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Abstract

Integrating support for block data transfer has become an im-
portant emphasis in recent cache-coherent shared address space

multiprocessors. This paper examines the potential perfor-

mance benefits of adding this support. A set of ambitious
hardware mechanisms is used to study performance gains in

five important scientific computations that appear to be good

candidates for using block transfer. Our conclusion is that the

benefits of block transfer are not substantial for hardware cache-

coherent multiprocessors. The main reasons for this are (i) the
relatively modest fraction of time applications spend in commu-
nication amenable to block transfer, (ii) the difficulty of finding

enough independent computation to overlap with the commu-
nication latency that remains after block transfer, and (iii) long

cache lines often capture many of the benefits of block transfer
in efficient cache-coherent machines. In the cases where block
transfer improves performance, prefetching can often provide

comparable, if not superior, performance benefits. We also ex-

amine the impact of varying important communication parame-

ters and processor speed on the effectiveness of block transfer,
and comment on useful features that a block transfer facility

should support for real applications.

1 Introduction

A shared address space with coherent caches provides an ef-
fective communication abstraction for multiprocessors, The

shared address space greatly simplifies the parallel program-
ming task—pmticularly for irregular, dynamically changing

communication patterns—by making communication implicit

rather than requiring explicit communication in the user pro-

gram. Furthermore, automatic coherent caching of shared data
reduces the implicit communication often to levels that yield

good performance.

One perceived shortcoming of existing cache-coherent

architectures is that they rely on implicit communication

through loads and stores as the only means of communication.
While this works well for fine-grained data sharing patterns,
applications often require the movement of a large amount of
data from one processing node to another. In this case, mov-
ing the data in one large message in a pipelined fashion is
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likely to be more efficient than moving the data one cache line

at a time through processor loads and stores. In addition to
~asf pipelined data frans~er, block transfer offers other advan-

tages, including replication of communicated data in the local
memory of the receiver, and the ability to overlap the transfer
with concurrent computation. Since block data transfer and a

cache-coherent shared address space are clearly not mutually

exclusive, and since the core mechanisms for moving data with
low latency and high bandwidth are very similar for cache co-

herence and block transfer, architects have begun designing ma-

chines with hardware support for both a cache-coherent shared
address space and block transfer of data [1, 9, 12, 14].

Structuring communication in large blocks is crucial on

current message-passing machines and workstation networks,
since the overheads and Iatencies of sending messages are very
high. However, it is not clear what the role of coarse-grained
messages is on tightly coupled, hardware cache-coherent shared

address space architectures. There are a number of issues to

investigate, such as: (i) the performance advantages of selec-

tively using block transfer over relying completely on a stan-
dard load-store shared address space model, (ii) how these ad-
vantages vary with processor, memory system and network per-

formance, (iii) how block transfer compares with other latency

hiding techniques such as prefetching, (iv) the desirable capa-

bilities of a block transfer mechanism, (v) whether algorithms
must change substantially to effectively use block transfer, and
(vi) the implications for the programming model in such an

integrated architecture. In this paper, we focus primarily on
the performance advantages of using block transfer, how these
advantages change with varying architectural parameters, and

how they compare against prefetching, by studying important

scientific applications that appear likely to be aided by block

transfer. We address block transfer features and algorithmic
changes where they are relevant in the applications we consider.

We do not address the programming model question, but use

an explicit memory copy primitive to implement block transfer,
enabling us to enhance performance without the overheads or
restrictions of a specific high-level software system.

Section 2 discusses different ways to structure coarse-
grained communication in a cache-coherent multiprocessor with
a block transfer facility, and the advantages that can be obtained
by using block transfer. Section 3 describes the architecture and
simulation environment that we use in our experiments, as well

as the values we use for various architectural parameters in our

base machine. Our choice of applications and our experimental
methodology are discussed in Section 4. Section 5 presents the
results for different applications on the base machine. In Sec-
tion 6 we examine the impact of varying communication param-
eters and processor speed on the relative effectiveness of block

219



transfer, Section 7 discusses the performance of prefetching as

an alternative to block transfer. Finally, Section 8 summarizes
our main conclusions.

2 Communication Alternatives

Given a block data transfer facility in a cache-coherent shared
address space machine, a programmer is presented with two
mechanisms for communicating a large chunk of data: (i) via

processor loads and stores (the load-store model), and (ii) via

block transfer.

Coarse-grained communication through block transfer

provides three major advantages over communication based
solelv on loads and stores:

●

●

●

>ast pipelined transfer of large amounts of data. This is

achieved since the overhead of message request, initiation,

and management is incurred only once per block transfer

rather than once per cache line transmitted. In addition,
the datapath between main memory and the network is

shorter through the block transfer facility than through the
main processor.

Overlap of communication with computation or with other

communication. By explicitly placing block transfer re-
quests in application code, block transfers can be sched-
uled to obtain maximum overlap with other communica-

tion or computation.

Reuiication of communicated data in local main memorv.

Si;ce our bl;ck transfers are implemented with memo~

copy primitives, data that are transferred are copied into
distinct memory addresses in the local main memory of
the receiving node. If these data are reused, cache misses
to them can be satisfied from local memory rather than by

repeated remote communication. This advantage is simi-
lar to that obtained in Cache-Only Memory Architectures

(COMAS).

The goal of our block transfer versions is to reduce commu-
nication costs through fast data transfer and replication, and

to hide the remaining costs as far as possible by overlapping
communication with computation, and we analyze the extent to

which we are able to accomplish these goals. Block transfer

has other advantages, such as the ability to naturally combine

synchronization and data transfer in a single message, but these
are less important for our applications and we do not consider

them.

Two points bear emphasis. First, we are not restricted

to using only one communication mechanism in a given appli-
cation, but are free to use whichever method is most appropriate
for a particulm communication. In fact, we rely on the implicit
load-store model for all but block communication, thus retain-
ing the major advantages of a cache-coherent shared address

space. Second, given that we have a shared address space, the
most appropriate way to perform block transfer is not through

a send operation to a processor that requires a matching re-
ceive, but by performing a block memory copy from source ad-
dresses directly into destination addresses in the application’s

data structures. Support for this type of copying mechanism

is provided in the Cray T3D [12], and is planned for other

machines currently being developed [1, 9, 14].

Within the load-store or block transfer models, com-

munication can be distinguished by whether it is initiated by

the consuming processor (receiver-initiated) or by the produc-
ing processor (sender-initiated). In the load-store model, these
types of communication occur through read and write opera-
tions to remote data, respectively. While sender-initiated load-
store communication has performance advantages under certain

conditions, receiver-initiated communication is usually more

natural to the load-store programming paradigm and we fo-

cus on it here (see Section 5.5)1. The performance advantages
of sender-initiated load-store communication depend intimately

on details of the architecture and application and are discussed
in [17].

In our block transfer versions, we use the type of com-

munication that is most natural to the application, which is

sender-initiated for all our applications except for Cholesky,
where receiver-initiated block transfer has some important ad-

vantages (see Section 5.3).

3 Architecture and Simulator

Every node in the cache-coherent multiprocessor we simulate

contains a processor with a single-level cache, a node con-

troller, a network interface, and an equal fraction of the main
memory (See Figure 1). The node controller contains a pro-

grammable processor which processes local memory accesses,

standard directory-based cache-coherence protocol transactions

and block transfers. The network interface connects the node to
a 2-dimensional, bidirectional mesh network. The architecture

is based closely on the Stanford FLASH multiprocessor that is
currently being developed [9]

I I

I I I

Figure 1: Multiprocessor Node Architecture.

We assume a set of ambitious hardware mechanisms
for performing block transfer. The node controller is assumed

to be quite sophisticated and allows different strides to be spec-

ified at the source and destination. This is feasible with a pro-
grammable node controller, since all the functionality does not

have to be provided in hardware. Block transfers are handled
entirely by the node controllers, so that both the source and
destination main processors may continue to compute while

the transfers are in progress, although they may contend for

resources with block transfers. To perform a block transfer, the
initiating processor describes the transfer to the node controller

in its node. Data are then communicated by the node controller
in a pipelined fashion at the granularity of cache lines [10]. The
pipeline stage time for block transfer is the greater of the time
for the node controller to retrieve a line from memory and the

time to push a line and its associated header into the network.

Synchronization for block transfer completion is performed by
checking the status of a flag associated with the transfer. No
restrictions are placed on the size or number of transfers that

a processor can be involved in at a given time, and multiple
transfers from a source are interleaved at a cache line granu-
larity.

1We have experimented with sender-initiated communication, and it has
advantages when (i) write buffers merge consecutive writes to the same re-

mote line, (ii) writes occur far in advance of when the remote processor needs

to access the written data, and (iii) cache sizes are relatively small so that
when the remote prncessor accesses the data, it has been replaced from the

writing processor’s cache and written back to the locst memory of the remote

processor.
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Parameter I Vatue

Main Processor Clock Rate 200 MHz

Peak Main Processor Instruction Issue Rate I/cycle

Cache to Memory Bus Bandwidth 800 MB/see

Queueing Delay into and out of Directory Controller 16 cycles

Memory Block State Lookup Time 30 cycles

Memory Block Remote Request Message Construction Time 20 cycles

Overhead for Cached Blocks at Sender and Receiver 10 cycles

Memory Block Access Time (independent of block size) 50 cycles

Network Width (each direction) 16 bits

Network Topology 2D Mesh

Network Clock Rate 200 MHz
Network Cache Line Header Size 32 bytes
Message Latency Between Adjacent Nodes 10 cycles

Block Transfer Message Startup Time 200 cycles

Table 1: Important Simulation Parameters and Their Values in the Base Architecture.

\ Application/Kernel I Representative of

I Radix ~n Fast Fourier Transform I Convolution/Transform Methods

Blocked Dense LU Factorization Dense Linear Algebra

Blocked Sparse Cholesky Factorization Sparse Linear Algebra

Ocean Simulation with Multigrid Solver Regular Grid Iterative Methods
Radix Sort Sorting

Table 2: The Applications.

Four important issues arise when implementing block

transfer on top of a cache-coherence protocol. Fkst, block
transfer data may be cached by a processor, requiring additional

time to retrieve and/or invalidate the cached data. As in other

proposed block transfer protocols, we assume that data can only

be sent from the node on which its storage is allocated, and we

ensure only that the sender and receiver’s caches stay coherent
with their respective local memories [7]. These assumptions
suffice for all our applications. More ambitious protocols that
maintain global coherence on block transfer data would add im-
plementation complexity, and we comment on their importance

in Section 5.2. The second issue is deciding how the node
controller should prioritize load-store and block transfer trarrs-

actions. Because block transfers may be large, priority is given

to transactions related to load-store accesses. This allows for
overlap of block transfer communication with main processor
computation, which may generate load-store and other trarts-
actions. Third, a block transfer might include only a portion
of a cache line rather than the full line. The destination node
controller must be able to merge partially transmitted cache
lines with the valid portion which may be cached or in mem-
ory. Fourth, block transfer can be performed into the receiver’s

cache or into its main memory. We perform block transfer
into main memory for two reasons: (i) when communication is

overlapped with computation, transferring into the cache might

replace data that the processor is using, and (ii) replication in
main memory is useful if the data needs to be reused later and

does not stay in the cache. We shall explore transfers into a
large second level cache in the future.

The architecture is simulated using the Tartgo-Lite
event-driven reference generator [1 1]. Our detailed, variable-
latency memory system simulator models contention at the node

controller and memory system, but not in the network itself. An
invalidation-based cache-coherence protocol similar to the one
used in the Stanford DASH multiprocessor [13] is simulated.

Processors are forced to block on read misses, but infinite write
buffering hardware is included to eliminate processor stalls on
write misses. To reduce miss latencies, speculative memory

reads are performed at the home node at the same time that

the state of a line is checked. The processor caches are fully
associative to avoid artifacts due to cache conflicts, and the

instruction cache hit rate is assumed to be 100?ZO.

The important machine parameters we consider, as well

as their values in the base architecture, are shown in Table 1.

With 64-byte cache lines and no contention, the latency for a
local read miss is about 80 processor cycles, the latency for a
remote read miss is about 240 processor cycles, and the node-
to-network interface has a peak bandwidth of about 380 MBlsec
for block transfer.

4 The Applications and Methodology

4.1 Choice of Applications
Rather than attempt to compute an average effectiveness of

block transfer over a broad range of computations, we carefully

selected applications and kernels for this study based on two

criteria (i) they represent important classes of computations
in scientific parallel computing, and (ii) they cover a range of

scientific applications considered most likely to benefit from
block transfer. Note that the four kernels we study are not
complete applications, and that the rest of an application that

uses them is not likely to benefit as much from block transfer as

the kernels do. Thus, the performance gains we obtain through
block transfer in these kernels will likely have a smaller impact

on the overall performance of a complete application.

The applications and kernels we study are listed in Ta-
ble 2. Our ocean simulation (which is a complete application)

is a scalable version of the Ocean application in the SPLASH
suite [16], and uses a different solver and partitioning scheme.
The blocked Cholesky factorization is also a more scalable al-
ternative to the panel Cholesky kernel in SPLASH.

4.2 Experimental Methodology
For each application, we examine the performance gains ob-

tained by block transfer over the load-store model. In many ap-
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Source Matrix Destination Matrix

The Six–Step FFT Algorithm

1. Transpose data matrix
2. Perform 1-D FFT on each row

of data matrix
3. Apply roots of unity to data

matrix
>>> Barrier <<c

4, Transpose data matrix
5. Perform 1–D FFT on each row

of data matrix
>>> Barrier <<<

6. Transpose data matrix
>>> Barrier <<<

(a) Algorithm Steps

patch
Owned By

Proe O

Owned By
Proc 1

Owned By
Proc 2

Owned fly
Proe 3

\

Long c~he line Long ca&e line
doesn’t cross traversal order crosses traversal order

(b) FtT Transpose Phase

Figure 2: FIW Algorithm and Transpose Phase.

placations, there are several alternatives for incorporating block

transfer, often at successive levels of implementation complex-
ity and performance gain. While we have experimented with

many intermediate block transfer versions, we do not discuss

them here for reasons of space. A more complete discussion

can be found in [17]. We start with highly optimized load-store
versions of the applications, discuss the most effective ways to

incorporate block transfer, and examine the performance bene-
fits, trying to isolate their sources as much as possible. We also

examine how the effectiveness of block transfer changes with
the number of processors used. We choose cache sizes based
on the working sets of the applications, so that the cache size
is large enough to accommodate the important working set if
this is likely to be the case in practice. In addition, we vary the

cache line size from 32 to 128 bytes for all our applications.

In the individual application sections that follow, we

use the base set of machine parameters in Table 1. These

represent parameter values which might be found on a machine

that can be built today. Then, in Section 6, we examine the

effects of varying certain key parameters to reflect possible

technology trends or systems which are more or less tightly

coupled. Finally, we examine software-controlled prefetching
as an alternative to block transfer in Section 7.

5 Base Architecture Results

For each application and kernel, we briefly describe the algo-

rithm and the load-store (LS) and block transfer (BT) imple-
mentations for which we present results.

5.1 The Fast Fourier Transform
Algorithm: The ITT we use is a complex 1-D version of the
radix-fi six-step ITT algorithm described in [2], which is op-

timized to minimize interprocessor communication. The data
set for the FIW consists of the n complex data points to be
transformed, and another n complex data points referred to as
the roots of unity. Both sets of data are organized as & x 6
matrices, and the matrices are partitioned so that every proces-

sor is assigned a contiguous set of rows which are allocated in
its local memory. The six steps of the algorithm are shown in

Figure 2(a). Communication occurs in the three matrix trans-
pose phases (shown pictorially in Figure 2(b)), which require
all-to-all interprocessor communication. Every processor trans-

poses a patch (contiguous submatrix) of size $ ~ $ from

every other processor, and transposes one patch locally.

Load-store and block transfer versions: Instead of per-
forming a matrix transpose by reading an entire column at a

time of the source matrix and writing it into a row at a time in
the destination matrix, the LS version utilizes a blocked trans-

pose algorithm to exploit the spatial locality afforded by long

cache lines [17]. Patches are communicated in a staggered fash-

ion (processor i first transposes a patch from processor i + 1,

then one from processor i + 2, etc.) in order to avoid hot-

spotting.

A simple BT implementation of the transpose phase
might transfer one subrow of a patch at a time and put it in the

proper subcolumn at the destination, utilizing different strides at

the source and destination. Figure 3(a) shows the performance
of this version. Unless otherwise specified, all graphs show
performance of a BT version relative to the LS version. In
each graph, the y-axis value for each curve is the BT version’s
execution time for a given number of processors and a given

line size, normalized to the execution time of the LS version for

the same number of processors and the same line size. Thus,

every point shows at a glance how much better or worse the

BT version is relative to the LS version for the same set of

parameters.

Results: While the BT version in Figure 3(a) does well for

small cache lines and small numbers of processors, it performs

much worse as the line size and number of processors increase.
There are three reasons for this. First, the transposes using BT
are not blocked for cache line reuse as in the LS version. For
larger line sizes, more patch elements are contained on each

line, and the amount of reuse obtained in the LS version is

greater. Second, the destination node receives many partially
valid lines, since a cache line may straddle consecutive sub-
columns, decreasing performance as discussed earlier. Finally,

increasing the number of processors for the same problem size
results in more patches, This means smaller patch sub columns

and hence smaller transfers, resulting in a greater impact of

block transfer overhead.

Enhancing block transfer: These three problems con be
overcome by taking advantage of the flexibility of the pro-
grammable node controller. In the LS version, the major source
of performance improvement is blocking of the patch trans-

poses, To provide the same capability in the BT version, a spe-
cial software block transfer handler can be written that blocks

‘Another possibility is to transfer an entire patch, and have the receiver

transpose the received patch before using it. Transfening a patch in a single
message requires more than a stride capability: It also requires the ability to

specify the number of elements at the stride points. In addition, this method

requires the main processor to do the transpose, and to use additional buffer
space. Finally, the method of blocking in the transfer engine discussed next

is the best method anyway,
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the transpose in the node controller rather than in the main pro-
cessor. It is possible to provide this ambitious capability with a

programmable node controller, and the results for this version

are shown in Figure 3(b). With this support, the BT version ex-
hibits improved performance for all cache line sizes, although

the magnitude of improvement is greatest for the largest line
sizes where the amount of cache line reuse in the blocking
handler is greatest.

overlapping communication with computation: ‘The BT

version with a blocked transpose obtains the benefit of fast data
transfer, but not overlap of communication with computation at

a coarse level. Through a technique we call subpatching [17],

overlap can be obtained by combining steps in the sixstep al-

gorithm. The patches to be transposed are first broken into
smaller subpatches. After the row-wise FFTs are computed on

the rows which span a set of subpatches, these subpatches are

block transferred by the node controller while the main proces-

sor performs row-wise FFTs on the next set of subpatches.

Subpatching Results: Figure 4 illustrates the performance of

the subpatching method for two different problem sizes. There
is a sweet spot in the number of processors at which the effec-

tiveness of block transfer is greatest for a given problem size.
Increasing the number of processors beyond this point increases

the communication to computation ratio, but reduces the indi-
vidual block transfer size so that block transfer overhead begins

to dominate and performance in reduced. Decreasing the num-

ber of processors reduces the communication to computation
ratio and hence the importance of block transfer.

As problem size increases, the sweet spot shifts towards
larger numbers of processors. This is because patch sizes in-
crease and block transfer overhead is thus amortized over more
elements. However, beyond a point, the magnitude of perfor-

mance improvement does not increase. Once block transfers
become large enough that their startup overhead is effectively

amortized, the improvement in communication speed is limited

by the ratio of the remote read miss time in the load-store case
to the pipeline stage time in the block transfer case.

Finally, as in almost all our applications, the relative

advantage of block transfer is greater with smaller cache lines.
The FFT utilizes the increased spatial locality afforded by long

cache lines very effectively, reducing the processor cache miss

rate (and hence the communication cost) in the LS case. In ad-

dition, as partitions become smaller, longer cache lines cart lead

to partially transmitted cache lines, which hurt block transfer
substantially.

Summary: Although the FFT appears to be a prime candidate

for block transfer, even an ambitious block transfer mechanism

did not gain very much over a load-store implementation, par-
ticularly with the long cache lines that modern machines are

moving towards. Of the three primary advantages of block

transfer, fast data transfer was the most useful, and a small ad-
ditional increase in performance was obtained through overlap
of communication with computation via our subpatching tech-
nique. Replication of communicated data was not an issue in

this application.

5.2 Dense LU Factorization
Algorithm: LU factorization of a dense matrix is represen-

tative of many dense linear algebra computations, and can be
performed efficiently if the dense n x n matrix A is divided into
an N x N erray of B x B blocks, (n = NB). Unlike the FET

application, blocking is performed in LU to exploit temporal
locality on individual submatrix elements. The pseudo-code in
Figure 5(a), expressed in terms of blocks, shows the most im-
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Blocked Dense LU Factorization

1. For k=O to N–1 do
2. Factor diagonat block AH

>>> Barrier <<<
3. Update atl perimeter blocks in

column k and row k using A ~
>>> Barrier <<<

4. Forj=k+l to N–1 do
5, For i=k+l to N–1 do
6, Aij = Aij – Aik* Akj

/* Update interior blocks using
corresponding perimeter blocks */

(a) Algorithm Steps

Q) 120.0
E r

Perimeter Blocks ~nterior Block
Diagonst Block

Indicates flow of
— data toward blocks

to be updated

Mapping of Blocks
to Processors

(2D Scatter Decomposition)

~ ;-P;~;77;~
r–+--t-l
IP31P41P51
l––

(b) Pictorial Representation

Figure 5: Blocked Dense LU Factorization.
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portant steps in the computation. The dominant computation
is Step 6, which involves a dense matrix multiplication of two

blocks.

The parallel computation corresponding to a single k it-

eration in the pseudo-code is shown symbolically in Figure 5(b).
Two details are important for reducing interprocessor commu-
nication and thus obtaining high performance. First, the blocks

of the matrix are assigned to processors using a 2-D scatter

decomposition, an example of which is shown in Figure 5(b).

Second, the matrix multiplication in Step 6 is performed by the

processor that owns the destination block A;,j. The block size

1? is chosen to be large enough to keep the cache miss rate low,
and small enough to reduce the time spent in the less parallel

parts of the computation (Steps 2 and 3) and to maintain good
load balance in Step 6. In practice, relatively small block sizes

(B = 8 or B = 16) strike a good balance.

Load-store and block transfer versions: In a shared ad-
dress space, the natural data structure for the 2-D matrix being
factored is a 2-D array. Since blocks are allocated in a scatter

decomposition, and since a block is not contiguous in the ad-

dress space in a 2-D array, it is difficult to allocate blocks in
the local memories of the processors that own them. For the
same reasons, false sharing problems can occur with long cache

lines. These problems exist for the load-store model, but cause
even greater complications for block transfer since memory al-
location problems and false sharing imply that global coherence
is required for correctness (see Section 3). One solution to en-

sure that blocks assigned to a processor are allocated locally
and contiguously is to use a 4-D array, in which the first two
dimensions specify the block number in the 2-D grid of blocks,
and the next two specify an element in that block. This data

structure allocates block elements in contiguous memory loca-
tions, and thus eliminates false sharing and the need for global

coherence. For these reasons, it is used in all our versions of
LU.

Communication occurs in LU when a diagonal block is

used by all processors which require it to update the perimeter

blocks they own, and when perimeter blocks are used by all
processors that require them to update their intenor blocks (see

Figure 5). The block transfer mechanism inherently replicates

communicated blocks in the local memory of the processors
that need them. In our LS version, however, we found that the

benefits of explicit replication in main memory are small and

that the overheads often outweigh them [17], Therefore, our

LS version has no explicit replication.

In the BT version, the processor that updates the diago-
nal block sends a copy of it to all processors that own perimeter
blocks. When a processor updates a perimeter block, it sends

a copy to all processors that own interior blocks which need it,

and proceeds to update the next perimeter block it owns (thus
achieving some overlap between communication and compu-
tation). Having sent all its perimeter blocks, it waits until all
incoming block transfers have completed and then updates its

intenor blocks,

Results: Figure 6(a) shows that there is a sweet spot in LU for

block transfer as well. In the FIT, the sweet spot is due to pro-

cessors being involved in increasing numbers of simultaneous

transfers, each of decreasing size, as the number of processors
p increases. However, in LU messages stay the same size.
The sweet spot is due to processors being involved in increas-
ing numbers of simultaneous transfers (growing as W rather
than p as in the FIT), and the fact that with larger numbers of

processors load imbalance becomes the dominant performance
bottleneck. The effectiveness of block transfer also diminishes
with increasing cache line size as in the FIT.
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Enhancing block transfer: With a regular scatter decompo-

sition, every processor sends blocks only to processors in the

same row or column of the processor mesh. This suggests that
support for broadcasting block transfers to all processors in the

same row, the same column, and the same row and column (for

diagonal blocks) may be beneficial. Broadcast reduces the num-
ber of block transfers a processor is simultaneously involved
in by a factor of @ thus reducing overhead and contention at
the node controller of the broadcaster. Figure 6(b) shows that

broadcast improves performance substantially for larger num-

bers of processors.

Summary: Although block transfer provides fast da~a trans-

fer, overlap of communication with computation, and replica-
tion in main memory for LU factorization, it still does not have

a very large effect on performance, especially when long cache

lines are used. There are two reasons for this. Fkst, the use

of blocking yields a low cache miss rate, resulting irr a low
communication to computation ratio to begin with. Second, it

is difficult to find a good sweet spot where the communication
to computation ratio is high enough for block transfer to have
substantial gains, yet the number of blocks per processor is high

enough that load imbalances don’ t become the dominant effect
limiting performance.

5.3 Blocked Sparse Cholesky Factorization
Algorithm: Blocked sparse Cholesky factorization is similar
in structure and partitioning to blocked dense LU factorization,

but has two major differences: (i) it operates on sparse matrices,
which makes the communication to computation ratio much

larger, and (ii) to achieve good load balance and performance, it

is not globally synchronized between steps like LU. This second
difference implies that the amount of replication needed at any
given time at a receiving node is not known a priori or not well-

bounded in sender-initiated block transfer, since one processor
may get multiple steps ahead of another. Also, the order in

which a processor sends blocks may not be the order in which

a receiver needs to use them. Sender-initiated communication
is therefore not appropriate, and we use receiver-initiated block
transfers.

Load-store and block transfer versions: We use the bench-

mark matrix BCS’fl’K15 from the Boeing-Harwell suite for
our experiments, since it is small enough to simulate but large
enough to be realistic. We use a 16KB cache, which holds

the data required for a block-block update with our block size
32-by-32. AS in LU, we found that main memory replication

was not useful in the LS versions, and use a version with no
explicit replication as the base [17].

In receiver-initiated block transfer, the receiver sends
request messages to the node controller of the block’s owner,

which then transfers the block to it. In developing the BT ver-

sion, we examined three replication strategies: (i) the receiver

has only one block-sized receive buffer, so that a received block
is immediately discarded after it is used (and may need to be re-
quested again later), (ii) the receiver has two block-sized receive

buffers, one of which can be used for computation while data

is transferred concurrently into the other (a double-buffering

approach that achieves overlap of communication and compu-
tation through block pre~etching [17]), and (iii) the receiver
utilizes user-level memory management (without system calls)

to locally replicate all remote blocks that it requires (a~ull repli-

cation approach). The first version obtains fast transfer of data,

the second obtains fast data transfer and overlap of communi-

cation with computation, and the third obtains fast data transfer,
overlap, and replication of communicated data.

Results: Dynamic memory management for the full replica-
tion BT version hurts performance significantly as it did in the
LS version, and the performance of this version is not shown.

Results for the other versions are shown in Figure 7. While
fast data transfer helps reduce communication costs, overlap

through double-buffering provides no noticeable improvement

for two reasons. First, a processor finds blocks to prefetch only
30-40% of the time it looks for them. Second, the prefetched

block often has not arrived by the time the processor requires
it. Overall, blocked sparse Cholesky factorization also does not

benefit much from block transfer, particularly with long cache

lines.

5.4 Ocean Simulation
Application description: The ocean simulation studies large-
scale ocean movements based on eddy and boundary currents,

and is an enhanced version of the Ocean application in the

SPLASH application suite [16]. The major differences between
this version and the SPLASH version are: (i) it is written in C
rather than FORTRAN, (ii) it partitions the grids into square-

like subgrids rather than groups of columns to improve the
communication to computation ratio, (iii) as in LU, it uses
dynamically allocated 4-D arrays designed to allow appropriate
data distribution and reduce false sharing, and (iv) it uses a red-

black Gauss-Seidel multigrid technique based on that presented
in [4], whereas the SPLASH version uses a relaxed Gauss-

Seidel SOR solver.

Results: The bulk of the application’s execution time is spent
in the multigrid solver. The solver performs nearest-neighbor
sweeps on a hierarchy of grids rather than on a single grid as
in SOR. Higher grids in the hierarchy have less points in them.
Since communication occurs at partition boundaries at all lev-
els of the hierarchy, the communication to computation ratio

becomes larger at higher levels. While this should increase

225



the advantage of block transfer at higher levels, these levels
have smaller partition borders and hence smaller block transfer
messages, resulting in an increased effect of block transfer over-

head. At lower levels, the communication to computation ratio

is typically small. It is therefore difficult to find a point where
block transfer is very useful. Also, other parts of the applica-
tion than the multigrid solver do not have nearly as much com-

munication. Results for this application show negligible BT

performance benefits and may be found in [17]. Regular-grid
nearest-neighbor problems such as Ocean represent a dominant

class of applications with communication that is quite natural

to block transfer, but which do not benefit much from block
transfer in a tightly-coupled multiprocessor.

5.5 Radix Sort
Algorithm: The integer radix sort kernel also has a wide

range of applications, including database management systems

and aerospace applications (it is one of the NAS parallel bench-
marks [6]). It is based on the method described in [8], and re-
quires the movement of bulk data (the keys being sorted) from
one processor to another during each phase of the computation.

Each processor is assigned an equal fraction of the n keys to

be sorted. The algorithm is iterative, performing one iteration
for each radix r digit in the keys. In each iteration, a processor

passes over its assigned keys and generates a local histogram

of values. Next, the local histograms are accumulated into a
global histogram, which is used to permute the keys for the
next iteration. Keys are communicated in the permutation step,

and the permutation is inherently a sender-determined one, so

receiver-initiated communication does not make sense in either
the load-store or block transfer paradigms.

Load-store and block transfer versions: The performance

of radix sort is strongly dependent on the choice of radix.
A larger radix implies less digits and hence fewer iterations
through the algorithm. However, a larger radix also implies

larger histograms and hence larger cache requirements. In the

13T version, there is an additional constraint. Processors must
perform at least one block transfer for every radix value in each

iteration, so a small radix implies few large transfers, while a
large radix implies many small transfers and hence greater over-

head. The BT version also requires an additional step in each

iteration and an associated data structure to gather together the
keys that must be communicated to the same processor. We

empirically determine the optimrd radix separately for the LS
and BT versions.

Results: Detailed results for radix sort may be found in [17].

The BT version tends to have nearly the same optimal radix
as the LS version in our experiments, but does not perform as
well for three reasons. The first is the problem associated with
small messages mentioned earlier. Second, communication is

done through writes in the LS version, which allows a fair
amount of the communication latency to be hidden even with

realistic write buffers. The third reason is the overhead of the
additional step required in each iteration of the BT version.
Since every processor performs at least r block transfers of
average size : in each iteration, a problem configuration that

gives block tr&sfer significant advantages would require both
a very large number of keys per processor per radix value and

a similar optimal radix for the BT and LS schemes.

6 Effect of Architectural Variations
For our base architectural parameters, we found that while

block data transfer helped improve performance in some sit-
uations, the improvement was not large especially when long

cache lines were used. In fact, the effectiveness of block trans-
fer depends on architectural parameters such as network band-
width, communication overhead, and processor speed. In this

section, we examine the effects of varying these three parame-
ters to reflect technology trends or other types of systems that
are more or less tightly coupled.

6.1 Varying Communication Bandwidth
We vary network bandwidth by changing the clock cycle time

of the network. We experiment with increasing the network

speed by a factor of four, which changes the ratio of one-hop

remote miss latency to local miss latency from 3-to-1 in our

base machine to 2-to-1. We also decrease network speed by a
factor of four, which makes the ratio 4-to-1,

Results: Moderate changes in network speed clearly have lit-

tle impact on the effectiveness of block transfer for applications
with low communication to computation ratios, such as LU.
However, they can have a stronger impact on applications with

high communication to computation ratios or all-to-all commu-
nication, such as FIT. The effectiveness of block transfer is

limited by the ratio $, where R is the remote read miss time

in the load-store case and P is the block transfer pipeline stage

time. The block transfer pipeline stage time is the maximum
of the time for the node controller to access a block in local

memory and the time to inject the block and its header into the

network, while the remote read miss time is influenced by the

sum of these two factors. Increasing the network bandwidth

reduces network injection time and thus remote miss time. Be-

yond a point, it does not affect the block transfer pipeline stage
time, which becomes limited by the memory block access time.
Further increases in network bandwidth thus increase LS per-

formance, but BT performance does not increase.

More interestingly, decreasing communication band-

width (and hence coupling the machine more loosely) also has

a detrimental effect on block transfer. Decreasing the band-
width increases the remote read miss time, and beyond a point,

it also increases the pipeline stage time, thus reducing the ef-

fectiveness of block transfer. Our base parameters are such that

the magnitudes of these two factors are about equal. For the

aforementioned reasons, large increases or decreases in network
bandwidth reduce the effectiveness of block transfer. Compared
to Figure 4(b), Figure 8(a) illustrates the decreased relative per-
formance for FIW from increased network bandwidth. Results
for decreased network bandwidth are not shown but are quan-
titatively similar to those shown in Figure S(a),

6,2 Increasing Communication Overhead
Another type of looser machine coupling is one in which the
overhead of initiating communication with remote nodes is
larger. To simulate this scenario, we increase the time required
to initiate a remote request to another node from 20 cycles to
400 cycles, resulting in a one-hop remote to local miss ratio

of 8 to 1. The block transfer startup time is increased propor-
tionally from 200 cycles to 4000 cycles. The higher overheads
move us towards systems in which communication is not as

closely integrated into the processing nodes, such as current
message-passing machines and networks of workstations.

Results: Increased communication overhead makes block
transfer very helpful, particularly for codes with high com-

munication to computation ratios or all-to-all communication.
Compared to Figure 4(b), Figure 8(b) illustrates the improved
relative BT performance for FFT resulting from increased com-
munication overhead, The main reason is the fast pipelined

transfer of data associated with block transfer. Every remote
miss in the LS version incurs the increased overhead, whereas
in the BT versions the increased startup time is amortized over
the length of the entire block transfer. However, increased
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overhead moves the sweet spot towards smaller numbers of
processors. This is because larger numbers of processors make
transfers smaller and hence make it more difficult to amortize

the increased overhead. Finally, the BT curves for different

line sizes in Figure 8 move further apart from each other as

communication latency increases. This is because there are
more cache misses for smaller line sizes, and each miss incurs

the increased communication overhead in the LS case, making

block transfer all the more important.

Conclusions: With long cache lines, we find that it takes

large communication overheads to obtain substantial benefits
from block transfer, overheads that are unrealistic for hardware

cache-coherent multiprocessors. These trends, however, recon-

firm the importance of block transfer in less tightly coupled
systems that have much higher communication overhead. In
a shared address space implemented in software on a typical

message-passing system, the one-hop remote to local miss ra-

tio might typically be in the range of 20-50 to 1, while on a

network of workstations that ratio today would certainly ex-

ceed 100 to 1. For this reason, block transfer has enormous
advantages in such systems [3, 5].

6.3 Increasing Processor Speed
We next examine the effect of having processor speeds increase

much faster than memory and network speeds, a continuing
technology trend. In particular, we show results for processors
that have a peak performance twice that of our base processor.

Results and conclusions: Increased processor speed has lit-
tle impact on applications that have high communication to

computation ratios, since performance is already dominated by

communication time. A faster processor increases the relative

BT performance in codes with a low communication to compu-

tation ratio (such as LU and Cholesky) since computation time
is reduced and communication time becomes a larger percent-

age of overall execution time, Figure 9 illustrates the effects

on LU and Cholesky. Despite the increased communication to
computation ratio, LS performance is still good in these codes

because blocking yields low miss rates.

7 Prefetching

One alternative to block transfer in communication perfor-
mance is prefetching into the processor cache. To determine

its effectiveness, the base LS versions of codes that showed

benefit from block transfer (ITT, LU, Cholesky) were aug-
mented to perform the same communication with receiver-

initiated prefetches. Note that we only prefetch references that

require interprocessor communication, since we are interested
in prefetching only as an alternative to block transfer for com-

munication. We hand-code all prefetches, and assume no con-

tention in the main processor caches between returning prefetch

data and processor accesses.

The advantage of prefetching is that data are placed in
the cache rather than in local memory, resulting in a substan-

tially smaller access time. In the block transfer case, however,
data are transferred into main memory and the first subsequent
access to each line of the transfer incurs the local miss latency.

Results: Figure 10 shows the results of our prefetching exper-

iments. In the transpose phase of FFT, data that is prefetched is
used almost immediately after the prefetch completes, causing
prefetching to outperform block transfer. In LU, however, the
BT version outperforms the LS version with prefetching. The

reason is that prefetching is initiated by the receiver, and hot-
spotting results when processors that own perimeter blocks si-

multaneously issue prefetches to the processing node that owns
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the diagonal block. The BT version avoids hot-spotting since

communication of the diagonal block is done through a broad-
cast mechanism (see Section 5.2). A similar situation occurs
with communication of the perimeter blocks. Prefetching pro-
vides minimal performance improvement in the LS version of

Cholesky for similar reasons.

Conclusions: Prefetching can be more effective than block

transfer when data that are prefetched do not cause hot-spotting
and when they are used shortly after the prefetches complete.
Even in cases where hot-spotting of prefetches occurs, prefetch-

ing still provides some performance benefit, and can help to
close the gap in performance relative to block transfer.

8 Summary and Conclusions

We have studied the performance benefits of providing a block

transfer facility within cache-coherent shared address space
multiprocessors. We had set out to address three questions:
(i) what are the performance benefits of block transfer, (ii) do

algorithms need to change significantly to achieve good perfor-
mance with block transfer, and (iii) what special features are
useful to provide in a block transfer facility. We now summa-

rize our answers to these questions in reverse order.

Block transfer features: We found flexibility of the block

transfer facility to be useful. The ability to specify different

source and destination strides, to write special block transfer

handlers (such as the blocked transpose handler for FIT), and
to broadcast transfers were all important. We did not need to

maintain global coherence on block transfer data in our imple-

mentations, and found that false sharing of cache lines would
have been the major reason for requiring global coherence in

less optimized versions of the applications (see Section 5.2).
The block transfer mechanism we have evaluated is quite gen-

eral and is likely more ambitious (or higher performance) than
might be available in real machines. Thus, our performance re-

sults for block transfer are likely to be optimistic for the class
of tightly-coupled multiprocessors we have considered.

Algorithmic changea: The BT version of FFT benefitted sig-
nificantly from algorithmic changes to exploit overlap of com-

munication with computation. Sparse Cholesky factorization
used double-buffering to exploit overlap but did not benefit
much from it, and radix sort required an additional gather step
which decreased performance. The other applications were con-

ceptually straightforward extensions of the best load-store al-
gorithms.

Performance results: Overall, block transfer did not help

performance very much for our tightly coupled systems. There
are several reasons for this. First, the fast data transfer ad-
vantage of block transfer is fundamentally limited by the ratio
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of the remote read miss time in load-store communication to
the pipeline stage time in block transfer. Current memory sys-
tem designs are moving towards larger cache line sizes. Many
applications, particularly those that are amenable to block trans-

fer, are able to exploit the spatial locality of longer cache line

sizes well. Exploiting spatial locality effectively amortizes the

remote read miss time in the LS case, thus reducing the ef-

fectiveness of block transfer. In addition, long cache lines can
hurt block transfer by requiring partially transmitted lines to be

merged at the receiver. The second reason is that the fraction
of execution time spent in communication amenable to block

transfer was often not very large in the kernels, and will likely

be even smaller for a complete application which uses them.
And when the problem size per processor was small enough

to make this fraction large, the overheads of small block trans-

fers or other factors such as load imbalance often began to
dominate. Third, even though block transfer reduced commu-

nication costs, we were unable to overlap enough independent

computation with the remaining communication. This problem
becomes more severe as processor speeds increase relative to

communication bandwidth.

Of the three major advantages of block transfer, fast
data transfer provided us with most of our performance bene-

fits. Overlap of communication with computation was not very
useful for Ocean and radix sort, had a small effect for LU and
Cholesky, and had a more substantial effect for ITT. Replica-

tion of transferred data in main memory was not relevant in
three applications (Ocean, FFT, and radix sort) and its benefits

did not outweigh its costs in others (LU and Cholesky) 3. Con-

tention at the node controller and memory between the block
transfer and load-store accesses was in all cases not a significant
problem compared to other sources of performance loss.

Scaling: Scaling arguments further diminish the potentird ef-
fectiveness of block transfer. Under memory-constrained scal-
ing, the communication to computation ratio often stays con-
stant. In some cases (e.g. Ocean and LU), the message size
and number of block transfers a processor is involved in stays
fixed or grows slowly, so the performance advantages of block
transfer persevere. In other cases that have all-to-all commu-

nication (FFf’ and radix sort), the message size is inversely
proportional to the number of processors, so that a processor is

involved in increasing numbers of block transfers of decreasing

size, and the advantages of block transfer diminish even under
memory-constrained scaling. The most realistic scaling model
for most applications, however, is time-constrained scaling, in
which the data set size does not grow as quickly as the number

3Replication m main memory can be useful for data structures that are not
blnck transferred (particularly m the presence of confllct mmses), and when
data dmtribution is not done appropriately.
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of processors [15]. The communication to computation ratio
grows, but the message size becomes smaller, so that beyond
a point the effectiveness of block transfer usually dimmishes
under time-constrained scaling.
Effect of architectural variations: Moderate changes in net-

work bandwidth did not affect the benefits of block transfer very
much. More substantial changes in network bandwidth have an

impact on the advantages of block transfer in applications with

all-to-all communication (FIT), and increased processor speed
improves the advantages for applications with low communi-

cation to computation ratios (LU and Cholesky). The great-
est advantages for block transfer, however, occur in machines

with a high overhead to initiate communication. Thus, block
transfer is expected to be useful in machines that provide only
low performance implementations of shared memory, including

message passing machines and networks of workstations.

Prefetching: We found that in the cases where block trans-
fer increased performance, software-controlled prefetching of-

ten achieved similar, if not superior, performance. The primary

advantage of prefetching is that data are brought into the cache

rather than into main memory, and its primary disadvantage
is that it can lead to hot-spotting. In particular, prefctching
was better when the prefetch requests were distributed to the

memory systems of all processors (FIT) than when they were

concentrated towards one memory system (LU).

Conclusion: Despite the recent trend to incorporate block
data transfer facilities and message passing in shared address
space multiprocessors, our results show that block data trans-
fer may not be very helpful in increasing the performance of
well-written applications on efficient cache-coherent machines.

Block transfer can be beneficial if the over-head of commu-

nicating with remote nodes is high, as in traditional message-
passing machines and networks of workstations. Block transfer

may also be useful for other purposes, such as implementing

the message-passing programming model on a shared memory
machine, as well as for special-purpose tasks such as operating

system page migration or block memory copy.

Future work: In the future, we plan to investigate block
transferring data into a large second-level cache as an alter-

native to transferring into local main memory. We also plan
to study the relative performance of block transfer for low-
associativity caches and versus load-store implementations with

finite-depth write buffers. Finally, we shall look for other ap-
plications that might benefit from block transfer.
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