believe that the computations
we have chosen are good candidates, and we are not aware of other candidates that might benefit more.
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