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Abstract

We present parallel versions of a representative N-body application that uses Greengard and Rokhlin’s adaptive

Fast Multipole Method (FMMJ While parallel implementations of the umform FMM are straightforward and have
been developed on alfferent architectures, the aalzptive version complicates the task of obtaining eflective parallel
peflormance owing to the nonunz~onn and dynamically changing nature of the problem &mains to which it is applied.
We propose and evaluate two techniques for providing load balancing and data locality, both of which take advantage

of key insights into the method and its typical applications. Using the better of these techm”ques, we demonstrate

45-fold speedups on galactic sinudations on a 48-processor Stanford DASH machine, a state-of-the-art shared address

space multiprocessor even for relatively small problems. We also show good speedups on a 2-ring Kendall Square
Research KSR-I. Finally we summarize some key architectural implications of this important computational method.

1 Introduction

The problem of computing the interactions among a system of

bodies or particles is known as the N-body problem. Examples

of its application include simulating the evolution of stars in

a galaxy under gravitational forces, or of ions in a medium

under electrostatic forces. Many N-body problems have the

properties that long-range interactions between bodies cannot

be ignored, but that the magnitude of interactions falls off with

distance between the interacting bodies. The hierarchically

structured Fast MultiPole Method (FMM) [7] is an efficien~

accurate, and hence very promising algorithm for solving such

problems. Besides being very efficient and applicable to a

wide range of problem domains-including both classical N-

body problems as well as others that can be formulated as

such [7]—the FMM is also highly parallel in structure. It is

therefore likely to find substantial use in applications for high-

performance multiprocessors.

There are two versions of the FMM: The unijofm FMM

works very well when the particles in the domain are uniform-

ly dktributed, while the adaptive FMM is the method of choice

when the distribution is nonuniform. It is easy to parallelize

the uniform FMM effectively: A simple, static domain decom-

position works perfectly well, and implementations on differ-

ent architectures have been described [19, 8, 12]. However,

typical applications of the FMM are to highly nonuniform do-

mains, which require the adaptive algorithm. In addition, since

these applications simulate the evolution of physicat system-

s, the stxuctme of the nonuniform domain changes with time.

Obtaining effective parallel performance is considerably more

Q 1993 ACM O-8186-4340-419310011 $1.50

complicated in these cases, and no static decomposition of the

problem works well.

In this paper, we address the problem of obtaining effec-

tive parallel performance in N-body applications that use the

adaptive FMM. We propose and evaluate two partitioning tech-

niques that simultaneously provide effective load balancing and

data locality without resorting to dynamic task stealing. One is

an extension of a recursive bisection technique, and the other

(which we call costzotte.s) is a new, much simpler approach that

performs better, particularly as more processom = used. Us-

ing these techniques, we demonstrate that N-body applications

using the adaptive FMM can be made to yield very effective

parallel performance, particularly on multiprocessors that sup-

port a shared address space. Finally, we summarize some of the

key implications of the FMM for multiprocessor architecture.

Sea ion 2 of this paper introduces the gravitational N-body

sunulation that is our example application in this paper, and

the adaptive Fast Multipole Method that is used to solve it.

Section 3 describes the available parallelism, the goals in ex-

ploiting it effectively, and the characteristics that make these

goals challenging to achieve. Section 4 describes the execu-

tion environments in which we perform our experiments. In

Section 5, we describe the two approaches we use to partition

and schedule the problem for data locality and load balancing,

and present results obtained using these schemes. Finally, Sec-

tion 6 summarizes the main conclusions of the paper and the

implications for multiprocessor architecture.
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2 The Problem and the Algorithm

Our example N-body application studies the evolution of a sys-

tem of stars in a galaxy (or set of grdaxies) under the influence

of Newtonian gravitational attraction. It is a classical N-body

simulation in which eve~ body (particle) exerts forces on all

others. The simulation proceeds over a large number of time-

stcps, every time-step computing the net force on every particle

and updating its position and other attributes.

By far the most time-consuming phase in every time-step is

that of computing the interactions among all the particles in the

system. The simplest method to do this computes all pairwise

interactions between particles. This has a time complexity that

is 0(n2) in the number of particles, which is prohibitive for

large n. Hierarchical, tree-based methods have therefore been

developed that reduce the complexity to O(rt log n) [3] for

general distributions or even O(n) for uniform distributions [2,

9], while still maintaining a high degree of accuracy. They

do this by exploiting a fundamental insight into the physics

of most systems that N-body problems simulate, an insight

that was first provided by Isaac Newton in 1687 A. D.: Since

the magnitude of interaction between particles falls off rapidly

with distance, the effect of a large group of particles may be

approximated by a single equivalent particle, if the group of

particles is far enough away from the point at which the effect

is being evaluated.

The most widely used and promising hierarchical N-body

methods are the Barnes-Hut [3] and Fast Multipole [9] meth-

ods. The Fast Multipole Method (FMM) is more complex to

program than the Barnes-Hut method, but provides better con-

trol over error and has better asymptotic complexity, particu-

larly for uniform distributions (although the constant factors in

the complexity expressions are larger for the FMM than for

Barnes-Hut in threedimensional simulations). In addition to

classical N-body problems, the FMM and its variants arc used

to solve important problems in domains ranging from fluid dy-

namics [4] to numerical complex analysis, and have recently

inspired breakthrough methods in domains as seemingly ume-

lated as radiosity calculations in computer graphics [10, 18].

The FMM comes in several versions, the simplest being the

two-dimensional, uniform algorithm. This is itself far more

complex to program than the Barnes-Hut method, but is con-

siderably simpler than the adaptive two-dimensional version

and the three-dimensional versions. Since we are interested in

nonuniform distributions, and since the parallelization issues

w very similar for the two- and three-dimensional cases, we

use the adaptive two-dimensional FMM in this paper. Let us

first describe the sequential algorithm.

2.1 The Adaptive Fast Multipole Method

To exploit Newton’s insight hierarchically, the FMM recur-

sively subdivides the computational space to obtain a tree-

structured representation. In two dimensions, every subdivision

results in four equal subspaces, leading to a quadtie represen-

tation of spac~ in three dimensions, it is an octree. A cell

is subdivided if it contains more than a certain fixed number

of particles (say s). For nonuniform distributions, thk leads

to a potentially unbalanced tree, as shown in Figure 1 (which

assumes s=l). This tree is the main data structure used by the

FMM.

A key concept in understanding the algorithm is that of well-

separatedness. A point or cell is said to be well-separated

from a cell C if it lies outside the domain of C and C’s col-

leagues (colleagues are defined as the cells of the same size

as C that arc adjacent to C). Using this concept, the FMM

translates Newton’s insight into the following: If a point P is

well-separated fmm a cell C, then C can be represented by a

multipole expansion about its center as far as P is concerned.

The force on P due to particles within C is computed by sim-

ply evaluating C’s multipole expansion at P, rather than by

computing the forces due to each particle within C separately.

The same multipole expansion, computed once, can be eval-

uated at several points, thus saving a substantial amount of

computation. The multipole expansion of a cell is a series ex-

pansion of the properties of the particles within it (expansions

of nonterminal cells are computed from the expansions of their

children). It is an exact representation if an infinite number

of terms is used in the expansion. In practice, however, on-

ly a finite number of terms, say m, is used, and this number

determines the accuracy of the representation.

Representing cells by their mukipole expansions is not the

only insight exploited by the FMM. If a point P (be it a particle

or the center of a cell) is well-separated horn cell C, then the

effects of P on particles within C can also be represented as a

Taylor series or local expansion about the center of C, which

can then be evaluated at the particles within C. Once again,

the effects of several such points can be converted just once

each and accumulated into C’s local expansion, which is then

propagated down to C’s descendants and evaluated at eve~

particle within C. The mathematics of computing multipole

expansions, translating them to local expansions, and shifting

both multipole and local expansions are described in [7].

To exploit the above mechanisms for computing forces, the

adaptive FMM associates with every cell C a set of four lists

of cells. The cells in a list bear a certain spatial relationship

to C with respect to well-separatedness. Some of these lists

are defined only for leaf cells of the tree, while others are

defined for internal cells as well. The lists for a leaf cell C

are described in Figure 3, and their role is discussed in more

detail in [7, 15]. Using these lists, the adaptive FMM proceeds

in the following steps:
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Figure 1: A twodimensiotxd particle distribution and the corresponding quadtree.
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Figure 2 Computing forces on particles in cell D due to particles in cell C in the FMM.

Build Tree The tree is built by loading particles into an

initially empty root cell.

Construct Interaction Lists: The U, V and W lists are

constructed explicitly. The X list is not constructed, since

it is the dual of the W list.

Upward Pass: The multipole expansions of all cells are

computed in an upward pass through the tree. Expan-

sions of leaf cells are computed from the particles within

them, and expansions of internal cells from those of their

children.

Compute List Interactions: For every cell C, the rele-

vant list interactions are computed. FWSGif C is a leaf, in-

teractions between all psrticles in C are computed directly

with all particles in C’s U list. Second, the multipole

expansions of all cells in the V list of C are translated

and accumulated into local expansions about the center of

C. Third, if C is a leaf, the multipole expansions of the

cells in the W list of C are evaluated at the particles in

C. Since the X list is the dual of the W list and does

not need to be constructed explicitly, X list interactions

arc computed at the same time as the W list interaction-

s in our implementations. That is, for every cell W; in
its W list C first computes the W list interaction and

updates the forces on its own particles accordingly, and

then computes the X list interaction and updates the lo-

cal expansion of W;. Since X list interactions are thus

computed by leaf cells, internal cells compute only their

V list interactions.

5.

6.

Downward Pas The local expansions of internal cells

are propagated down to the leaf cells in a downward pass

through the tree.

Evaluate Local Expansions: For every leaf cell C, the

resulting local expansion of the cell (obtained from the

previous two steps) is evaluated at the particles within it.

This resulting force on each particle is added to the forces

computed in steps 3 and 6.

The direct computation of interactions among internal cells is

the key factor that distinguishes the FMM from the Barnes-Hut

method, the other major hierarchical N-body method. In the

Barnes-Hut method, forces w computed particle by particle.

The trc.e is traversed ouce per particle to compute the forces on

that particle, so that the only interactions are between a parti-

cle and another particle/cell. The use of cell-cell interactions

allows the FMM to have a better asymptotic complexity, but

is also responsible for complicating the partitioning techniques

required to obtain good performance, as we shall see.

Our example application iterates over several hundred time-

stcps, every time step executing the above steps as well as one

more that updates the velocities and positions of the particles

at the end of the time-step. For the problems we have run,

almost all the sequential execution time is spent in computing

list interactions. The majority of this time (about 60-70%) is

spent in computing V list interactions, next U list (about 20-

30%) and finally the W and X lists (about 10%). Building the

tree and updating the particle properties take less than 1% of

the time in sequential implementations.
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-... List U (leaf cells only): all leaf cells sdjacent to C.
x x x These cells cannot be approximated in my way.

●“” List V (all cetls): Children of the solkagues of C’s parent
that are well-separatsd from C.

. . . These are weU-separatedfrom C fmt not from C’sparent.
u u

u Lkt W (leaf cells only): Dsscrmdsnts of C’s colleagues whine
v v

. . . psrents are adjscmt to C, but which are not thenmelvrs
adjacent to C.

Muhipele expansions of these celfs can be evaluated at
. . . pardcles in C; their parents’ mtdtipole expansions cmnot;

and their expansions cannot be translated to bcaf expansions
about C’s center

Lit X (dl cells):Dud of W listi cells such thst C is in their W list.
. . . Their multipole expansions cannot be translated to C’s

; : i ; ;: : center, but their individwd pam”clejields can.

Figure 3: Interaction lists for a cell in the adaptive FMM.

3 Taking Advantage of Parallelism

3.1 The Available Parallelism

All the phases in the FMM afford substantial parrdlelism.,

which we exploit in parallel programs witten for a machine

that supports a shared address space. We exploit parallelism

only within a phase. Fme-grained overlap across phases can

be exploited by synchronizing at the level of individual cells,

but this can incur a lot of overhead without hardware support

and is unlikely to be beneficial. Although the basic entities in

the N-body problem are particles, the above description makes

it clear that the preferred units of parallelism are cells in all

phases of the FMM other than tree-building.

The tree-buildlng, as well as the upward and downward pass-

es to transfer expansions, clearly mquixe both communication

and cell-level synchronization, since diffettmt processors may

own a parent and its child. The cell-level synchronization re-

quired includes mutual exclusion in the tree-building phase, and

event synchronization to preserve dependence between parents

and their children in the upward and downward passes. These

upward and downward passes also have limited parallelism at

higher levels of the tree (close to the root), which may become

an important performance limitation on very large-scale ma-

chines when the number of processors becomes large relative

to the problem size.

Some of the list interactions may require synchronization

for mutual exclusion. For example, in a straightforward imple-

mentation a processor writes the U list and X list interaction

results of cells that may not belong to it. This locking can be

eliminated for the U list interactions, and can be reduced for

X list interactions as follows: Instead of writing the X list

interaction results into the cumulative local expansion of the

target cell (which the owning processor of that cell also writes),

a separate per-cell X list result data structure is maintained so

that both it and the local expansion updates can be written

without locking; this army is then accumulated into the local

expansion only during the downward paas. In any event, the

communication in the interaction phase has the important prop-

erty that the data read are not modified during this phase, but

only later on in the update or upward pass phases, a property

that can be taken advantage of by coherence and data transfer

protocols, particularly since the interaction phase is the most

time-consuming. Finally, the update phase can be performed

without synchronization or communication.

3.2 Goals and Difficulties in Effective Parallelization

In general, there are six major sources of overhead that inhibit

a parallel application from achieving effective speedups over

the best sequential implementation: inherently serial sections,

redundant work, overhead of managing parallelism, synchro-

nization overhead, load imbalance and communication. As in

many scientific applications, the first four are not very signif-

icant here. Let us therefore define the goals of our parallel

implementations in the context of the last two sources.

Load Balancing: The gord in load balancing is intuitive:

Cells should be assigned to processors to minimize the time

that any processor spends waiting for other processors to reach

synchronization points.

Data Locality: Modern multiprocessors are built with com-

plex memory hierarchies, in which processors have faster ac-

cess to data that are closer to them in the hierarchy. Exploiting

the locrdity in data referencing that an application affords can

increase the fraction of memory references that are satisfied

close to the issuing processor, and hence improve performance.

Whale we make all reasonable attempts to exploit locality with-

in a processing node, we restrict our discussion of data locality

to reducing the interprocessor communication in the applica-

tion by scheduling tasks that access the same data on the same

processor. We do not examine several other, more detailed is-

sues related to localityl or the impact of locality in a network

topology.

Many scientific applications operate on uniform problem do-

mains and use algorithms which directly require only local-

1Such ss prefetshing data with long csche ~me.s or in sofhvsre, fake

shsriog of &@ snd cache mapping collisions.
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ized communication (see, for example, [17]). This application,

however, has several characteristics that complicate the task of

obtaining effective parallel performance. In particulw

Ditect, relatively unstructured, long-range communication
is required in every time-step, although the use of hierar-
chy causes the amount of communication to frdl off with
distance from a particle/cell.

The physical domain in galactic simulations is typically
highly nonun~onn, which makes it difficult to balance
the computation and the communication across processors.
For example, the work done per unit of parallelism (cell) is
not uniform, and depends on the entire spatial distribution.

The dynamic nature of the simulation causes the dis-
tribution of particles, and hence the cell structure and
worldcommunication distributions, to change across time-
steps. There is no steady state. This means that no stat-
ic partitioning of particles or space among processors is
likely to work well, and repartitioning is required every
time-step or few time-steps. In fac~ the natural units of
parallelism (cells) do not even persist across times-steps—
since both the bounding box and the particle distribu-
tion change-and therefore cannot be partitioned statically
anyway.

The fact that communication falls off with distance equally
in all directions implies that a processor’s partition should
be spatially contiguous and not biased in size toward arty
one direction, in order to minimize communication fre-
quency and volume.

The different uhases in a time-ste~ have diffemt relative
amounts of w&k associated with ~articleslcells, and hence
diffettmt preferred partitions if viewed in isolation.

Before we discuss the techniques we use to obtain both data
locality and load balancing despite these characteristics, let us
first describe the multiprocessor environments we use in our
experiments.

4 The Execution Platforms

We perform experiments to evaluate the performance of our
schemes on two parallel machines that provide a cache-
coherent shared address space: the Stanford DASH multipro-
cessor, and the Kendall Square Research KSR-1. In addition,
we use a simulated multiprocessor to extend our results to more

processors and to obtain quantitative support for some of our

architectural implications (such as inherent communication to
computation ratio and working set size).

The Stanford DASH Multiprocessor The DASH multipro-
cessor is a state-of-the-art research machine [13]. The machine
we use has 48 processors organized in 12 clusters. A cluster
comprises 4 MIPS R3000 processors connected by a shared

bus, and clusters are connected together in a mesh network.
Every processor has a 64KB first-level cache memo~ and a
256KB second-level cache, and evety cluster has an equal frac-
tion of the physical memory on the machine. All caches in

the system are kept coherent in hardware using a distributed
directory-based protocol. A hit in the first level cache is satis-
fied in a single cycle, while references satisfied in the second

level cache and in local memory stall the issuing processor for

15 and 30 cycles, respectively. Misses that go remote take
about 100 or 135 cycles, depending on whether or not the miss

is satisfied on the node in which the memory for the referenced

datum is allocated.

The Kendall Square Research KSR-1 The KSR-1 is a com-
mercial example of a new kind of architecture called an ALL-
CACHE or Cache-only Memo~ Architecture (COMA). Like
in more traditional cache-coherent architectures, a processing

node has a processor, a cache and a “main memory”. The dif-
fe~nce is that the main memory on the node is itself converted

into a very large, hardware-managed cache, by adding tags to
cache-line sized blocks in main memory. This large cache,
which is the only “main memory” in the machine, is called the

attraction memory (AM) [6]. The location of a data item in the
machine is thus decoupled from its physical addtess, and the
data item is automatically moved (or replicated) by hardware
to the attraction memory of a processor that references it.

A processing node on the KSR-1 consists of a single 20MHz
custom-built processor, a 256 KE instruction cache, a 256 KB
data cache, and a 32MB attraction memory [4]. The machine

is configwd as a hierarchy of slotted, packetized rings, with
32 processing nodes on each leaf-level ring. We use a two-ring
machine, with 64 processors. Since a couple of the pmcessorx

on each ring have to perform system functions and are therefote
slower than the others, we present results on only upto 60
processors. Reference latencies are as follows: 2 cycles to the
subcache, 20 cycles to the AM, 150 cycles to a remote node
on the locrd ring, and 570 cycles to another ring. The line size
in the data subcache is 64 bytes, while that in the AM (which
is the unit of data @msfer in the network) is 128 bytes. The

unit of data allocation in the AMs, called a page, is 16KB.

The processor on the KSR-1 is rated lower than the DASH

processor for integer code, but is much faster in peak operation

on floating point code (40 MFlops versus 8 MFlops). KSR-1
also has higher interprocessor communication latency (both in

processor cycles and in actual time, see above), but higher peak
communication bandwidth owing to its longer cache line size.

The Simulated Multiprocessor The real multiprocessors
that we use have the limitations of having only a certain num-
ber of processom, and of distorting inherent program behav-

ior owing to their specific memo~ system configurations. To

overcome these limitations we also run our programs on a sim-
ulator of an idealized shared-memory multiprocessor architec-

ture [6]. The timing of a simulated processor’s instruction set
is designed to match that of the MIPS R3000 CPU and R301O
floating point unit. Every processor forms a cluster with its own
cache and equal fraction of the machine’s physical memory. A

simple three-level non-uniform memory hierarchy is assumed:
hits in the issuing processor’s cache cost a single processor
cycle; read misses that are satisfied in the local memory unit
stall the processor for 15 cycles, while those that ate satisfied
in some remote cluster (cache or memory unit) stall it for 60
cycles; since write miss latencies can be hidden more easily by
software/bsrdwsre techniques, the corresponding numbers for

write misses arc 1 and 3 cycles, respectively.
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5 Obtaining Effective Parallel Performance

We have seen that it is not straightforward to obtain both load

balancing and data locality simultaneously in this application.
Whatever the technique used to partition cells for physical lo-
cality, the Aative amounts of work associated with different
cells must be known if load balancing is to be incorporated

in the partitioning technique without resorting to dynamic task
stealing (which has its own overheads and compromises local-

ity). Let us therefore first discuss how we determine the work

associated with a cell, and then describe the techniques we use
to provide locality.

5.1 Determining the Work Associated with Cells

There are two problems associated with load balancing in this
application. First, the naive assumption that every cell has

an equal amount of work associated with it does not hold.
Different childless cells have different numbers of particles in
them, and different cells (childless or parent) have interaction
lists of different sizes depending on the density and distribution
of particles around them. The solution to this problem is to
associate a cost with every cell, determined by the amount of
computation needed to process its interactions.

The second problem is that the cost of a cell is not known
a priori, and changes across time-steps. In fact, even the cell-

s themselves do not persist across time-steps, since both the

bounding box and the tree structure change. Let us first ig-
nore the latter problem and see how we would determine the

changing cell costs if cells did persist across time-steps, and
then take care of the lack of cell persistence.

There is a key insight into N-body application characteri-
stics that allows us to estimate cell costs even though the costs
change across time-steps. Since N-body problems typically

simulate physical systems that evolve slowly with time, the
distribution of particles changes very slowly across consecu-
tive time-steps, even though the change from the beginning

to the end of the simulation may be dramatic. In fact, large
changes from one time-step to the next imply that the time-
step integrator being used is not accurate enough and a finer

time-step resolution is needed. This slow change in distribu-
tion suggests that the work done to process a cell’s interactions
in one time-step is a good measure of its cost in the next tirne-
step. All we therefore need to do is keep track of how much

computation is performed when processing a cell in the current

time-step.

In the Barnes-Hut method, the interactions that a particle
computes are very similar, so that it suffices to count the num-
ber of interactions and use that count as an estimate of the

particle’s cost. In the FMM, however, a cell computes differ-

ent types of interactions with cells in different interaction lists.
It doesn’t suffice to measure cost as simply the number of inter-
actions per cell, or even the number of interactions of different
types. Instead, for each type of interaction, we ptecompute the
costs-in cycle counts-of certain primitive operations whose
costs are independent of the particular interacting entities. S-
ince the structure of every type of interaction is known, the
cycle count for a particular interaction is computed by a very
simple function for that type of interaction, parametrized by

the number of expansion terms beiig used and/or the number
of particles in the cells under consideration. The cost of a leaf

cell is the stun of these counts in all interactions that the cell
computes. lle work counting is done in parallel as part of the
computation of cell interactions, and its cost is negligible.

Let us now address the problem that cells not persist across
time-steps, so that it doesn’t really make sense to speak of

using a cell’s cost in one time-step as an estimate of its cost
in the next time-step2. To solve this problem, we have to

transfer a leaf cell’s cost down to its particles (which do persist
across time-steps) and then back up to the leaf cell that contains
those particles in the next time-step. We do this as follows.
The profiled cost of a leaf cell is divided equally among its
particles. In the next time-step, a leaf cell examines the costs

of its particles, finds the cost value that occurs most often, and
multiplies this vrdue by its number of particles to determine

its cost. Since internal cells only compute V list interactions
in our implementations (see Section 2.1), and since the cost of
a V list interaction depends only on a program constant (the
number of terms used in the expansions) and not on the number

of particles in any cell, the cost of an internal cell is simply
computed from the number of cells in its V list in the new
time-step.

5.2 Partitioning for Locality and Load Balancing

As mentioned earlier, the goal in providing locality is that the

cells assigned to a processor should be close together in phys-
ical space. Simply partitioning the space statically among pro-
cessors is clearly not good enough, since it leads to very poor

load balancing. In this subsection, we describe two partitioning
techniques that try to provide both locality and load balancing,
both of which use the work-counting technique of the previous

subsection. The first technique partitions the computational
domain space directly, while the second takes advantage of
an insight into the application’s data structures to construct a
more cost-effective technique. Since the particle distribution

and hence the cell structure changes dynamically, the parti-
tioning is redone every time-step.

5.2.1 Partitioning Space: Orthogonal Recursive Bisection

Orthogonal Recursive Bisection (ORB) is a technique for pro-
viding physical locality in a problem domain by explicitly par-
titioning the domain space [5]. The idea here is to recursively
divide space into two subspaces with equrd costs, until there

is one subspace per processor (see Figure 7). Initially, all pro-

cessors are associated with the entire domain space. Every

time a space is divided, half the processors associated with it
are assigned to each of the subspaces that result. The Carte-
sian direction in which division takes place is usually alterna-
ted with successive divisions, and a parallel median finder is

used to determine where to split the current subspace in the
ditection chosen for the split. ORB was first used for hierar-
chical N-body problems by Salmon [14], in a message-passing
implementation of a galactic simulation using the Barnes-Hut

2Tlds is a problem Orat the Bame.s-Hut method dcesncl have., for example,
si,.ce work is sssecisted with psrticle.s rstber than cells in that case, ad

pmticles persist scrws time-steps.
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method. The partitioning in that case was made simpler by the
fact that work in the Barnes-Hut method is associated only with
patticles and not with cells. Particles are naturally represented
by points, and can be partitioned cleanly by ORB bisections
since they fall on one or the other side of a bisecting line. Fur-

ther details of implementing ORB are omitted for reasons of
space, and can be found in [15, 14]. ORB introduces several

new data structures, including a separate bhmy ORB bee of

recursively subdivided subdomains.

The fact that work is associated with internal cells as well
in the FMM (rather than just leaves) requires that we include
internal cells in determining load balancing, which is not nec-
essary in Barnes-Hut. Also, besides the leaf or internal cell
issue, the fact that the unit of parallelism is a cell rather than
a particle complicates ORB partitioning in the FMM. When a
space is bkected in ORB, several cells (leaf and internal) are
likely to straddle the bisecting line (unlike particles, see Fig-
ure 4). In our first implementation, which we call ORB-initial,
we try to construct a scheme that directly parallels the ORB
scheme used in [14] for Barnes-Hut (except that internal cells

me included among the entities to be partitioned). Cells, both

leaf and internal, are modeled as points at their centers for the
purpose of partitioning, just as particles are in the Barnes-Hut

method. At every bisection in the ORB partitioning, therefore,
a cell that straddles the bisecting line (called a border cell) is

given to whichever subspace its center happens to be in.

As our performance results will show, this tteattnent of bor-
der cells in the ORB-initial scheme leads to significant load
imbalances. It is not difficult to see why. Given the fact that
cells are always split in exactly the srane way (into four chil-
dren of equal size), the centers of many cells are likely to
align exactly with one another in the dimension being bkect-

ed. These cells are in effect treated as an indivisible unit when

finding a bisector. If a set of these cells straddles a bisector, as
is very likely, this entire set of border cells will be given to one
or the other side of the bisector (see Figure 4(a)), potentially
giving one side of the bisector a lot more work than the other. 3
The significant load imbalance thus incurted in each bisection
may be compounded by successive bisections.

To solve this problem, we extend the ORB method as fol-
lows. Once a bisector is determined (by representing all cell-
s as points at their centers, as before), the border cells that

straddle the bkector are identified and repartitioned. In the
repartitioning of border cells, we try to equalize costs as far as
possible while preserving the contiguity of the partitions (see

Figure 4(b)). A target cost for each subdomain is first calculat-
ed as half the total cost of the cells in both subdomains. The
costs of the border cells are then subtracted fmm the costs of
the subdomains that ORB-initial assigned them to. Next, the
border cells are visited in an order sorted by position along the
bisector, and assigned to one side of the bisector until that side

reaches the target cost. Once the target cost is reached, the rest

of the border cells are assigned to the other side of the bisector.
We call this scheme that repartitions border boxes ORB-@d.

3This situation is eves more likely with a uniform distribution, where

many cells will have their centers exacffy stigncd in tbe dimension along

Which a bkction is to be made.

5.2.2 A Simpler Partitioning Technique: Costzonea

Our costzones partitioning technique takes advantage of anoth-
er key insight into the hierarchical N-body methods, which is
that they already have a representation of the spatial distribu-
twn encoded in the tree data structure they use. We thetefo~
partition the tree rather than partition space directly. In the

costzones scheme, the tree is conceptually laid out in a two-

dimensional plane, with a cell’s children laid out from left to
right in increasing order of child number. Figure 5 shows an

example using a quadtree. The cost of (or work associated
with) every cell, as counted in the previous time-step, is stored
with the cell. Every internal cell holds the sum of the costs
of all cells (leaf or internal) within it plus its own cost4. In
addition, it holds its own cost separately as well.

The total cost in the domain is divided among processors
so that every processor has a contiguous, equal range or zone
of cosk. For example, a total mst of 1000 would be split
among 10 processors so that the zone comprising costs 1-100

is assigned to the first processor, zone 101-200 to the second,

and so on. Which cost zone a cell belongs to is determined by
the total cost up to that cell in an inorder traversal of the tree.

Code describing the costzones partitioning algorithm is
shown in Figure 6. Every processor calls the costzones rou-

tine with the Ce 11 parameter initially king the root of the
tree. The variable cost –t o– le f t holds the total cost of
the particles that come before the currently visited cell in an
inorder traversal of the tree. Other than this variable, the al-

gorithm introduces no new data structures to the program. In
the traversal of the planarized tree that performs costzones par-
titioning, a processor examines cells for potential inclusion in

its partition in the following orde~ the t% two children (from
left to right), the paren~ and the next two children5. The al-
gorithm requires only a few lines of code, and has negligible

runtime overhead, as we shall see.

The costzones technique yields partitions that are contiguous
in the tree as laid out in a plane. How well this contiguity in
the tree corresponds to contiguity in physical space depends on
the orderings chosen for the children of all cells when laying

them out from left to right in the planarized tie. The simplest
ordering scheme—and the most efficient for determining which
child of a given cell a particle falls into-is to use the same
ordering for the children of every cell. Unfortunately, there

is no single ordering which guarantees that contiguity in tie

planarized tree will always correspond to contiguity in physical
space.

The partition assigned to processor 3 in Figure 7 illustrates
the lack of robustness in physical locality resulting from one

such simple ordering in two dimensions (clockwise from the
bottom left child for every node). While all cells within a
We cell are indeed in the same cubical region of space, cells

(subtrees) that are next to each other in the linear ordering from
left to right in the planarized tree may not have a common
ancestor until much higher up in the tree, and may thete.fore
not be anywhete near each other in physical space.

‘Thew ceU costs are computed daring the upward pass through tie tree

that mmputes mukipele expsnsiom.

3Recsll that we use a two-dimensional FMM, so that every ceft hss st

most four children.
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Figure 4: Partitioning of border cells in ORB for the FMM.
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Figu~5: Tree partitioning inthecost.zones scheme.

There is, however, a simple solution that makes contiguity in
the planarized tree always correspond to contiguity in space. In
this solution, the ordering of children in the planarized tree is
not the same for all cells. However, the ordering of a cell C‘s
children is still easy to determine, since it depends on only two
things: the ordering of C’s parent’s children (i.e. C’s siblings),

and which child of its parent C is in that ordering.

Consider a two-dimensional example. Since every cell has

four children in two dimensions, there are eight ways in which

a set of siblings can be ordered: There are four possible starting

points, and two possible directions (clockwise and anticlock-

wise) from each starting point. It turns out that only four of
the eight orderings need actually be used. Figure 8(a) shows
the four orderings we use in our example, and illustrates how
the ordering for a child is determined by that for its parent.
The arrow in a cell represents the ordering of that cell’s chil-
dren. For example, if the children are numbered O, 1, 2, 3 in
a counterclockwise fashion starting from the upper right, then
in case (1) in Figure 8(a) the children of the top-level cell are
ordered 2, 1, 0, 3, and in case (2) the children are ordered 2,
3, 0, 1. The ordering of the children’s children are also shown.

Figure 8(b) shows the resulting partitions given the same
distribution as in Figure 7. The bold line follows the numbering
order, starting from the bottom left cell. All the partitions are
physically contiguous in this case. The three-dimensional case
is handled the same way, except that there are now 32 different
orderings used instead of 4. A discussion of the extension to
three-dimensions can be found in [15]. We use this more
robust, nonuniform child ordering method in the p~itioning
scheme we call costzones.

5.3 Results

Flgum 9 shows the performance results on DASH for a simu-
lation of two interacting Plummer model [1] galaxies that start
out slightly separated from each other. The results shown are
for 32K particles and an accuracy of 10–10, which translates
to rn=39 terms in the expansions. Five time-steps m run, of

which the first two are not measured to avoid cold-start effects

that would not be significant in a real run over mm] hundreds
of time-steps.

Clearly, both the ORB-$nal and costzones schemes achieve
very good speedups. The ORB-initial scheme is significantly
worse than the ORB-jhal scheme, which shows that the ex-
tension to handle border boxes intelligently-rather than treat
them as particles at their centers-is important. To demonstrate
that it is also important to take the cost of internal cells into
account when partitioning, the figure also shows results for a

scheme called costzones-noparents, in which only the cost of
leaves is taken into account during partitioning and internal
cells are simply assigned to the processor that owns most of

their children for locality.

While both the ORB-jlnal and costzones schemes perform
ve~ well upto 32 processors (ORB requires the number of
processors to be a power of two and therefo~ cannot be used
with 48 processors), we can already see that costzones starts
to outperform ORB. This difference is found to become larger
as more processom are used, as revealed by experiments with
mo~ processors on the simulated multiprocessor. Closer anal-
ysis and measurement of the different phases of the application

reveals the reasons for this (see Fimre 10). One reason is that
the costzones scheme does provid~ a little better load balanc-

ing and hence speeds up the force-computation a little better.
However, the main reason is that the ORB partitioning phase
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CostZones (Cell,cost-to-lefi)

{
if (Cell is a leaf) {

if (Cell is in my range)

add Cell to my list

}
else {

for (first two Children of Cell) {
if (cost-to-letl < max value of my range) {

if (cost-to-letl + Child cost >= tin

value of my range)

CostZones (Child,cost-to-letl)

cost-to-left += Child cost

}

}
tf (coat-to-lett is in my range) {

add Cell itself to my list

cost-to-left += cost of Cell itself

}
for (lasttwo Children of Cell) {

if (cost-to-letl < max value of my range) {

if (cost-to-left+ Child coat >= min

value of my nmge)

COStZO~S (Child,cost-to-left)

cost-to-left += Child cost

}

}
}

}

Figure 6: Costzones-j%ud partitioning for the FMM

Rwl Rw2 F’Iw3 RCC4 k~ hw6 Rw7 F$w8

Figure 7: ORB and cost.zones with uniform numbering.

itself is more expensive than costzones partitioning (as the de-

scriptions earlier in this section should show), the difference

in partitioning cost increasing with the number of processors.
The cost of cosfzones partitioning grows very slowly with n or
p, while that of ORB grows more quickly. Thus, the costzones
scheme is not only much simpler to implement, but also results

in better performance, particularly on larger machines.

❑ m
(1) (2)

❑ miEla
(3) (4)

(a)Ordering of ceUs (b) l13e resulting ptitions

Figure 8: CostZones with nonuniform numbering.
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Figure 9: Speedups for the FMM application on DASH

(n= 32k, c = 10-lO).

we have also measured results for other distributions, inchtd-
ing a uniform one. The results were similar to those discussed

above (with the uniform cases performing a little better than the

nonuniform cases). Finally, Figures 11 and 12 show the results
for the best costzones scheme for different problem configura-

In addition to the nonuniform distribution described above,
Figure 10: Execution Profiles of Costzones snd ORB on DASH.
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Figure 11: Speedups for the FMM application on DASH and

KSR-1 (n= 64k).
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Figure 12: Speedups for the FMM application on DASH and

KSR-1 (n = 32k).

tions on both DASH and KSR-1. As expected, higher numbers
of particles and greater force-calculation accuracies lead to s-

lightly better speedups, particularly since both these lead to
relatively more time being spent in the well-balanced phase of

computing interactions. The difference between costzones and
ORB partitioning is also emphasized ae the force-calculation
accuracy decreases (results not shown), since the impact of
partitioning cost (which is independent of accuracy) becomes
greater relative to the cost of computing interactions. Finally,
we find that the speedups on DASH ore consistently better than
those on KSR-1. This is because the communication latencies

arc higher on KSR-1, and its ALLCACHE natu~ gives it no

real advantages since the important working set of the appli-
cation is very small and fits in the cache on DASH as well.

Uniprocessor performance is also better on DASH by about

25%, primarily since there is a lot of integer code in the tree
and list manipulations, and the processor on DASH does better

on these. A more detailed discussion of DASH versus KSR-1
can be found in another paper in these proceedings [11].

5.3.1 The Parallel Tree-Building Bottleneck

Figure 10 also reveals a potential bottleneck to performance on
large parallel machines, which is that the tree-building phase

does not speed up as well in parallel as force-computation.
If the number of particles per processor stays very large, tree
building is not likely to take much time relative to the rest of

the time-step computation. However, under the most realistic

methods of time-constrained scaling, the number of particles
per processor shrinks as larger problems are run on larger ma-
chines [16], and tree-building can become a significant part of
overall execution time.

The obvious way to parallelize the tree-building algonth-
m is to have processors insert their particles into the shared
tree concurrently, synchronizing a3 necessary. This can lead to
substantial locking overhead in acquiring muturdly exclusive
access whenever a processor wants to add a particle to a leaf

cell, add a child to an internal cell, or subdivide a leaf cell.

Because the costzones and ORB partitioning techniques give

every processor a contiguous portition of space, they effectively
divide up the tree into distinct sections and assign a processor

to each section. This means that once the first few levels of the

tree are built, there is little contention for locks in constructing
the rest of the tree, since processors then construct their sections
without much interference. Most of the contention in the initial
parallel tree-building algorithm outlined above is due to many
processors simultaneously trying to update the first few levels
of the tree.
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E
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E
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4.0 -

2.0 -

A—A Old Tree Build

/J

● —4 New Tree Suild

o.oo~
Numberof Processors

Figu~ 13: Percentage of total execution time spent building

the ke on DASH.

Fortunately, the same physical locality in our partitions that
helps the intial parallel tree-building algorithm also rdlows us
to construct a better algorithm. It is possible to substantial-

ly reduce both the contention at the upper levels of the tree

and the omount of lockhg of cells that needs to be done, by
splitting the parallel tree construction into two steps. First ev-
ery processor builds its own version of the tree using only its
own particles. The root of this local tree represents the whole
computational domain, not just a domain large enough to hold

the local particles. This step is made mo~ efficient by hav-
ing a processor remember where in its tree it inserted its last
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particle, and start traversing the tree fmm there for the next

particle, rather than from the root. No locking is needed in
this step. Second, these individual trees are merged together
into the single, global tree used in the rest of the computation.

Since the root cells of all the local trees represent the entire
computational domain, a cell in one tree ~presents the same
subspace as the corresponding cell in another tree. This fact
allows the merge procedure to make merging decisions based
on the types of the cells in the local and globrd trees only (i.e.
whether the cell is internal cell or a leaf etc.).

The merge procedure starts at the root of troth trees, com-
paring the type of cell (body, cell, or empty) from each tree,

and taking an appropriate action based on the two types. There

are six possible cases:

1.

2.

3.

4.

5.

6.

lQcal cell is internal, global cell is empty The local cell
is inserted into the trw.

local cell is internal global cell is a Ieaj The global
cell is removed from the tree. Then the global particle
is inserted into the subtree with the local cell as the root.
The paent of the global cell is relocked, and the local cell
is inserted into the tree.

bcal cell is interna~ global cell is internal A spatial

equivalent to the local cell already exists in the global

tree, so nothing is done with the local cell. The merge

algorithm is recursively called on each of the local cell’s
childnm and their counterparts in the global tree.

local cell is a lea$ global cell is empty Same as Case 1.

kxal cell is a led global cell is a leaf Same as Case 2.

local cell is a le& global cell is internal The local cell
is subdivided, pushing the particle one level deeper in the
local tree. Since the local cell is now internal, Case 3
applies.

Details of the algorithm and pseudocode can be found in

[15]. The algorithm greatly alleviates the problem of too much
contention at the early levels of the tree. When the first pro-
cessor tries to merge its tree into the global tree, it finds the
globrd root null. By case 1, it sets the global root to its root.
The processor’s local tree has now become the global tree, and
its size reduces contention at any one cell. Just as irnportan~
it only took one locking operation to merge the entire first lo-

cal tree. Since large subtrees are merged in a single operation,
rather than single particles, the amount of locking required (and

hence both the overhead of locking as well as the contention)

is greatly reduced,

The reduction in locking overhead tid contention comes at
a cost in redundant work. There is some extra work done in
first loading particles into local trees and then merging the local
trees, rather than loading particles directly into the global txee
(as in the old tie building algorithm). When the partitioning
incorporates physical locality, this extra work overhead is small
and the reduction in locking overhead is substantial, since large
subtrees are merged in a single operation. Of course, if the
partitioning does not incorporate physical locality, this new

tree-building algorithm has no advantages over the old one,

and the extra work overhead it introduces will make it perform
significantly worse.

To compare the old and new tree-building algorithms, Fig-
ure 13 shows the percentage of the total execution time of the
application on the DASH multiprocessor that is spent in build-
ing the tie. The problem size used is the same as the one for
which speedups are presented in Figure 9. The new algorithm
clearly performs much better than the old one, particularly as
the number of processors increases.

6 Summary and Architectural Implications

We have shown that despite their nonuniform and dynamically
changing characteristics, N-body simulations that use the adap-
tive Fast Multipcde Method can be partitioned and scheduled
for effective parallel performance on shared-address-space ma-
chines. We described a method for obtaining load balancing
without morting to dynamic task stealing, and proposed and
evaluated two partitioning techniques, both of which use this
load balancing method but use different techniques for provid-
ing data locality. We showed that our costzones partitioning
technique provides better performance than an extended re-

cursive bisection technique-psrticulmly on larger numbers of

processors-by taking advantage of an additional insight into

the Fast MultiPole Method. Using the costzones technique, we

demonstrated 45-fold speedups on the Stanford DASH multi-
processor, even for a relatively small problem size.

In addition to understanding how to para.llelize important
classes of applications, it is also important to understand the
implications of application characteristics for the design of par-
allel systems. We have studied several of these implications

for the FMM. Our methodology and detailed results can be

found in [16, 15]. Here, we summarize the main results.

We found that exploiting temporal locality by caching com-

municated data is critical to obtaining good performance, and

that hardware caches on shared-address-space machines are

well-suited to providing this locality automatically and effi-

ciently. On the other hand, data distribution in main mem-
ory, to allocate the particle/cell data assigned to a processor
in that processor’s local memory unit is both very difficult to
implement and not nearly as important. We also found that
the nonuniform, dynamically changing nature of the applica-
tion causes iinplicit communication through a shared address

space to have substantial advantages over explicit communi-
cation through message-passing in both ease of programming
and performance.

Finaiiy, we examined how some important application char-
acteristics scale as larger problems are mn on larger parallel
machines. We showed that scaling to fill the memory on the

machine in unrealistic since it inc~ases the execution time too
much, and that the following results hold under the most re-
alistic, time-constrained scaling model: (i) the main memory
requirements (or number of particles) per processor become s-
mader, (ii) the communication to computation ratio increases
siowly, but is small enough in absolute terms to allow good per-

formance even on large-scale machines, and (iii) the working
set size per processor, which helps determine the ideal cache

size for the computation, also grows slowly but is very small.
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In fact the important working set holds roughly the amoun-
t of data reused from one cell’s list interactions to another’s,

and is the~foxe independent of the number of particles and the
number of processors; it depends only on the number of terms
used in the mukipole expansions, which grows very slowly

with problem and machine size. As a resulb unless overheads
and load imbalances in the phases of computation (such as the

tree building phase, discussed earlier, and the load-imbalanced

upward and downward passes through the tree) that m not
significant on the problem and machine sizes available today

become significant on much larger machines, machines with
large numbers of processors and relatively small amounts of
cache and main memory per processor should be effective in
delivering good performance on applications that use the adap-
tive Fast MultiPole Method.
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