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Abstract 

This paper explores the use o fa  sub-block decomposition strat- 
egy for parallel sparse Cholesky factorization, in which the 
sparse matrix is decomposed into rectangular blocks. Such a 
strategy h a s  enormous theoretical scalabiliry advantages over 
more traditional column-oriented andpanel-oriented decompo- 
sitions. However. little progress has been made in producing 
a practical sub-block method. This paper proposes and evalu- 
ates an approach that is simple to implement, provides slightly 
higher performance than column (and panel) merhods on small 
parallel machines, and h a s  the potential to provide much higher 
performance on large parallel machines. 

1 Introduction 

The Cholesky factorization of sparse symmetric positive def- 
inite matrices is an extremely important computation, arising 
in a variety of scientific and engineering applications. Sparse 
Cholesky factorization is unfortunately also extremely time- 
consuming, and is frequently the computational bottleneck in 
these applications. Consequently, there is significant interest in 
performing the computation on large parallel machines. Several 
different approaches to parallel sparse Cholesky factorization 
have been proposed. While great success has been achieved for 
small parallel machines, success has  unfortunately been quite 
limited for larger machines. 

Virtually all parallel approaches to sparse Cholesky factor- 
ization [3,9, 161 perform a I-dimensional decomposition of the 
sparse matrix. That is, they distribute either rows or columns 
of the matrix among processors. Such a decomposition has two 
major limitations. The first is that it produces enormous vol- 
umes of interprocessor communication. Communication grows 
linearly in the number of processors [ I  11, resulting in commu- 
nication volumes that are difficult to sustain on all but the 
smallest parallel machines. The second limitation is that a 1-D 
decomposition produces extremely long critical paths. Since 
the critical path represents a lower bound on parallel runtime, 
parallel speedups are severely limited. 

Both of these limitations can be overcome (in theory) by 
moving to a sub-block, or 2-D decomposition. Such a decom- 
position has been shown to be extremely effective for parallel 
dense factorization [221. It is not clear, however, whether a 
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similar decomposition would be practical for sparse problems. 
A few investigations [ I ,  21,231 have been performed, but these 
contained little or no exploration of practical algorithms. This 
paper provides a detailed analysis of a new block-oriented al- 
gorithm, including performance results from an efficient imple- 
mentation. 

This paper focuses on two practical and important issues 
related to a 2-D decomposition approach. The first is imple- 
mentation complexity. The fact that most sparse factorization 
methods use a 1-D decomposition indicates that this decompo- 
sition is more natural. A block approach might significantly 
complicate the implementation. The second issue is the ef- 
ficiency of a parallel block-oriented method for practical ma- 
chine sizes. While parallel scalability arguments can be used lo 
show that a block approach would give better performance than 
a column approach for extremely large parallel machines, these 
arguments have little to say about how well a block approach 
performs on smaller machines. 

Regarding complexity, we find that a block approach need 
not be much more complicated than a column approach. We 
describe a simple strategy for performing a block decomposi- 
tion and a simple parallel algorithm for performing the sparse 
Cholesky computation in terms of these blocks. The approach 
retains the theoretical scalability advantages of block methods. 
We term this block algorithm the block fan-out method, since 
it bears a great deal of similarity to the parallel column fan-out 
method 191. 

Regarding efficiency, we explore this issue in two parts. We 
first consider a sequential block factorization code and com- 
pare its performance to that of a true sequential program to 
determine how much efficiency is lost in moving to a block 
representation. The losses turn out to be quite minor. with the 
block approach producing roughly 80% of the performance of 
an efficient sequential method. We then consider parallel block 
factorization, looking at the issues that potentially limit its per- 
formance. The parallel block method is found to give high 
performance on a range of parallel machine sizes. For larger 
machines, performance is good but not excellent. primarily due 
to load balance problems. We quantify the load imbalances and 
investigate the causes. 

This paper is organized as follows. We begin in Section 2 
with some background on sparse Cholesky factorization. Sec- 
tion 3 then discusses our experimental environment, including 



a description of the sparse matrices we use as benchmarks and 
the machines we use to study the parallel block factorization 
approach. Section 4 describes our strategy for decomposing 
a sparse matrix into rectangular blocks. Section 5 describes 
a parallel method that performs the factorization in terms of 
these blocks. Section 6 then evaluates the parallel method, 
both in terms of communication volume and achieved parallel 
performance. Conclusions are presented in Section 7. 

2 Sparse Cholesky Factorization 

The goal of the sparse Cholesky computation is to factor a 
sparse symmetric positive definite n x n matrix A into the 
form A = LLT,  where L is lower triangular. The computation 
is typically performed as a series of three steps. The first step, 
heurisric reordering, reorders the rows and columns of A to 
reduce ./ill in the factor matrix L. The second step, symbolic 
facforization, performs the factorization symbolically to deter- 
mine the non-zero Stmcture of L given a particular reordering. 
Storage is allocated for L in this step. The third step is the 
numerical facrorization, where the actual non-zero values in L 
are computed. This step is by far the most time-consuming, 
and it is the focus of this paper. We refer the reader to [IO] for 
more information on these steps. 

The following pseudo-code performs the numerical factor- 
ization step: 

1. f o r  k = l  t o  n do 
2 .  f o r  i = k  t o  n do 

4. f o r  j = k + l  t o  n do 
5 .  f o r  i = j  t o  n do 
6. t j  .- t j  - t k  j k  

3 .  Lik := L i t 1 6  

L L . .  L . L .  

Only the non-zero entries in the sparse matrix are stored, and 
the computation performs operations only on non-zeroes. The 
factorization is most often expressed in terms of columns of 
the sparse matrix. Within a column-oriented framework, steps 
2 and 3 are typically thought of as a single operation, often 
called a column division or cdiv(k) operation. Similarly, steps 
5 and 6 form a column modification, or cmod(j,k), operation. 

This column-oriented formulation of the sparse factorization 
bas formed the basis of several parallel sparse factorization 
algorithms, including the fan-out method [9], the fan-in method 
[3], and the distributed multifrontal method [16]. The delails 
of these various methods are not relevant to our discussion, so 
we refer the reader to the relevant papers for more information. 
We simply note that for each of these methods, communication 
volumes grow linearly in the number of processors [3, I l l .  
Since available communication bandwidth in a multiprocessor 
typically grows much more slowly. this communication growth 
represents a severe scalability limitation. 

Recent research in parallel sparse Cholesky factorization 121 
has shown that the communication needs of column-oriented 
sparse factorization can he greatly reduced. Through limited 
replication of data and careful assignment of tasks to proces- 
sors, communication can be made to grow as the square root 
of the number of processors, thus improving scalability. Com- 
munication volume is not the only thing that limits scalability 

in column-oriented approaches, however. A column formula- 
tion also leads to very long critical paths, thus placing a large 
lower hound on parallel runtime. For a dense n x n matrix, 
the sequential computation requires O(n3)  operations while the 
length of the critical path and thus the hest case parallel runtime 
is O(nz)  operations. Similar hounds apply for Sparse problems. 

An alternative formulation of the factorization problem di- 
vides the matrix into rectangular sub-blocks. This formulation 
leads to greatly reduced communication volumes and exposes 
significantly more concurrency. Specifically, communication 
volumes grow as the square root of the number of processors, 
and the critical path grows as O(n)  [221. It is an open question 
whether this formulation can be efficiently applied to parallel 
sparse factorization, and this is the question we address here. 

Before we begin our discussion of a block decomposition of 
the sparse matrix, we first discuss two important concepts in 
sparse factorization that will he relevant to our presentation. 
The first is the concept of a supernode [SI. A supemode is 
a set of adjacent columns in the factor matrix L whose non- 
zero structure consists of a dense lower-triangular block on the 
diagonal, and an identical set of non-zeroes for each column 
below the diagonal. Supemodes arise in any sparse factor, and 
they are typically quite large. By formulating the sparse factor- 
ization computation as a series of supemode-supemode modifi- 
cations, rather than column-column modifications as described 
before, the computation can make substantial use of dense ma- 
Uix operations. The result is substantially higher performance 
on vector supercomputers and on machines with hierarchical 
memory systems. For more details on supemodal factorization, 
see [5 ,  17, 181. The regularity in the sparse matrix captured 
by this supemodal structure will prove useful in this paper for 
producing an effective decomposition of the sparse matrix into 
rectangular blocks. We will return to this issue shortly. 

One thing we should note is that it is possible to improve 
the performance of parallel sparse column-oriented methods 
by grouping sets of adjacent columns from within the same 
supernode into panels, and distributing these panels among the 
processors [17, 181. We use the term column-orienfed in this 
paper to refer to methods that treat columns as indivisible en- 
tities. Thus, panel methods fit this description. When we com- 
pare the performance of our parallel block-oriented method 
to that of a parallel column-oriented method, we will actually 
compare against the higher-performance parallel panel method. 

Another important notion in sparse factorization is that of the 
elimination tree of the sparse matrix [15. 201. This structure 
concisely captures important dependency information. If each 
column of the sparse matrix is thought of as a node in a graph, 
then the elimination tree is defined by the following parent 
relationship: 

parent(?) = min{illjj # 0, i > j ]  

It can he shown that a column is modified only by descendent 
columns in the elimination tree, and equivalently that a column 
modifies only ancestors [15]. The most important property 
captured in this tree for parallel factorization is the property 
that disjoint subtrees are independent, and consequently can be 
processed in parallel. This fact will be relevant later in this 
paper. 
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Table I :  Benchmark matrices. 
I I I I I w ops I 

Name I Equations I NZ in A I NZ in L I to factor 1 

3 Experimental Environment 

Since our interest in this paper is to consider practical per- 
formance issues for block methods, we will present perfor- 
mance dumbers for realistic sparse matrices factored on real 
machines. This section briefly describes both the matrices we 
use as benchmarks and the machines on which we perform the 
factorizations. 

3.1 Benchmark Matrices 

The benchmark matrices we consider in this paper are drawn 
from the Boefng/Harwell sparse matrix test set [61. Since our 
interest is in factorization on large machines, we have chosen 
some of the largest sparse matrices in the collection. We also 
include two regular 2-D, 5-pt grid problems. Table I gives brief 
descriptions of the matrices. For each matrix, the table shows 
the number of rows and columns in the matrix, the number 
of non-zeroes in the matrix, the number of non-zeroes in the 
factor. and the number of floating-point operations (in millions) 
required for the factorization. All matrices except the two grid 
problems are preordered using the multiple minimum degree 
ordering heuristic [I41 before being factored. A simple nested 
dissection ordering is used for the grid problems. 

3.2 Target Machines 

This paper will present performance numbers from several par- 
allel machines. We now briefly describe the parallel machines 
that are considered. 

Performance numbers for sequential and small-scale parallel 
machines are obtained from a Silicon Graphics 4DLi80 multi- 
processor. The 4D/380 contains eight high-performance RlSC 
processors, each consisting of a MIPS R3000 integer unit and 
an R3010 floating-point co-processor. The processors execute 
at 33 MHz, and are rated at 27 MIPS and 4.9 double-precision 
LINPACK MFLOPS. The machine has a hierarchical memory 
organization; memory references serviced from the processor 
cache are significantly less expensive than references that must 
be serviced from main memory. 

We also provide performance numbers from the Stanford 
DASH machine, a 48-processor distributed-shared-memory 
machine [ 131. The DASH machine is built out of a network of 
12 4-processor SGI 4D/340 nodes. Each 4D/340 node contains 
some portion of the global shared memory. A processor can 
cache any location in the global memory. A processor mem- 
ory reference that is serviced from its cache requires a single 
cycle. A reference to a location held in the memory local to 

a processor requires roughly 30 cycles. A reference to a loca- 
tion held in a non-local memory requires roughly 100 cycles. 
Our factorization implementation for the Stanford DASH ma- 
chine explicitly places matrix data in the memory local to the 
processor that owns that part of the matrix. 

In order to provide a more detailed understanding of the per- 
formance of parallel machines on this computation, this paper 
also makes use of multipra'essor simulation. To keep simu- 
lation wsts manageable. we perform this simulation in terms 
of high-level factorization tasks. A single task might represent 
a matrix block modification operation or the transmission of a 
large message from one processor to another. We model the 
costs of these high-level operations in terms of what we believe 
are the three most important determinants of performance on a 
parallel machine: the number of floating-point operations per- 
formed, the number of data items fetched from memory, and 
the amount of data moved between processor memories. The 
parallel simulation is performed as a discrete-event simulation 
of these tasks. We do not have space in this paper to describe 
the exact details of our simulation; details can be found in 
[17]. We simply note that the costs we use for floating-point 
operations, memory fetches, and interprocessor communication 
roughly match those of the DASH machine, and they are quite 
comparable to those of several other distributed-memory par- 
allel machines. 

4 Block Formulation 

Having described our evaluation environment, we now move 
on to the question of how to structure the sparse Cholesky 
computation in terms of blocks. Our first step in describing a 
block-oriented approach is to propose a strategy for decompos- 
ing the sparse matrix into blocks. Our goal in this decompo- 
sition is to retain as much of the efficiency of the sequential 
factorization computation as possible. 

4.1 Block Decomposition 

When dividing a matrix into blocks, we believe the three most 
important issues are: (1) producing blocks with simple internal 
non-zero structures, so that block operations can he performed 
efficiently; (2) producing blocks that interact with other blocks 
in simple ways. so that bookkeeping overheads are minimized; 
and (3) producing blocks that are as dense as possible, so that 
per-block computation and storage overheads are minimized. 
With these goals in mind, the approach we take to decomposing 
the sparse matrix into blocks is to perform a global partition- 
ing on the mauix, guided by the supernodal structure. More 
precisely, we divide the columns of the matrix (1 . . . n) into 
contiguous sets ({I , , . p z  - I),{p2.. .PJ - I } , .  . . , {PA,. . . n), 
where N is the number of partitions and pi is the first column 
in partition i). All columns within a particular partition must 
be members of the same supemode (although a partition will 
frequently be a subset of a supemode). An identical partition- 
ing is performed on the rows. A simple example is shown in 
Figure 1. A block L I J  (we refer to partitions using capital 
letters) is then the set of non-zeroes that fall simultaneously in 
rows {pi..  .pi+, ~ I }  and columns { p j . .  .p j+ j  - 1). 

This global partitioning approach addresses the above- 
mentioned issues quite well. Each block has a very simple 
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the sequential approach that we derive here will be described 
later. 

At one level. the factorization algorithm expressed in terms 
of blocks is quite obvious. The following pseudo-code, a sim- 
ple analogue of dense block Cholesky factorization, performs 
the factorization. Note that I, J ,  and K iterate over the parti- 
tions in the sparse matrix. 

1. f o r  h'= 1 to N do 
2. LKK := Factor(LI(K) 
3 .  f o r  I = h'+ 1 to A' with LIK # 0 do 

5 .  f o r  J = K t  1 to N with LJK # 0 do 
6. f o r  I =  J to N with L r ~ f 0  do 

4 .  LIK := 

Figure 1: Example of globally partitioned matrix. I .  LIJ := LIJ - L I K L T ~  

. . .  
R* mcdmcatlon anaeti p ~ o n s  
01 -1.1 0th.r bl=M 

Figure 2 Example of irregular block interaction. Dashed lines 
indicate boundaries of affected areas. 

non-zero structure. Since the block is a portion of a supemode, 
all rows in the block are dense. The blocks also share common 
boundaries. As a result, block interactions are extremely regu- 
lar. As we will soon demonstrate, this decomposition leads to 
a computation Structure where a block interacts with a block 
above it to produce a modification to a block to its right. With- 
out these common boundaries, block modifications would he 
quite complicated, with portions of blocks modifying portions 
of other blocks (see Figure 2). 

One issue that this distribution scheme does not address is 
the block density issue. The global nature of the partitions does 
not allow the blocks to be tailored to match the local sparsity 
structure of the matrix. We will see in the next section that this 
is not actually a significant problem. While blocks will often 
not be completely dense, this sparsity has little effect on the 
efficiency of the overall computation. 

Before proceeding, we note that Ashcraft [ I ]  proposed a 
similar decomposition strategy independently. 

The above pseudo-code works with a column of blocks at 
a time. Steps 2 through 4 divide block column I< by the 
Cholesky factor of the diagonal block. Steps 5 through 7 com- 
pute block modifications from all pairs of blocks in column I<. 
We store the blocks by columns, so that all blocks in a column 
can be easily located. We also keep a hash table of all blocks 
(hashing on the row and column index), so that destination 
block LIJ in step I can he located quickly. 

Now consider the implementation of the individual opera- 
tions in the pseudo-code. The block factorization in step 2 is 
quite straightforward to implement. Diagonal blocks are guar- 
anteed to he dense, so this step is simply a dense Cholesky 
factorization. The multiplication by the inverse of the diagonal 
block in step 4 is also quite straightforward. This step does 
not actually wmpute the inverse of LKK. Instead, it solves 
a series of triangular systems. While the block L I K  is not 
necessarily dense, the computation can be performed without 
consulting the non-zero structure of the block. 

The remaining step in the above pseudo-code, step 7. is both 
the most important and the most difficult to implement. I t  is the 
most important because it sits within a doubly-nested loop and 
thus performs the vast majority of the actual computation. It is 
the most difficult because it works with blocks with potentially 
different non-zero structures and it must somehow reconcile 
these structures. More precisely, recall that a single block in 
L consists of some set of dense rows from among the rows 
that the block spans (see the example in Figure 1). When a 
modification is performed in step 7 above, the structure of LIK 
determines the set of rows in L I J  that are affected. Similarly, 
the structure of LJK determines the set of columns in LIJ that 
are affected. 

Block modification is most conveniently viewed as a two 
stage process. A set of modification values is computed in the 
first stage, and these values are subtracted from the appropriate 
entries in the destination block in the second, or scatter stage. 
The first stage can be performed as a dense matrix-matrix mul- 
tiplication. The non-zero structures of the source blocks L I K  
and L ~ I K  are innored temvorarilv: the two blocks are simolv 4'2 Structure Of the Factorization 'ompub- . ,  tion multipiied to p;oduce a mhificakon. 

During the second stage, the resulting modification must be 
subtracted from the destination. If the modification has the 
same non-zero structure as the destination block, then the suh- 
traction is trivial. Otherwise, we must first determine the re- 
lationship between the non-zero structures of the modification 

One important goal we had in choosing this block decomposi- 
tion was to retain as much efficiency as possible in the block 
factorization computation. We now describe a sequential dgo- 
rithm for performing the factorization in terms of these blocks 
and evaluate that algorithm's efficiency. The parallelizati~~ of 
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Figure 3: Performance of a sequential block approach, relative 
to a sequential left-looking supemode-supemode approach. 

and of the destination. This information can then be used to 
scatter the modification into the destination. While this scatter 
is much more expensive than direct addition of the modification 
into the destination, it is also much less common. 

4.3 Performance of Block Factorization 
We now look at the performance obtained with a sequential 
program that uses a block decomposition and block implemen- 
tation. Since our goal is to create an efficient parallel approach, 
performance is studied for the case where the matrix is divided 
into relatively small blocks. The blocks should not be too 
small. however, because of the overheads that will be associ- 
ated with block operations. We consider 16 by 16, 24 by 24, 
and 32 by.32 block sizes. To produce blocks of the desired size 
B. we form partitions that contain as close to B rowdcolumns 
as possible. For example, with a block size of B = 16, a 
supemode of width 51 would be split into three partitions of 
size 17. Since partitions represent subsets of supemodes, some 
partitions will naturally be much smaller than B.  

We found that the block approach as described above actu- 
ally produces quite low performance for several of the matri- 
ces. The reason was the presence of many small supemodes, 
which led to many small blocks and significant overheads. We 
were able to improve performance dramatically by performing 
supernode amalgamalion [4] before executing the block fac- 
torization. Amalgamation is a process of selectively adding 
non-zeroes to the factor matrix in order to combine small su- 
pernodes with nearly-identical non-zero structures into larger 
supemodes. 

The performance obtained with the sequential block ap- 
proach on a single processor of the SGI 4D/380 after amalga- 
mation is shown in Figure 3. This performance is expressed as 
a fraction of the performance obtained with an efficient sequen- 
tial code (a supemode-supemode left-looking method; among 
the most efficient sequential approaches [17]). Performance 
numbers for the sequential method are given in Table 2. The 
results indicate that the block approach is quite efficient. With 
only two exceptions, block method performance for B = 32 is 
roughly 80% of that of a true sequential method. Performance 
falls off somewhat when B = 24, and it decreases further when 

Table 2:- Sequential performance on SGI 4D/380 (supernode- 
supemode left-looking method). 

I I Performance I 
Name I (MFLOPS) 
r,Rlninn I 5.6 -. . . . .~ 

1 GRID200 I 6.7 I 
BCSSTK15 
BCSSTK16 
BCSSTKI7 
BCSSTKlS 
BCSSTK29 

B = 16, but the resulting efficiencies are still roughly 70% 

5 Parallel Block Method 

We now tum to the question of how to parallelize the sequen- 
tial block computation. This question can be divided into two 
different questions. First, how will processors cooperate to per- 
form the work assigned to them? And second, what method 
will be used to assign this work to processors? This section 
will address these two questions in turn. 

5.1 Parallel Factorization Organization 

We begin our description of the parallel computation by assum- 
ing that each block will have some specific owner processor. 
In our approach, the owner of a block LIK performs all block 
modification operations with LIK as their destination. With 
this choice in mind, we present the parallel block fan-out al- 
gorithm in Figure 4. The rest of this section will be devoted 
to an explanation of the algorithm. 

The most important notion for the block fan-out method is 
that once a block L I K  is complete, meaning that it has re- 
ceived all block modifications and has been multiplied by the 
inverse of the diagonal block, then L I K  is sent to all proces- 
sors that could own blocks modified by it. Blocks that could 
he modified by LIK fall in block-row I or block-column I of 
L.  When a block L ~ K  is received by a processor p (step 2 
in Figure 4), processor p performs all related modifications to 
blocks it owns. The block L I K  produces block modifications 
only when it is paired with blocks in the same column A'. 
Thus, processor p considers all pairings of the received block 
L I K  with completed blocks it has already received in column 
K (these blocks are held in set R e c ~ . ~ )  to determine whether 
the corresponding destination block is owned by p (steps IO 
and I I ) .  If the destination L I J  is owned by p ( m a p [ L ~ ~ ]  = p), 
then the corresponding modification is performed (steps 12 and 
13). Each processor maintains a hash table of all blocks as- 
signed to it, and the destination block is located through this 
hash table. 

A Count is kept with each block ( n m o d [ L , ~ ] ) .  indicating the 
number of block modifications that still must be done to that 
block. When the count reaches zero, then block LIJ is ready 
to be multiplied by the inverse of L J J  (step 20 if LJJ  has 
already arrived at p; step 6 otherwise). A diagonal block L J J  

is kept in DiagJ.p, and any blocks waiting to be modified by 
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1. 
2 .  r e c e i v e  some LIK 
3 .  if I = K  / *  d iagona l  b lock  * /  
4 .  D%K,MyID := LKK 
5 .  

wh i l e  some 4.1 w i t h  map[Ll~] = M y I D  is n o t  complete do 

f o r e a c h  LJK E WailK,MylD do 
6. LJK := LJKLki. 
7 .  send  LJK t o  a l l  P t h a t  cou ld  own b locks  i n  row J o r  column J 
8 .  else 
9 .  
10.  
11. 
12 .  F ind  LIJ 
13 .  
1 4 .  
1 5 .  
1 6 .  i f  I = J t h e n  / *  d iagona l  b lock  * /  
17. L J J  := Factor(LJJ) 
18 .  send  LJJ t o  a l l  P t h a t  cou ld  own b l o c k s  i n  column J 
1 9 .  else i f  ( D i a g J , M , r D  # 0) t h e n  
2 0 .  LIJ := L I J L j j  
21. s end  LIJ t o  a l l  P t h a t  cou ld  own b l o c k s  i n  

22. else 

R ~ C K . M ~ I D  := R~CK,M,ID U { L I K }  
f o r e a c h  LJK E ReCa,MyrD do 

i f  m a p [ L ~ ~ ]  = M y I D  t h e n  

LIJ := LIJ - LIKLT~ 
nmod[Ll~] := nmod[Ll~] - 1 
i f  (nmod[L~~]  = 0) t h e n  

row I o r  column I 

23. WaItJ,MyrD := WaZtJ,MylD U {LIJ} 

Figure 4 Parallel block fan-out algorithm 

the diagonal block are kept in Wai t+ .  The sets Diag, Wait ,  
and Rec can be kept as simple linked lists of blocks. 

One issue that is not addressed in the above pseudo-code 
is that of block disposal. As described above, the parallel 
algorithm would retain a received block for the duration of 
the factorization. To determine when a block can he thrown 
out, we keep a count ToRecK,p of the number of blocks in 
a column K that will be received by a processor p. Once 
I R e c ~ , ~ l  = ToRecK,,,, then the storage associated with blocks 
in column Ii is reclaimed. 

We note that a small simplification has been made in steps 
11 through 14 above. For all blocks L I J ,  I must be greater 
than J, a condition that is not necessarily true in the pseudo- 
code. The reader should assume that I is actually the larger of 
I and J, and similarly that J is the smaller of the two. 

cessor labeled ps-~,s-l. To limit communication, a row of 
blocks is mapped to a row of processors. S@ilarly. a column 
of blocks is mapped to a column of processors. We choose 
round-robin distributions for both the rows and columns, where 
map[Ll~] =PI, -  a,~md J. Other distributions could be used. 
By performing the block mapping in this way, a block L I K  in 
the sparse factorization need only be sent to the row of pro- 
cessors that could own blocks in row I and the column of 
processors that could own blocks in column I .  Every block 
in the matrix would thus be sent to a total of 2s = 2 0  pro- 
cessors. Note that communication volume is independent of 
the block size with this mapping; every block in the matrix is 
simply sent to 2 0  processors. 

The scatter decomposition is appealing not only because it 
reduces communication volume, but also because it produces an 
extremely simple and regular communication pattern. All com- . .  - 

5.2 Block Mapping for Reduced Communication munication is done through multicasts along rows and columns 
of nrocessnrs. ~~ 

We now consider the issue of mapping blocks to processors. 
Our general approach is to restrict the set of processors that 
can own blocks modified by a particular block L ~ K  and thus 5.3 

decrease the number of processors to wbicb the block must be 
sent. The actual restriction is done by performing a scatter 
decomposition [71 (sometimes referred to as a torus-mapping) 
of the blocks in the sparse matrix. 

More precisely, assume that P processors are used for the 
factorization, and assume for the sake of simplicity that P is 
a perfect square ( P  = s x 8 ) .  Furthermore, assume that the 
processors are arranged in a 2-D grid configuration, with the 
bottom left processor labeled po,~, and the upper right pro- 

Before presenting performance results for the block far-out ap- 
proach, we first note that the method as described above actu- 
ally produces more interprocessor communication than compet- 
ing column approaches for small parallel machines. To under- 
stand the reason, consider a simple 2-D k x k grid problem. The 
corresponding factor matrix contains O ( k z  log k) non-zeroes, 
and the parallel factorization of this matrix using a column 
approach generates O(k*P) communication volume [ I  I]. In 
the block approach, every non-zero in the matrix is sent to 
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o(@) processors, so the total communication volume grows 
as O ( f l k 2  logk). The communication in the block approach 
grows less quickly in P, but it grows more quickly in k.  The 
k term is more important for small P .  

An important technique for reducing communication in col- 
umn methods involves the use of domains [ I ,  31. Domains are 
large sets of columns in the sparse matrix that are assigned en 
masse to a single processor. They are perhaps most easily un- 
derstood in terms of the elimination tree of L. Recall that dis- 
joint subtrees in the elimination tree are computationally inde- 
pendent, and consequently can be processed concurrently. By 
assigning the columns of an entire subtree (a domain) to a sin- 
gle processor, the communication that would have resulted had 
these columns been distributed among processors is avoided. 

More precisely, by localizing all columns in a domain to 
a single processor, all modifications to these columns can be 
performed without the need for interprocessor communication. 
Furthermore, the modifications from all columns within a do- 
main to all other entries in the matrix can be computed and 
aggregated within the owner processor, again with no commu- 
nication. That processor can then send the aggregate modifi- 
cations to the appropriate destinations. In a column approach, 
the aggregate modification is sent out on a column-wise basis. 
We refer the reader to [3] for more details. 

Ashcraft suggested [ I ]  that domains can be incorporated into 
a block approach as well. The basic approach is as follows. 
The non-zeroes within a domain are stored as they would be 
in a column-oriented method. The domain factorization is then 
performed using a column method. The aggregate domain 
modification is computed column-wise as well. We use an ex- 
tremely efficient left-looking supemode-supemode method for 
both. Once the aggregate modification has been computed, it is 
sent out in a block-wise fashion to the appropriate destination 
blocks. 

Of course. the domains must be carefully assigned to pro- 
cessors so that processors do not sit idle, waiting for other 
processors to complete local domain computations. Geist and 
Ng (81 described an algorithm for assigning a small set of do- 
mains to each processor so that the amount of domain work 
assigned to the processors is evenly balanced. All results from 
this point on use the algorithm of Geist and Ng to produce 
domains. 

With the introduction of domains, the parallel computation 
becomes a three phase process. In the first phase, the processors 
factor the domains assigned to them and compute the modifi- 
cations from these domains ro blocks outside the domains. In 
the second phase, the modifications are sent to the processors 
thai own the corresponding destination blocks and are added 
into their destinations. Finally, the third phase performs the 
blofk factorization, where blocks are exchanged between pro- 
cessors. Note that these are only logical phases; no global 
synchronizations is necessary between the phases. 

Consider the effect of domains on communication volume 
in a block method for a 2-D grid problem. We first note 
that the number of non-zeroes not belonging to domains in 
the sparse matrix can he shown to grow as O(k210gP),  ver- 
sus O(kZlogk) without domains [IZ]. Total communication 
volume for these non-zeroes using a block approach is thus 
O ( f i k z  log P). The other component of communication vol- 
ume when using domains is the cost of sending domain mod- 

a 8 -  

- 
0 6 -  
m = 

: 
4 -  

ifications to their destinations. The total size of all such mod- 
ifications is O ( k Z ) ,  independent of P,  so domain modification 
communication represents a lower-order term. Total commu- 
nication for a 2-D grid problem is thus O( O k z  log P ) .  

2 -  

6 Evaluation 

This section evaluates the parallel block fan-out approach pro- 
posed in the previous section. We first look at performance on 
a small-scale multiprocessor. Then, we consider performance 
on moderately-parallel machines (up to 64 processors), using 
our multiprocessor simulation model and using the DASH ma- 
chine. 

6.1 Small Parallel Machines 
The first performance numbers we present come from the Sil- 
icon Graphics SGI 4Dl380 multiprocessor. Parallel speedups 
are shown in Figure 5 for 1 through 8 processors. All speedups 
are computed relative to a left-looking supemode-supemode se- 
quential code. The figure shows that the block fan-out method 

0 I I I I 
0 2 4 6 8 

Processors 

Figure 5: Parallel speedups for block fan-out method on SGI 
4D-380, B = 24. 

is indeed quite efficient for small machines. In fact, perfor- 
mance is slightly higher than that of our highly efficient panel- 
based parallel code [19]. Speedups on 8 processors are roughly 
5.5-fold, corresponding to absolute performance levels of 40 to 
50 double-precision MFLOPS. Speedups are less than linear in 
the number of processors for two simple reasons. First, the 
block method is slightly less efficient than a column method. 
We believe this accountS for a roughly 15% performance re- 
duction. Second, the load is unevenly distributed among the 
processors. A simple calculation reveals that processors spend 
roughly 15% of the computation on average sitting idle. These 
two factors combine to give a relatively accurate performance 
prediction. 

6.2 Moderately Parallel Machines 

We now consider performance on larger machines 
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Figure 6 shows simulated processor utilization levels for be- 
tween 4 and 64 simulated processors, using a block size of 
24. It is clear from the figure that the block approach exhibits 
less than ideal behavior as the machine size is increased. On 
64 processors, for example, utilization levels drop to roughly 
40%. Further investigation reveals that the primary cause of 
the drop in performance is a progressive decline in the quality 
of the load balance. 

The quality of the load distribution clearly depends on the 
method used to map blocks to processors. Recall that we use 
a very rigid mapping strategy, where block LIJ  is assigned 
to processor ptmod s , ~ m ~  $. One possible explanation for the 
p w r  behavior of this strategy is that it does not adapt to the 
structure of the sparse matrix; it tries to impose a very regular 
structure on a matrix that is potentially comprised of a very 
irregular arrangement of non-zero blocks. 

While the mismatch between the regular mapping and the 
irregular matrix structure certainly contributes to the poor load 
balance, it is our belief that a more important factor is the wide 
variability in task sizes. In particular. since a block is modified 
by some set of blocks to its left, blocks to the far right in the 
matrix generally require much more work than blocks to the 
left (more accurately, blocks near the top of the elimination tree 
require more work than blocks near the leafs). Furthermore, 
since the matrix is lower-triangular. the number of blocks in 
a column decreases towards the right. The result is a small 
number of very important blocks in the bottom-right comer of 
the matrix. 

To support our contention that the sparse structure of the 
matrix is less important than the more general task distribution 
problem, Figure 7 compares the quality of the load balance 
obtained for matrix BCSSTKIS to the load balance obtained 
using the same mapping strategy for a dense matrix. The curves 
show the maximum obtainable processor utilization levels with 
the block mappings. The dense problem is chosen so as to 
perform roughly the same number of floating-point operations 
as the sparse problem. 

Note that the load balance can be improved by moving to 
a smaller block size, thus creating more distributable blocks 

and making the block distribution problem easier. However, 
smaller blocks also increase block overheads. For the larger 
benchmark sparse matrices, decreasing the block size from B = 
24 to B = I6 increases simulated parallel efficiencies for P = 
64 from 40%-45% for B = 24 to 50%-55% for B = 16. A 
block size of less than 16 further improves the load balance, 
but achieves lower performance due to overhead issues. 

The general conclusion to be drawn from these simulation 
results is simply that large machines require relatively large 
problems to achieve high processor utilization levels. In par- 
ticular, the sparse matrices that we study here are t~ small to 
make g w d  use of a 64 processor machine. Of course, it may 
he possible to significantly improve parallel load balance with 
a better mapping strategy. A more general function could he 
used to map columns of blocks to columns of processors, and 
to map rows of blocks to rows of processors. This matter will 
require further investigation. 

6.2.2 Communication Volume 

An important determinant of parallel performance that we have 
not considered so far is interprocessor communication volume. 
Figure 8 shows the volume of communication that a block 
fan-out method generates. The figure shows relative com- 
munication, as compared with a parallel column multifrontal 
method. Interestingly, the block approach does not always pro- 
duce less communication than the column approach on 64 or 
fewer processors. While the growth rates, O ( P )  for columns 
and O ( f l 1 o g P )  for blocks, favor the block approach, con- 
slants make these rates less relevant for small P. However, the 
trends clearly favor the block approach. 

An interesting thing to note here is that relative communica- 
tion is quite a bit higher for the two grid problems than for the 
other matrices. The reason is that the column multifrontal ap- 
proach does very well communication-wise for sparse matrices 
whose elimination trees have few nodes towards the root and 
instead quickly branch out into several independent subtrees. 
The two gtid problems have this property. The block approach 
derives no benefit from this properly. 
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spectable. The 40 processor machine achieves roughly 100 
double-precision MFLOPS. Second, we note that these per- 
formance numbers are roughly I O %  to 40% higher than cone- 
sponding numbers from our panel-oriented parallel multifrontal 
implementation [171. 
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Figure 8: Communication volume of block approach. relative 
to a column-oriented parallel multifrontal approach. 

a GRlDlW 

0 BCSSTKlS 

0 
4 6 12 16 20 24 28 32 36 40 

Processors 

Figure 9: Parallel speedups for block fan-out method on the 
Stanford DASH machine, B = 24. 

6.2.3 DASH Performance 

We now provide performance numbers from a block fan-out 
implementation on the Stanford DASH machine. Figure 9 
shows achieved parallel speedups on 1 to 40 processors, again 
compared with a sequential left-looking supemode-supemode 
method. Recall that the sequential method obtains between 
7 and 8 MFLOPS on these problems. The figure shows that 
speedups are relatively low, ranging from 12 to 18 on 40 pro- 
cessors. These speedups are somewhat lower than those pre- 
dicted by the simulation. We believe the main cause of this 
difference is an assumption we made in the simulation. We 
assumed that the processor could perform computation simul- 
taneous with communication. The DASH machine has limited 
ability to hide communication latencies. 

While these speedups are relatively low. we should note two 
important items about the results. First, the absolute parallel 
performance levels of the DASH machine are still quite re- 

6.2.4 Summary 

To summarize this section. we note that our block far-out ap- 
proach provides good performance for moderately-parallel ma- 
chines, although parallel speedups are well below linear in the 
number of processors for the matrices we have considered. 
An important limiting factor is the relatively small size of the 
matrices and the relatively poor load balance that results from 
our rigid block distribution scheme. Regarding communication 
volumes, we find that the block approach produces comparable 
amounts of traffic to a column approach on 64 or fewer pro- 
cessors. Even so, we found that the block approach produces 
higher performance that a competing panel-oriented approach 
on the 8 processor SGI 4D1380 and the 40 processor Stanford 
DASH machine. 

At this point, we wish to reiterate that communication and 
concurrency growth rates greatly favor the block method on 
large parallel machines. The fact that a block approach pro- 
duces slightly better performance than column approaches for 
relatively small machines leads us to conclude that the block 
approach will provide significant benefits for practical parallel 
machine sizes. 

7 Conclusions 
It is becoming increasingly clear that column approaches are 
inappropriate for sparse Cholesky factorization on large parallel 
machines. One thing that has been much less clear is whether 
the alternative, a 2-D matrix decomposition, is truly practical. 
This paper has proposed a parallel block algorithm that is quite 
practical. The primary virtues of our approach are: (1) it uses 
an extremely simple decomposition strategy, in which the ma- 
trix is divided using global horizontal and vertical partitions; 
(2) it is straightforward to implement; (3) it provides good per- 
processor performance, since i t  performs the vast majority of its 
work within dense matrix-matrix multiplication operations; (4) 
it is efficient on moderately parallel machines, providing per- 
formance that is comparable to that of efficient column (and 
panel) methods; and (5 )  it shows good promise for large par- 
allel machines. 
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