
An Efficient Block-Oriented Approach To Parallel Sparse Cholesky Factorization

Edward Rothberg Anoop Gupta

Intel Supercomputer Systems Division
14924 N.W. Greenbrier Parkway

Beaverton, OR 97006

Abstract

This paper explores the use o fa sub-block decomposition strat-
egy for parallel sparse Cholesky factorization, in which the
sparse matrix is decomposed into rectangular blocks. Such a
strategy h a s enormous theoretical scalabiliry advantages over
more traditional column-oriented andpanel-oriented decompo-
sitions. However. little progress has been made in producing
a practical sub-block method. This paper proposes and evalu-
ates an approach that is simple to implement, provides slightly
higher performance than column (and panel) merhods on small
parallel machines, and h a s the potential to provide much higher
performance on large parallel machines.

1 Introduction

The Cholesky factorization of sparse symmetric positive def-
inite matrices is an extremely important computation, arising
in a variety of scientific and engineering applications. Sparse
Cholesky factorization is unfortunately also extremely time-
consuming, and is frequently the computational bottleneck in
these applications. Consequently, there is significant interest in
performing the computation on large parallel machines. Several
different approaches to parallel sparse Cholesky factorization
have been proposed. While great success has been achieved for
small parallel machines, success has unfortunately been quite
limited for larger machines.

Virtually all parallel approaches to sparse Cholesky factor-
ization [3,9, 161 perform a I-dimensional decomposition of the
sparse matrix. That is, they distribute either rows or columns
of the matrix among processors. Such a decomposition has two
major limitations. The first is that it produces enormous vol-
umes of interprocessor communication. Communication grows
linearly in the number of processors [I 11, resulting in commu-
nication volumes that are difficult to sustain on all but the
smallest parallel machines. The second limitation is that a 1-D
decomposition produces extremely long critical paths. Since
the critical path represents a lower bound on parallel runtime,
parallel speedups are severely limited.

Both of these limitations can be overcome (in theory) by
moving to a sub-block, or 2-D decomposition. Such a decom-
position has been shown to be extremely effective for parallel
dense factorization [221. It is not clear, however, whether a

0 1993 ACM 0-8186-4340-4/93/0011$1.50
503

Computer Systems Laboratory
Stanford University
Stanford, C A 94305

similar decomposition would be practical for sparse problems.
A few investigations [I , 21,231 have been performed, but these
contained little or no exploration of practical algorithms. This
paper provides a detailed analysis of a new block-oriented al-
gorithm, including performance results from an efficient imple-
mentation.

This paper focuses on two practical and important issues
related to a 2-D decomposition approach. The first is imple-
mentation complexity. The fact that most sparse factorization
methods use a 1-D decomposition indicates that this decompo-
sition is more natural. A block approach might significantly
complicate the implementation. The second issue is the ef-
ficiency of a parallel block-oriented method for practical ma-
chine sizes. While parallel scalability arguments can be used lo
show that a block approach would give better performance than
a column approach for extremely large parallel machines, these
arguments have little to say about how well a block approach
performs on smaller machines.

Regarding complexity, we find that a block approach need
not be much more complicated than a column approach. We
describe a simple strategy for performing a block decomposi-
tion and a simple parallel algorithm for performing the sparse
Cholesky computation in terms of these blocks. The approach
retains the theoretical scalability advantages of block methods.
We term this block algorithm the block fan-out method, since
it bears a great deal of similarity to the parallel column fan-out
method 191.

Regarding efficiency, we explore this issue in two parts. We
first consider a sequential block factorization code and com-
pare its performance to that of a true sequential program to
determine how much efficiency is lost in moving to a block
representation. The losses turn out to be quite minor. with the
block approach producing roughly 80% of the performance of
an efficient sequential method. We then consider parallel block
factorization, looking at the issues that potentially limit its per-
formance. The parallel block method is found to give high
performance on a range of parallel machine sizes. For larger
machines, performance is good but not excellent. primarily due
to load balance problems. We quantify the load imbalances and
investigate the causes.

This paper is organized as follows. We begin in Section 2
with some background on sparse Cholesky factorization. Sec-
tion 3 then discusses our experimental environment, including

a description of the sparse matrices we use as benchmarks and
the machines we use to study the parallel block factorization
approach. Section 4 describes our strategy for decomposing
a sparse matrix into rectangular blocks. Section 5 describes
a parallel method that performs the factorization in terms of
these blocks. Section 6 then evaluates the parallel method,
both in terms of communication volume and achieved parallel
performance. Conclusions are presented in Section 7.

2 Sparse Cholesky Factorization

The goal of the sparse Cholesky computation is to factor a
sparse symmetric positive definite n x n matrix A into the
form A = LLT, where L is lower triangular. The computation
is typically performed as a series of three steps. The first step,
heurisric reordering, reorders the rows and columns of A to
reduce ./ill in the factor matrix L. The second step, symbolic
facforization, performs the factorization symbolically to deter-
mine the non-zero Stmcture of L given a particular reordering.
Storage is allocated for L in this step. The third step is the
numerical facrorization, where the actual non-zero values in L
are computed. This step is by far the most time-consuming,
and it is the focus of this paper. We refer the reader to [IO] for
more information on these steps.

The following pseudo-code performs the numerical factor-
ization step:

1. f o r k = l t o n do
2 . f o r i = k t o n do

4. f o r j = k + l t o n do
5 . f o r i = j t o n do
6. t j .- t j - t k j k

3 . Lik := L i t 1 6

L L . . L . L .

Only the non-zero entries in the sparse matrix are stored, and
the computation performs operations only on non-zeroes. The
factorization is most often expressed in terms of columns of
the sparse matrix. Within a column-oriented framework, steps
2 and 3 are typically thought of as a single operation, often
called a column division or cdiv(k) operation. Similarly, steps
5 and 6 form a column modification, or cmod(j,k), operation.

This column-oriented formulation of the sparse factorization
bas formed the basis of several parallel sparse factorization
algorithms, including the fan-out method [9], the fan-in method
[3], and the distributed multifrontal method [16]. The delails
of these various methods are not relevant to our discussion, so
we refer the reader to the relevant papers for more information.
We simply note that for each of these methods, communication
volumes grow linearly in the number of processors [3, I l l .
Since available communication bandwidth in a multiprocessor
typically grows much more slowly. this communication growth
represents a severe scalability limitation.

Recent research in parallel sparse Cholesky factorization 121
has shown that the communication needs of column-oriented
sparse factorization can he greatly reduced. Through limited
replication of data and careful assignment of tasks to proces-
sors, communication can be made to grow as the square root
of the number of processors, thus improving scalability. Com-
munication volume is not the only thing that limits scalability

in column-oriented approaches, however. A column formula-
tion also leads to very long critical paths, thus placing a large
lower hound on parallel runtime. For a dense n x n matrix,
the sequential computation requires O(n3) operations while the
length of the critical path and thus the hest case parallel runtime
is O(nz) operations. Similar hounds apply for Sparse problems.

An alternative formulation of the factorization problem di-
vides the matrix into rectangular sub-blocks. This formulation
leads to greatly reduced communication volumes and exposes
significantly more concurrency. Specifically, communication
volumes grow as the square root of the number of processors,
and the critical path grows as O(n) [221. It is an open question
whether this formulation can be efficiently applied to parallel
sparse factorization, and this is the question we address here.

Before we begin our discussion of a block decomposition of
the sparse matrix, we first discuss two important concepts in
sparse factorization that will he relevant to our presentation.
The first is the concept of a supernode [SI. A supemode is
a set of adjacent columns in the factor matrix L whose non-
zero structure consists of a dense lower-triangular block on the
diagonal, and an identical set of non-zeroes for each column
below the diagonal. Supemodes arise in any sparse factor, and
they are typically quite large. By formulating the sparse factor-
ization computation as a series of supemode-supemode modifi-
cations, rather than column-column modifications as described
before, the computation can make substantial use of dense ma-
Uix operations. The result is substantially higher performance
on vector supercomputers and on machines with hierarchical
memory systems. For more details on supemodal factorization,
see [5 , 17, 181. The regularity in the sparse matrix captured
by this supemodal structure will prove useful in this paper for
producing an effective decomposition of the sparse matrix into
rectangular blocks. We will return to this issue shortly.

One thing we should note is that it is possible to improve
the performance of parallel sparse column-oriented methods
by grouping sets of adjacent columns from within the same
supernode into panels, and distributing these panels among the
processors [17, 181. We use the term column-orienfed in this
paper to refer to methods that treat columns as indivisible en-
tities. Thus, panel methods fit this description. When we com-
pare the performance of our parallel block-oriented method
to that of a parallel column-oriented method, we will actually
compare against the higher-performance parallel panel method.

Another important notion in sparse factorization is that of the
elimination tree of the sparse matrix [15. 201. This structure
concisely captures important dependency information. If each
column of the sparse matrix is thought of as a node in a graph,
then the elimination tree is defined by the following parent
relationship:

parent(?) = min{illjj # 0, i > j]

It can he shown that a column is modified only by descendent
columns in the elimination tree, and equivalently that a column
modifies only ancestors [15]. The most important property
captured in this tree for parallel factorization is the property
that disjoint subtrees are independent, and consequently can be
processed in parallel. This fact will be relevant later in this
paper.

504

Table I : Benchmark matrices.
I I I I I w ops I

Name I Equations I NZ in A I NZ in L I to factor 1

3 Experimental Environment

Since our interest in this paper is to consider practical per-
formance issues for block methods, we will present perfor-
mance dumbers for realistic sparse matrices factored on real
machines. This section briefly describes both the matrices we
use as benchmarks and the machines on which we perform the
factorizations.

3.1 Benchmark Matrices

The benchmark matrices we consider in this paper are drawn
from the Boefng/Harwell sparse matrix test set [61. Since our
interest is in factorization on large machines, we have chosen
some of the largest sparse matrices in the collection. We also
include two regular 2-D, 5-pt grid problems. Table I gives brief
descriptions of the matrices. For each matrix, the table shows
the number of rows and columns in the matrix, the number
of non-zeroes in the matrix, the number of non-zeroes in the
factor. and the number of floating-point operations (in millions)
required for the factorization. All matrices except the two grid
problems are preordered using the multiple minimum degree
ordering heuristic [I41 before being factored. A simple nested
dissection ordering is used for the grid problems.

3.2 Target Machines

This paper will present performance numbers from several par-
allel machines. We now briefly describe the parallel machines
that are considered.

Performance numbers for sequential and small-scale parallel
machines are obtained from a Silicon Graphics 4DLi80 multi-
processor. The 4D/380 contains eight high-performance RlSC
processors, each consisting of a MIPS R3000 integer unit and
an R3010 floating-point co-processor. The processors execute
at 33 MHz, and are rated at 27 MIPS and 4.9 double-precision
LINPACK MFLOPS. The machine has a hierarchical memory
organization; memory references serviced from the processor
cache are significantly less expensive than references that must
be serviced from main memory.

We also provide performance numbers from the Stanford
DASH machine, a 48-processor distributed-shared-memory
machine [131. The DASH machine is built out of a network of
12 4-processor SGI 4D/340 nodes. Each 4D/340 node contains
some portion of the global shared memory. A processor can
cache any location in the global memory. A processor mem-
ory reference that is serviced from its cache requires a single
cycle. A reference to a location held in the memory local to

a processor requires roughly 30 cycles. A reference to a loca-
tion held in a non-local memory requires roughly 100 cycles.
Our factorization implementation for the Stanford DASH ma-
chine explicitly places matrix data in the memory local to the
processor that owns that part of the matrix.

In order to provide a more detailed understanding of the per-
formance of parallel machines on this computation, this paper
also makes use of multipra'essor simulation. To keep simu-
lation wsts manageable. we perform this simulation in terms
of high-level factorization tasks. A single task might represent
a matrix block modification operation or the transmission of a
large message from one processor to another. We model the
costs of these high-level operations in terms of what we believe
are the three most important determinants of performance on a
parallel machine: the number of floating-point operations per-
formed, the number of data items fetched from memory, and
the amount of data moved between processor memories. The
parallel simulation is performed as a discrete-event simulation
of these tasks. We do not have space in this paper to describe
the exact details of our simulation; details can be found in
[17]. We simply note that the costs we use for floating-point
operations, memory fetches, and interprocessor communication
roughly match those of the DASH machine, and they are quite
comparable to those of several other distributed-memory par-
allel machines.

4 Block Formulation

Having described our evaluation environment, we now move
on to the question of how to structure the sparse Cholesky
computation in terms of blocks. Our first step in describing a
block-oriented approach is to propose a strategy for decompos-
ing the sparse matrix into blocks. Our goal in this decompo-
sition is to retain as much of the efficiency of the sequential
factorization computation as possible.

4.1 Block Decomposition

When dividing a matrix into blocks, we believe the three most
important issues are: (1) producing blocks with simple internal
non-zero structures, so that block operations can he performed
efficiently; (2) producing blocks that interact with other blocks
in simple ways. so that bookkeeping overheads are minimized;
and (3) producing blocks that are as dense as possible, so that
per-block computation and storage overheads are minimized.
With these goals in mind, the approach we take to decomposing
the sparse matrix into blocks is to perform a global partition-
ing on the mauix, guided by the supernodal structure. More
precisely, we divide the columns of the matrix (1 . . . n) into
contiguous sets ({I , , . p z - I),{p2.. .PJ - I } , . . . , {PA,. . . n),
where N is the number of partitions and pi is the first column
in partition i). All columns within a particular partition must
be members of the same supemode (although a partition will
frequently be a subset of a supemode). An identical partition-
ing is performed on the rows. A simple example is shown in
Figure 1. A block L I J (we refer to partitions using capital
letters) is then the set of non-zeroes that fall simultaneously in
rows {pi.. .pi+, ~ I } and columns { p j . . .p j+ j - 1).

This global partitioning approach addresses the above-
mentioned issues quite well. Each block has a very simple

505

the sequential approach that we derive here will be described
later.

At one level. the factorization algorithm expressed in terms
of blocks is quite obvious. The following pseudo-code, a sim-
ple analogue of dense block Cholesky factorization, performs
the factorization. Note that I, J , and K iterate over the parti-
tions in the sparse matrix.

1. f o r h'= 1 to N do
2. LKK := Factor(LI(K)
3 . f o r I = h'+ 1 to A' with LIK # 0 do

5 . f o r J = K t 1 to N with LJK # 0 do
6. f o r I = J to N with L r ~ f 0 do

4 . LIK :=

Figure 1: Example of globally partitioned matrix. I . LIJ := LIJ - L I K L T ~

. . .
R* mcdmcatlon anaeti p ~ o n s
01 -1.1 0th.r bl=M

Figure 2 Example of irregular block interaction. Dashed lines
indicate boundaries of affected areas.

non-zero structure. Since the block is a portion of a supemode,
all rows in the block are dense. The blocks also share common
boundaries. As a result, block interactions are extremely regu-
lar. As we will soon demonstrate, this decomposition leads to
a computation Structure where a block interacts with a block
above it to produce a modification to a block to its right. With-
out these common boundaries, block modifications would he
quite complicated, with portions of blocks modifying portions
of other blocks (see Figure 2).

One issue that this distribution scheme does not address is
the block density issue. The global nature of the partitions does
not allow the blocks to be tailored to match the local sparsity
structure of the matrix. We will see in the next section that this
is not actually a significant problem. While blocks will often
not be completely dense, this sparsity has little effect on the
efficiency of the overall computation.

Before proceeding, we note that Ashcraft [I] proposed a
similar decomposition strategy independently.

The above pseudo-code works with a column of blocks at
a time. Steps 2 through 4 divide block column I< by the
Cholesky factor of the diagonal block. Steps 5 through 7 com-
pute block modifications from all pairs of blocks in column I<.
We store the blocks by columns, so that all blocks in a column
can be easily located. We also keep a hash table of all blocks
(hashing on the row and column index), so that destination
block LIJ in step I can he located quickly.

Now consider the implementation of the individual opera-
tions in the pseudo-code. The block factorization in step 2 is
quite straightforward to implement. Diagonal blocks are guar-
anteed to he dense, so this step is simply a dense Cholesky
factorization. The multiplication by the inverse of the diagonal
block in step 4 is also quite straightforward. This step does
not actually wmpute the inverse of LKK. Instead, it solves
a series of triangular systems. While the block L I K is not
necessarily dense, the computation can be performed without
consulting the non-zero structure of the block.

The remaining step in the above pseudo-code, step 7. is both
the most important and the most difficult to implement. I t is the
most important because it sits within a doubly-nested loop and
thus performs the vast majority of the actual computation. It is
the most difficult because it works with blocks with potentially
different non-zero structures and it must somehow reconcile
these structures. More precisely, recall that a single block in
L consists of some set of dense rows from among the rows
that the block spans (see the example in Figure 1). When a
modification is performed in step 7 above, the structure of LIK
determines the set of rows in L I J that are affected. Similarly,
the structure of LJK determines the set of columns in LIJ that
are affected.

Block modification is most conveniently viewed as a two
stage process. A set of modification values is computed in the
first stage, and these values are subtracted from the appropriate
entries in the destination block in the second, or scatter stage.
The first stage can be performed as a dense matrix-matrix mul-
tiplication. The non-zero structures of the source blocks L I K
and L ~ I K are innored temvorarilv: the two blocks are simolv 4'2 Structure Of the Factorization 'ompub- . , tion multipiied to p;oduce a mhificakon.

During the second stage, the resulting modification must be
subtracted from the destination. If the modification has the
same non-zero structure as the destination block, then the suh-
traction is trivial. Otherwise, we must first determine the re-
lationship between the non-zero structures of the modification

One important goal we had in choosing this block decomposi-
tion was to retain as much efficiency as possible in the block
factorization computation. We now describe a sequential dgo-
rithm for performing the factorization in terms of these blocks
and evaluate that algorithm's efficiency. The parallelizati~~ of

506

0 GRlDZW , ,
0 BCSSTK15

0 X BCSSTKl7
.g 20

m X BCSSTK18
0 BCSSTK29

U

0
16 24 32

Block size

Figure 3: Performance of a sequential block approach, relative
to a sequential left-looking supemode-supemode approach.

and of the destination. This information can then be used to
scatter the modification into the destination. While this scatter
is much more expensive than direct addition of the modification
into the destination, it is also much less common.

4.3 Performance of Block Factorization
We now look at the performance obtained with a sequential
program that uses a block decomposition and block implemen-
tation. Since our goal is to create an efficient parallel approach,
performance is studied for the case where the matrix is divided
into relatively small blocks. The blocks should not be too
small. however, because of the overheads that will be associ-
ated with block operations. We consider 16 by 16, 24 by 24,
and 32 by.32 block sizes. To produce blocks of the desired size
B. we form partitions that contain as close to B rowdcolumns
as possible. For example, with a block size of B = 16, a
supemode of width 51 would be split into three partitions of
size 17. Since partitions represent subsets of supemodes, some
partitions will naturally be much smaller than B.

We found that the block approach as described above actu-
ally produces quite low performance for several of the matri-
ces. The reason was the presence of many small supemodes,
which led to many small blocks and significant overheads. We
were able to improve performance dramatically by performing
supernode amalgamalion [4] before executing the block fac-
torization. Amalgamation is a process of selectively adding
non-zeroes to the factor matrix in order to combine small su-
pernodes with nearly-identical non-zero structures into larger
supemodes.

The performance obtained with the sequential block ap-
proach on a single processor of the SGI 4D/380 after amalga-
mation is shown in Figure 3. This performance is expressed as
a fraction of the performance obtained with an efficient sequen-
tial code (a supemode-supemode left-looking method; among
the most efficient sequential approaches [17]). Performance
numbers for the sequential method are given in Table 2. The
results indicate that the block approach is quite efficient. With
only two exceptions, block method performance for B = 32 is
roughly 80% of that of a true sequential method. Performance
falls off somewhat when B = 24, and it decreases further when

Table 2:- Sequential performance on SGI 4D/380 (supernode-
supemode left-looking method).

I I Performance I
Name I (MFLOPS)
r,Rlninn I 5.6 -.~

1 GRID200 I 6.7 I
BCSSTK15
BCSSTK16
BCSSTKI7
BCSSTKlS
BCSSTK29

B = 16, but the resulting efficiencies are still roughly 70%

5 Parallel Block Method

We now tum to the question of how to parallelize the sequen-
tial block computation. This question can be divided into two
different questions. First, how will processors cooperate to per-
form the work assigned to them? And second, what method
will be used to assign this work to processors? This section
will address these two questions in turn.

5.1 Parallel Factorization Organization

We begin our description of the parallel computation by assum-
ing that each block will have some specific owner processor.
In our approach, the owner of a block LIK performs all block
modification operations with LIK as their destination. With
this choice in mind, we present the parallel block fan-out al-
gorithm in Figure 4. The rest of this section will be devoted
to an explanation of the algorithm.

The most important notion for the block fan-out method is
that once a block L I K is complete, meaning that it has re-
ceived all block modifications and has been multiplied by the
inverse of the diagonal block, then L I K is sent to all proces-
sors that could own blocks modified by it. Blocks that could
he modified by LIK fall in block-row I or block-column I of
L. When a block L ~ K is received by a processor p (step 2
in Figure 4), processor p performs all related modifications to
blocks it owns. The block L I K produces block modifications
only when it is paired with blocks in the same column A'.
Thus, processor p considers all pairings of the received block
L I K with completed blocks it has already received in column
K (these blocks are held in set R e c ~ . ~) to determine whether
the corresponding destination block is owned by p (steps IO
and I I) . If the destination L I J is owned by p (m a p [L ~ ~] = p),
then the corresponding modification is performed (steps 12 and
13). Each processor maintains a hash table of all blocks as-
signed to it, and the destination block is located through this
hash table.

A Count is kept with each block (n m o d [L , ~]) . indicating the
number of block modifications that still must be done to that
block. When the count reaches zero, then block LIJ is ready
to be multiplied by the inverse of L J J (step 20 if LJJ has
already arrived at p; step 6 otherwise). A diagonal block L J J

is kept in DiagJ.p, and any blocks waiting to be modified by

507

1.
2 . r e c e i v e some LIK
3 . if I = K / * d iagona l b lock * /
4 . D%K,MyID := LKK
5 .

wh i l e some 4.1 w i t h map[Ll~] = M y I D is n o t complete do

f o r e a c h LJK E WailK,MylD do
6. LJK := LJKLki.
7 . send LJK t o a l l P t h a t cou ld own b locks i n row J o r column J
8 . else
9 .
10.
11.
12 . F ind LIJ
13 .
1 4 .
1 5 .
1 6 . i f I = J t h e n / * d iagona l b lock * /
17. L J J := Factor(LJJ)
18 . send LJJ t o a l l P t h a t cou ld own b l o c k s i n column J
1 9 . else i f (D i a g J , M , r D # 0) t h e n
2 0 . LIJ := L I J L j j
21. s end LIJ t o a l l P t h a t cou ld own b l o c k s i n

22. else

R ~ C K . M ~ I D := R~CK,M,ID U { L I K }
f o r e a c h LJK E ReCa,MyrD do

i f m a p [L ~ ~] = M y I D t h e n

LIJ := LIJ - LIKLT~
nmod[Ll~] := nmod[Ll~] - 1
i f (nmod[L~~] = 0) t h e n

row I o r column I

23. WaItJ,MyrD := WaZtJ,MylD U {LIJ}

Figure 4 Parallel block fan-out algorithm

the diagonal block are kept in Wai t+ . The sets Diag, Wait ,
and Rec can be kept as simple linked lists of blocks.

One issue that is not addressed in the above pseudo-code
is that of block disposal. As described above, the parallel
algorithm would retain a received block for the duration of
the factorization. To determine when a block can he thrown
out, we keep a count ToRecK,p of the number of blocks in
a column K that will be received by a processor p. Once
I R e c ~ , ~ l = ToRecK,,,, then the storage associated with blocks
in column Ii is reclaimed.

We note that a small simplification has been made in steps
11 through 14 above. For all blocks L I J , I must be greater
than J, a condition that is not necessarily true in the pseudo-
code. The reader should assume that I is actually the larger of
I and J, and similarly that J is the smaller of the two.

cessor labeled ps-~,s-l. To limit communication, a row of
blocks is mapped to a row of processors. S@ilarly. a column
of blocks is mapped to a column of processors. We choose
round-robin distributions for both the rows and columns, where
map[Ll~] =PI, - a,~md J. Other distributions could be used.
By performing the block mapping in this way, a block L I K in
the sparse factorization need only be sent to the row of pro-
cessors that could own blocks in row I and the column of
processors that could own blocks in column I . Every block
in the matrix would thus be sent to a total of 2s = 2 0 pro-
cessors. Note that communication volume is independent of
the block size with this mapping; every block in the matrix is
simply sent to 2 0 processors.

The scatter decomposition is appealing not only because it
reduces communication volume, but also because it produces an
extremely simple and regular communication pattern. All com- . . -

5.2 Block Mapping for Reduced Communication munication is done through multicasts along rows and columns
of nrocessnrs. ~~

We now consider the issue of mapping blocks to processors.
Our general approach is to restrict the set of processors that
can own blocks modified by a particular block L ~ K and thus 5.3

decrease the number of processors to wbicb the block must be
sent. The actual restriction is done by performing a scatter
decomposition [71 (sometimes referred to as a torus-mapping)
of the blocks in the sparse matrix.

More precisely, assume that P processors are used for the
factorization, and assume for the sake of simplicity that P is
a perfect square (P = s x 8) . Furthermore, assume that the
processors are arranged in a 2-D grid configuration, with the
bottom left processor labeled po,~, and the upper right pro-

Before presenting performance results for the block far-out ap-
proach, we first note that the method as described above actu-
ally produces more interprocessor communication than compet-
ing column approaches for small parallel machines. To under-
stand the reason, consider a simple 2-D k x k grid problem. The
corresponding factor matrix contains O (k z log k) non-zeroes,
and the parallel factorization of this matrix using a column
approach generates O(k*P) communication volume [I I]. In
the block approach, every non-zero in the matrix is sent to

508

o(@) processors, so the total communication volume grows
as O (f l k 2 logk). The communication in the block approach
grows less quickly in P, but it grows more quickly in k. The
k term is more important for small P .

An important technique for reducing communication in col-
umn methods involves the use of domains [I , 31. Domains are
large sets of columns in the sparse matrix that are assigned en
masse to a single processor. They are perhaps most easily un-
derstood in terms of the elimination tree of L. Recall that dis-
joint subtrees in the elimination tree are computationally inde-
pendent, and consequently can be processed concurrently. By
assigning the columns of an entire subtree (a domain) to a sin-
gle processor, the communication that would have resulted had
these columns been distributed among processors is avoided.

More precisely, by localizing all columns in a domain to
a single processor, all modifications to these columns can be
performed without the need for interprocessor communication.
Furthermore, the modifications from all columns within a do-
main to all other entries in the matrix can be computed and
aggregated within the owner processor, again with no commu-
nication. That processor can then send the aggregate modifi-
cations to the appropriate destinations. In a column approach,
the aggregate modification is sent out on a column-wise basis.
We refer the reader to [3] for more details.

Ashcraft suggested [I] that domains can be incorporated into
a block approach as well. The basic approach is as follows.
The non-zeroes within a domain are stored as they would be
in a column-oriented method. The domain factorization is then
performed using a column method. The aggregate domain
modification is computed column-wise as well. We use an ex-
tremely efficient left-looking supemode-supemode method for
both. Once the aggregate modification has been computed, it is
sent out in a block-wise fashion to the appropriate destination
blocks.

Of course. the domains must be carefully assigned to pro-
cessors so that processors do not sit idle, waiting for other
processors to complete local domain computations. Geist and
Ng (81 described an algorithm for assigning a small set of do-
mains to each processor so that the amount of domain work
assigned to the processors is evenly balanced. All results from
this point on use the algorithm of Geist and Ng to produce
domains.

With the introduction of domains, the parallel computation
becomes a three phase process. In the first phase, the processors
factor the domains assigned to them and compute the modifi-
cations from these domains ro blocks outside the domains. In
the second phase, the modifications are sent to the processors
thai own the corresponding destination blocks and are added
into their destinations. Finally, the third phase performs the
blofk factorization, where blocks are exchanged between pro-
cessors. Note that these are only logical phases; no global
synchronizations is necessary between the phases.

Consider the effect of domains on communication volume
in a block method for a 2-D grid problem. We first note
that the number of non-zeroes not belonging to domains in
the sparse matrix can he shown to grow as O(k210gP), ver-
sus O(kZlogk) without domains [IZ]. Total communication
volume for these non-zeroes using a block approach is thus
O (f i k z log P). The other component of communication vol-
ume when using domains is the cost of sending domain mod-

a 8 -

-
0 6 -
m =

:
4 -

ifications to their destinations. The total size of all such mod-
ifications is O (k Z) , independent of P, so domain modification
communication represents a lower-order term. Total commu-
nication for a 2-D grid problem is thus O(O k z log P) .

2 -

6 Evaluation

This section evaluates the parallel block fan-out approach pro-
posed in the previous section. We first look at performance on
a small-scale multiprocessor. Then, we consider performance
on moderately-parallel machines (up to 64 processors), using
our multiprocessor simulation model and using the DASH ma-
chine.

6.1 Small Parallel Machines
The first performance numbers we present come from the Sil-
icon Graphics SGI 4Dl380 multiprocessor. Parallel speedups
are shown in Figure 5 for 1 through 8 processors. All speedups
are computed relative to a left-looking supemode-supemode se-
quential code. The figure shows that the block fan-out method

0 I I I I
0 2 4 6 8

Processors

Figure 5: Parallel speedups for block fan-out method on SGI
4D-380, B = 24.

is indeed quite efficient for small machines. In fact, perfor-
mance is slightly higher than that of our highly efficient panel-
based parallel code [19]. Speedups on 8 processors are roughly
5.5-fold, corresponding to absolute performance levels of 40 to
50 double-precision MFLOPS. Speedups are less than linear in
the number of processors for two simple reasons. First, the
block method is slightly less efficient than a column method.
We believe this accountS for a roughly 15% performance re-
duction. Second, the load is unevenly distributed among the
processors. A simple calculation reveals that processors spend
roughly 15% of the computation on average sitting idle. These
two factors combine to give a relatively accurate performance
prediction.

6.2 Moderately Parallel Machines

We now consider performance on larger machines

509

+ BCSSTK16
X BCSSTKl7

20 X BCSSTKll

I I I L

0 BCSSTK29

- 1 W r

Figure 6 shows simulated processor utilization levels for be-
tween 4 and 64 simulated processors, using a block size of
24. It is clear from the figure that the block approach exhibits
less than ideal behavior as the machine size is increased. On
64 processors, for example, utilization levels drop to roughly
40%. Further investigation reveals that the primary cause of
the drop in performance is a progressive decline in the quality
of the load balance.

The quality of the load distribution clearly depends on the
method used to map blocks to processors. Recall that we use
a very rigid mapping strategy, where block LIJ is assigned
to processor ptmod s , ~ m ~ $. One possible explanation for the
p w r behavior of this strategy is that it does not adapt to the
structure of the sparse matrix; it tries to impose a very regular
structure on a matrix that is potentially comprised of a very
irregular arrangement of non-zero blocks.

While the mismatch between the regular mapping and the
irregular matrix structure certainly contributes to the poor load
balance, it is our belief that a more important factor is the wide
variability in task sizes. In particular. since a block is modified
by some set of blocks to its left, blocks to the far right in the
matrix generally require much more work than blocks to the
left (more accurately, blocks near the top of the elimination tree
require more work than blocks near the leafs). Furthermore,
since the matrix is lower-triangular. the number of blocks in
a column decreases towards the right. The result is a small
number of very important blocks in the bottom-right comer of
the matrix.

To support our contention that the sparse structure of the
matrix is less important than the more general task distribution
problem, Figure 7 compares the quality of the load balance
obtained for matrix BCSSTKIS to the load balance obtained
using the same mapping strategy for a dense matrix. The curves
show the maximum obtainable processor utilization levels with
the block mappings. The dense problem is chosen so as to
perform roughly the same number of floating-point operations
as the sparse problem.

Note that the load balance can be improved by moving to
a smaller block size, thus creating more distributable blocks

and making the block distribution problem easier. However,
smaller blocks also increase block overheads. For the larger
benchmark sparse matrices, decreasing the block size from B =
24 to B = I6 increases simulated parallel efficiencies for P =
64 from 40%-45% for B = 24 to 50%-55% for B = 16. A
block size of less than 16 further improves the load balance,
but achieves lower performance due to overhead issues.

The general conclusion to be drawn from these simulation
results is simply that large machines require relatively large
problems to achieve high processor utilization levels. In par-
ticular, the sparse matrices that we study here are t~ small to
make g w d use of a 64 processor machine. Of course, it may
he possible to significantly improve parallel load balance with
a better mapping strategy. A more general function could he
used to map columns of blocks to columns of processors, and
to map rows of blocks to rows of processors. This matter will
require further investigation.

6.2.2 Communication Volume

An important determinant of parallel performance that we have
not considered so far is interprocessor communication volume.
Figure 8 shows the volume of communication that a block
fan-out method generates. The figure shows relative com-
munication, as compared with a parallel column multifrontal
method. Interestingly, the block approach does not always pro-
duce less communication than the column approach on 64 or
fewer processors. While the growth rates, O (P) for columns
and O (f l 1 o g P) for blocks, favor the block approach, con-
slants make these rates less relevant for small P. However, the
trends clearly favor the block approach.

An interesting thing to note here is that relative communica-
tion is quite a bit higher for the two grid problems than for the
other matrices. The reason is that the column multifrontal ap-
proach does very well communication-wise for sparse matrices
whose elimination trees have few nodes towards the root and
instead quickly branch out into several independent subtrees.
The two gtid problems have this property. The block approach
derives no benefit from this properly.

510

spectable. The 40 processor machine achieves roughly 100
double-precision MFLOPS. Second, we note that these per-
formance numbers are roughly I O % to 40% higher than cone-
sponding numbers from our panel-oriented parallel multifrontal
implementation [171.

E

0
.L 1.40

a 1.20

1.00

0.80

0.60

0.40

0.20

0.00

- 1
0

..........

0 ECSSTK15

4 8 16 32 €4
Processors

Figure 8: Communication volume of block approach. relative
to a column-oriented parallel multifrontal approach.

a GRlDlW

0 BCSSTKlS

0
4 6 12 16 20 24 28 32 36 40

Processors

Figure 9: Parallel speedups for block fan-out method on the
Stanford DASH machine, B = 24.

6.2.3 DASH Performance

We now provide performance numbers from a block fan-out
implementation on the Stanford DASH machine. Figure 9
shows achieved parallel speedups on 1 to 40 processors, again
compared with a sequential left-looking supemode-supemode
method. Recall that the sequential method obtains between
7 and 8 MFLOPS on these problems. The figure shows that
speedups are relatively low, ranging from 12 to 18 on 40 pro-
cessors. These speedups are somewhat lower than those pre-
dicted by the simulation. We believe the main cause of this
difference is an assumption we made in the simulation. We
assumed that the processor could perform computation simul-
taneous with communication. The DASH machine has limited
ability to hide communication latencies.

While these speedups are relatively low. we should note two
important items about the results. First, the absolute parallel
performance levels of the DASH machine are still quite re-

6.2.4 Summary

To summarize this section. we note that our block far-out ap-
proach provides good performance for moderately-parallel ma-
chines, although parallel speedups are well below linear in the
number of processors for the matrices we have considered.
An important limiting factor is the relatively small size of the
matrices and the relatively poor load balance that results from
our rigid block distribution scheme. Regarding communication
volumes, we find that the block approach produces comparable
amounts of traffic to a column approach on 64 or fewer pro-
cessors. Even so, we found that the block approach produces
higher performance that a competing panel-oriented approach
on the 8 processor SGI 4D1380 and the 40 processor Stanford
DASH machine.

At this point, we wish to reiterate that communication and
concurrency growth rates greatly favor the block method on
large parallel machines. The fact that a block approach pro-
duces slightly better performance than column approaches for
relatively small machines leads us to conclude that the block
approach will provide significant benefits for practical parallel
machine sizes.

7 Conclusions
It is becoming increasingly clear that column approaches are
inappropriate for sparse Cholesky factorization on large parallel
machines. One thing that has been much less clear is whether
the alternative, a 2-D matrix decomposition, is truly practical.
This paper has proposed a parallel block algorithm that is quite
practical. The primary virtues of our approach are: (1) it uses
an extremely simple decomposition strategy, in which the ma-
trix is divided using global horizontal and vertical partitions;
(2) it is straightforward to implement; (3) it provides good per-
processor performance, since i t performs the vast majority of its
work within dense matrix-matrix multiplication operations; (4)
it is efficient on moderately parallel machines, providing per-
formance that is comparable to that of efficient column (and
panel) methods; and (5) it shows good promise for large par-
allel machines.

Acknowledgments

We would like to thank Rob Schreiber and Sid Chatterjee
for their discussions on block-oriented factorization. This re-
search is supported under DARPA contract N00039-91-C-0138.
Anoop Gupta is also supported by an NSF Presidential Young
Investigator Award.

References

[I] Ashcraft, C.C., The domairJsegmenfpartirion far the foc-
rorizarion of sparse symmetric posifive de$nite matrices,

511

Boeing Computer Services Technical Report ECA-TR-
148, November, 1990.

(21 Ashcraft, C.C., ‘The fan-both family of column-based
distributed Cholesky factorization algorithms”, in Graph
Theory and Sparse Matrix Computation, IMA Volumes in
Mathematics and its Applications, Volume 56, Springer-
Verlag, New York, 1993.

[3] Ashcraft, C.C., Eisenstat, S.C.., Liu, J.L., and Sher-
man, A.H. “A comparison of three column-based dis-
tributed sparse factorization schemes”, Research Report
YALEU/DCS/RR-810, Computer Science Department,
Yale University, 1990.

[4] Ashcraft, C.C., and Grimes, R.G., ’The influence of re-
laxed supemcde partitions on the multifrontal method”,
ACM Transactions on Mathematical Sofnuare, 15(4):
291-309, 1989.

[5] Ashcraft, C.C., Grimes, R.G., Lewis, I.G., Peyton, B.W.,
and Simon, H.D., “Recent progress in sparse matrix meth-
ods for large linear systems”. International Journal of Su-
percomputer Applications, l(4): 10-30, 1987.

[6] Duff, I S . , Grimes, R.G., and Lewis. I.G., “Sparse Ma-
trix Test Problems”, ACM Transactions on Mathematical
Sofmore, 15(1): 1-14, 1989.

[71 Fox, G., et al, Solving Problems on Concurrent Proces-
sors: Volume I - General Techniques and Regular Prob-
lems, Prentice Hall, 1988.

[XI Geist, G.A., and Ng, E., “Task scheduling for paral-
lel sparse Cholesky factorization”, lntemation Journal of
Parallel Programming, 18(4): 291-314, 1989.

[9] George, A., Heath, M., Liu, I., and Ng, E., ”Solution of
sparse positive definite systems on a hypercube”. Journal
of Computational and Applied Mathematics, 27(1): 129-
156, 1989.

[IO] George. A., and Liu, 1.. Computer Solution of Large
Sparse Positive Definite Systems. Prentice-Hall. 1981.

[I I] George, A., Liu, I. and Ng, E., “Communication results
for parallel sparse Cholesky factorization on a hyper-
cube”, Parallel Computing, I O 287-298, 1989.

[I21 Hurlben, L, and Zmijewski, E., “Limiting communication
in parallel sparse Cholesky factorization”, SIAM Journal
on Scientific and Statistical Computing. I 2 1184-1197,
1991.

[I31 Lenoski, D., Laudon, I., Gharachorloo, K.. Weber, W.D.,
Gupta, A., Hennessy, I., Horowitz, M., and Lam, M.,
‘The Stanford DASH multiprocessor”. lEEE Computer,
23(3):63-79, March, 1992.

[I41 Liu, I., “Modification of the minimum degree algorithm
by multiple elimination”, ACM Transactions on Mathe-
matical Sofrware, 12(2): 127-148, 1986.

[I51 Liu. I.. ‘The role of elimination trees in sparse factoriza-
tion”, SIAM Journal on Matrix Analysis and Applications,
1 1 : 134- 172. 1990.

[I61 Lucas, R. Solving Planar Systems of Equations on
Distributed-Memory Multiprocessors, PhD thesis, Stan-
ford University, 1988.

[I71 Rothherg, E., Exploiting the memory hierarchy in sequen-
tial and parallel sparse Cholesky factorization, Ph.D. the-
sis, Stanford University, January, 1993.

[I81 Rothberg, E., and Gupta, A., “An evaluation of left-
looking, right-looking, and multifrontal approaches to
sparse Cholesky factorization on hierarchical-memory
machines”, Technical Report STAN-‘3-91-1377, Stan-
ford University, 1991.

1191 Rothberg, E., and Gupta, A., ‘Techniques for improving
the performance of sparse matrix factorization on multi-
processor workstations”, Supercomputing ‘90. p. 232-243,
November, 1990.

[ZO] Schreiber, R., “A new implementation of sparse Gaussian
elimination”, ACM Transactions on Mathematical So@
ware, 8:256-276, 1982.

[21] Schreiber, R., “Scalability of sparse direct solvers”, in
Graph Theory and Sparse Matrix Computation, IMA Vol-
umes in Mathematics and its Applications, Volume 56,
Springer-Verlag. New York, 1993.

[22] Van De Geijn, R., Massively parallel LINPACK bench-
mark on the Intel Touchstone Delta and iPSC/860 sys-
tems, Technical Report CS-91-28, University of Texas at
Austin, August, 1991.

[23] Venugopal, S., and Naik, V.K., “Effects of partitioning
and scheduling sparse matrix factorization on communi-
cation and load balance”, Supercomputing ‘91, November,
1991.

512

