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To design effective large-scale multiprocessors, designers need to understand the characteristics

of the applications that will use the machines. Application characteristics of particular interest

include the amount of communication relative to computation, the structure of the communica-

tion, and the local cache and memory requirements, as well as how these characteristics scale

with larger problems and machines. One important class of applications is based on hierarchical

N-body methods, which are used to solve a wide range of scientific and engineering problems

efficiently. Important characteristics of these methods include the nonuniform and dynamically

changing nature of the domains to which they are applied, and their use of long-range, irregular

communication. This article examines the key architectural implications of representative appli-

cations that use the two dominant hierarchical N-body methods: the Barnes-Hut Method and the

Fast MuItipole Method.

We first show that exploiting temporal locality on accesses to communicated data is critical to

obtaining good performance on these applications and then argue that coherent caches on

shared-address-space machines exploit this locality both automatically and very effectively.

Next, we examine the implications of scaling the applications to run on larger machines. We use

scaling methods that reflect the concerns of the application scientist and find that this leads to

different conclusions about how communication traffic and local cache and memory usage scale

than scaling based only on data set size. In particular, we show that under the most realistic

form of scaling, both the communication-to-computation ratio as well as the working-set size

(and hence the ideal cache size per processor) grow slowly as larger problems are run on larger

machines. Finally, we examine the effects of using the two dominant abstractions for interproces-

sor communication: a shared address space and explicit message passing between private

address spaces. We show that the lack of an efficiently supported shared address space will

substantially increase the programming complexity and performance overheads for these appli-

cations.
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1. INTRODUCTION

An understanding of workload behavior proved very useful in advancing the

field of uniprocessor computer architecture. Analyses of instruction set usage

led to the design of simpler and more-effective processors, and an under-

standing of temporal and spatial locality in programs allowed effective mem-

ory organizations to be designed. As we design machines with more and more

processors, the performance impact of matching application characteristics to

architectures becomes even greater, clearly suggesting that the architecture

of large-scale multiprocessors should be driven by application characteristics

as well.

The most important interactions between applications and architectures

for multiprocessors are likely to be found at a different level than they were

for uniprocessors. In particular, the difficulty in designing large-scale multi-

processors lies not in providing more aggregate computational power, but

rather in providing the memory bandwidth and communication capabilities

required to support the available computational power. Thus, insights into

the communication needs and memory system requirements of applications

are likely to be critical.

Four application characteristics emerge as being important to understand:

—What is the ratio of communication to computation, and how does it scale

as larger problems are run on larger machines?

—What is the structure of the communication, and how can it best be

supported by the architecture, both by communication mechanisms as well

as by latency-hiding techniques?

—How do certain key hardware resources need to scale as processing nodes

(and hence computational power) are added to the machine? For example,

how should the size of processor caches or local memories scale in order to

be effective but not unnecessarily large?

—Do the communication characteristics of the application lead to signifi-

cantly different overheads—in programming complexity or execution time

—under different programming models that an architecture might sup-

port, in particular, under the two dominant communication abstractions

presented to a programmer today: a globally shared address space and

private address spaces with explicit message passing between them?

Unfortunately, obtaining the desired information about parallel applica-

tions is not easy, There is neither an established base of representative

applications nor an established methodology for writing parallel programs.

And many of the interesting issues require a higher-level understanding of
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the applications than can be automatically extracted by profiling tools. Our

only recourse, therefore, is to develop important classes of parallel applica-

tions carefully and extract our insights from them.

An important class of applications is those that use hierarchical N-body

methods. These methods have wide applicability to problem domains that

require high-performance computing; they solve large-scale problems effi-

ciently and should be able to use large numbers of processors effectively; and

they are not trivial to obtain good parallel performance on, but challenge

parallel architectures in ways that are representative of important classes of

applications.

Hierarchical N-body algorithms are a class of methods that satisfy all these

criteria. In this article, we study the key architectural implications (listed

above) of gravitational simulations that employ the two most-important

hierarchical N-body algorithms: the Barnes-Hut method [Barnes and Hut

1986] and the Fast Multipole Method or FMM [Greengard and Rokhlin 1987].

We first show that exploiting temporal locality on accesses to communi-

cated data is critical to obtaining good performance on hierarchical N-body

applications, and argue that coherent caches in shared-address-space ma-

chines provide this locality both automatically and very effectively. Then, we

examine the scaling of important execution characteristics as larger problems

are run on larger machines. We find that, under the most appropriate model

of scaling the applications, both the communication-to-computation ratio and

the size of a processor’s important working set (and hence the size of cache it

needs to yield effective performance) increase slowly with the number of

processors, while the per-processor main memory requirements in a shared

address space decrease. Finally, we study the implications for communication

abstractions. We find that the absence of a shared address space causes

substantially increased algorithmic and programming complexity to manage

communication in these applications—due to their highly nonuniform, long-

range, and dynamically changing communication requirements—and that

this complexity translates directly to significant runtime overheads in mes-

sage-passing implementations. Because the Barnes-Hut method is simpler in

structure and more widely used today, we make our main points through it

first and later discuss the Fast Multipole Method either for support or as a

point of comparison.

To motivate the study of hierarchical N-body methods, Section 2 discusses

the insight behind them and their range of application in solving physical

problems. The gravitational problem our applications solve and the sequen-

tial Barnes-Hut method are outlined in Section 3. Section 4 describes the

available parallelism and the characteristics that make it challenging to

exploit the parallelism effectively. The speedups obtained by using successful

partitioning/scheduling techniques on an experimental high-performance

shared-address-space multiprocessor are also presented in this section. Sec-

tion 5 describes the simulated multiprocessor environment that we use for

our experiments in the rest of the article. The importance of caching commu-

nicated data to obtain good performance is demonstrated in Section 6. Section
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7 addresses the scaling of important application characteristics. Section 8

outlines the Fast Multipole Method and addresses for it all of the issues

discussed earlier in the context of Barnes-Hut. Section 9 discusses the

implications for communication abstractions. Finally, Section 10 summarizes

the main conclusions of the article.

2. HIERARCHICAL N-BODY METHODS

Hierarchical algorithms that efficiently solve a wide range of physical prob-

lems have recently attracted a lot of attention in scientific computing. These

algorithms are based on the following fundamental insight into the physics of

natural phenomena: many physical systems exhibit a large range of scales in

their information requirements, in both space and time. That is, a point in

the physical domain requires progressively less information less frequently

from parts of the domain that are further away from it. Hierarchical algo-

rithms exploit the range of spatial scales to propagate global information

efficiently through the domain. Prominent among these algorithms are N-body

methods, multigrid methods, multilevel preconditioners, adaptive mesh-

refinement algorithms, and wavelet basis methods. Because these algorithms

use fundamental physical insights to solve large-scale problems efficiently,

and because they are naturally amenable to parallelization, it has been urged

that parallel architectures be designed especially to support the communica-

tion needs of these algorithms [Chan 1990].

The class of applications we examine in this article, classical N-body

simulations, studies the evolution of a system of particles (bodies) under the

influences exerted on each particle by the whole ensemble.1 The most time-

consuming part of these simulations is the calculation of interparticle forces

on potentials. If all pairwise forces are computed directly, this calculation has

a time complexity that is 0( n 2) in the number of particles. Hierarchical,

tree-based methods have recently been developed that reduce the complexity

to O(n log n) [Barnes and Hut 1986] for general distributions, or even O(n)

for uniform distributions [Appel 1985; Greengard and Rokhlin 1987].

The particular form that the insight described above takes in N-body

problems dates back to Isaac Newton in 1687: if the magnitude of interaction

between particles falls off rapidly with distance (as it does in most physical

interactions, such as gravitation or electrostatics with their l/r 2 force laws),

then the effect of a large group of particles maybe approximated by that of a

single equivalent particle, if the group of particles is far enough away from

the point at which the effect is being evaluated (see Figure 1). The hierarchi-

cal application of this insight—first used by Appel [1985] —implies that the

farther away the particles, the larger the group that can be approximated by

a single particle. Although Newton arrived at his powerful insight in the

context of gravitation, hierarchical N-body techniques based on it have found

increasing applicability in various problem domains. The domains include

both classical N-body problems, in which the physical domain is actually

] We use the term “body” and “particle” interchangeably m this article.
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Fig. 1. Approximation of a group of particles by a single equivalent particle.

composed of bodies or particles, as well as others that can be formulated as

N-body problems. Classical domains include astrophysics (gravitational force

law), plasma physics (Coulombic), and molecular dynamics (Coulombic and

others). Other domains include the vortex blob method in fluid dynamics

[Chorin 1973], integral equations in boundary value problems [Greengard

1987], Cauchy integrals in numerical complex analysis, and—most recently

—radiosity calculations in computer graphics [Hanrahan et al. 1991].

Particularly given the continued discovery of new domains of application,

applications that use hierarchical N-body methods will clearly continue to be

among the dominant users of high-performance computers. The two represen-

tative examples that we study in this article are galactic simulations from

astrophysics. The first uses the Barnes-Hut method, and the second uses the

Fast Multipole Method. The problem and the Barnes-Hut method used by the

first application are described in the next section.

3. THE PROBLEM AND SOLUTION METHODS

We examine a classical N-body problem, which simulates the evolution of

stars in a galaxy (or set of galaxies) under the influence of Newtonian

gravitational attraction. The simulation proceeds over a large number of

time-steps, every time-step computing the net force on every particle and

updating its position and other attributes. Hierarchical N-body methods

differ in the specific algorithms they use to compute interparticle interactions

(forces).

All the hierarchical methods for classical problems first build a tree-struc-

tured, hierarchical representation of physical space, and then compute inter-

actions by traversing this tree. The first of these methods was devised by

Appel [1985]. However, his method is quite unstructured, which makes it

difficult to program and to analyze for accuracy. The Barnes-Hut and Fast

Multipole methods we study are better structured and hence more popular.

The tree that represents physical space is the main data structure in both

the Barnes-Hut and Fast Multipole methods. The root of the tree represents a

space cell containing all the particles in the system. The tree is built by

recursively subdividing space cells until some termination condition, usually

specified as the maximum number of particles allowed in a leaf cell, is met.
The tree is therefore adaptive in that it extends to more levels in regions that

have high particle densities. Since particles move and their distribution

changes between time-steps, the tree is rebuilt in every time-step of the
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(a) The Spatial Domain (b) ClwxMea Representation

Fig 2. A two-dimensional particle distribution and the corresponding quadtree.

simulation. In three dimensions, every subdivision of a cell results in the

creation of eight equally sized children cells, leading to an octree representa-

tion of space; in two dimensions, a subdivision results in four children leading

to a quadtree. Figure 2 shows a small two-dimensional example distribution

and the corresponding quadtree. Let us now describe the Barnes-Hut

method, The FMM will be discussed in Section 8.

3.1 The Barnes-Hut Method

The sequential Barnes-Hut algorithm divides every time-step into four phases:

(1) computing the root cell dimensions and building the tree, (2) computing

the cell centers of mass by an upward pass through the tree, (3) computing

forces, and (4) updating the properties of the particles. A fifth, partitioning,

phase is added in our parallel implementation. Let us look at the force

computation phase in some detail, since it consumes more than 95’%0 of the

sequential execution time in typical programs.

The tree is traversed once per particle to compute the net force acting on

that particle. The force calculation algorithm for a particle starts at the root

of the tree and conducts the following test recursively for every cell it visits: if
the center of mass of the cell is far enough away from the particle, the entire

subtree under that cell is approximated by the center of mass and the force

this center of mass exerts on the particle computed; if, however, the center of

mass is not far enough away, the cell must be “opened” and each of its

subcells visited. A cell’s center of mass is determined to be far enough away if

the following condition is satisfied:

1
;<0 (1)
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where J is the length of a side of the cell; d is the distance of the particle from

the center of mass of the cell; and 0 is a user-defined accuracy parameter ( 6

is usually between 0.4 and 1.2). In this way, the tree traversal for a particle

descends deeper in parts of the tree which represent space that is physically

close to the particle, and groups other parts of the tree at a hierarchy of

length scales. The time complexity of force calculation for all particles, and

hence of the Barnes-Hut method, is O(n log n).

4. TAKING ADVANTAGE OF PARALLELISM

Until the discussion of communication abstractions in Section 9, our experi-

ments in this article are conducted with parallel programs written for multi-

processors that support a shared address space. In both applications, we

execute each of the phases within a time-step in parallel. In the Barnes-Hut

application, the parallelism exploited in all phases is across particles, except

in computing the cell centers of mass, where it is across cells.

Unlike many scientific applications that operate on uniform problem do-

mains and use algorithms that require only localized communication (see,

for example, Singh and Hennessy [1992]), our N-body applications have

several characteristics that make it challenging to obtain scalable parallel

performance. Some of these characteristics have direct implications for archi-

tectural support, as we shall see. The characteristics include the following:

—The need for direct long-range communication.

—The nonuniformity of the physical domain, which has implications for both

load balancing and communication.

—The dynamically changing nature of the particle distributions, which

causes the work and communication distributions to change across time-

steps.

—The fact that communication falls off with distance equally in all direc-

tions, which implies that a processor’s partition should be spatially contig-

uous and not biased in size toward any one direction, in order to minimize

communication frequency and volume.

—The fact that different phases in a time-step have different distributions of

work across particles/cells.

We have developed a successful partitioning scheme, called costzones, a

description of which is deferred to Section 9. (Partitioning and scheduling

issues for hierarchical N-body applications are discussed in detail in Singh et

al. [1992a].) The scheme, which is inexpensive and hence invoked every

time-step, assigns every processor a set of particles and cells which that

processor is then responsible for in that time-step. To demonstrate that the

scheme achieves the goals of load balance and data locality, Figure 3 shows

the speedups obtained with both the Barnes-Hut and FMM applications on

2Even in applications that require long-range information propagation for the total solution, the
information is often propagated indirectly—and inet%ciently—via local communication. A classic
example is the use of Jacobi or SOR iteration to solve elliptic partial differential equations.
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Fig 3. Speedups on the Stanford DASH multiprocessor

an experimental multiprocessor, the Stanford DASH multiprocessor, which

has a multilevel memory hierarchy with highly nonuniform access costs

[Lenoski et al. 1990]. The initial distribution in both cases is a pair of

nonuniform Plummer model [Aarseth et al. 1974] galaxies that interact with

each other. In these and all results we present, we run five time-steps of the

galactic simulation, but ignore the first two time-steps to factor out cold-start
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Fig. 4. The simulated multiprocessor architecture.

effects that would be negligible in real runs that execute for many hundreds

of time-steps. Similar results were obtained with other distributions and

reasonable problem configurations.

By understanding the structure of communication and data referencing in

an application, we can determine the types of locality in an architecture that

the application can and cannot exploit effectively. We can also study which

types have the greatest impact on performance. Before we do this for Barnes-

Hut, let us describe the multiprocessor environment we use to obtain these

and the rest of our results in this article, and the kinds of locality that this

multiprocessor affords.

5. THE SIMULATED MULTIPROCESSOR ENVIRONMENT

Real multiprocessors such as DASH have fixed configurations and are thus

inappropriate for our studies in this article. We therefore use a multiproces-

sor simulator which is composed of two parts: the Tango event-driven refer-

ence generator (described in Goldschmidt and Davis [1990]) and a memory

system simulator that feeds back into Tango. We simulate a very general

shared-address-space architecture, consisting of a number of processing nodes

connected together by some general interconnection network (see Figure 4). A

processing node consists of a processor, a cache, and an equal fraction of the

total physical (logically shared) memory on the machine. That is, memory can

be directly referenced by any processor, but is physically distributed. A cache

holds shared as well as private data, and shared data that are cached are

kept coherent by a hardware distributed-directory mechanism [Lenoski et al.

1990]. This architecture affords locality at three levels of its memory hierar-

chy:

—Cache locality: This is the reuse of data that a processor brings into its

cache (whether from its own local memory unit or from across the network),

before they are replaced or invalidated. It includes the reuse of the particu-
lar data words that have been referenced before (temporal locality), as well

as the prefetching afforded by multiword cache lines (spatial locality).

Temporal locality is obtained by partitioning and scheduling the applica-
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tion appropriately, and spatial locality is obtained by also organizing data

structures to take advantage of multiword cache lines.

—Memory locality: If references miss in the cache, one would like to have

them satisfied in the local memory unit rather than communicate across

the network. Memory locality can be exploited in two ways: (1) by distri-

buting data across physical memory units—either statically or dynami-

cally—so that data are allocated on the memory unit closest to the proces-

sor that accesses them most often and (2) by replicating data in main

memory to exploit temporal locality—particularly when the hardware

caches fail to do so for capacity or conflict reasons—thus using local

memory as a software-controlled cache for communicated data. Both distri-

bution and replication are typically done at the granularity of physical

memory pages.

—Network locality: If references do have to go across the network, one would

like them to go as close as possible to the issuing processor in the network

topology. Network locality is obtained by mapping tasks to processors so

that the communication topology in the application maps well onto the

physical topology of the network.

Network locality is not a very significant issue in today’s machines, since the

time for a packet to get into and out of the network dominates the time due to

the number of network hops traversed. Also, the impact of network locality is

diluted if cache and/or memory locality are exploited effectively, and tech-

niques to exploit network locality are usually orthogonal to those that exploit

cache and memory locality. We therefore ignore network locality in this

article.

While we vary latencies when necessary, the base latencies we assume for

memory references are as follows. Cache hits cost a single cycle; read misses

that are satisfied in the local memory unit stall the processor for 15 cycles;

and read misses satisfied in some other memory unit stall the processor for

60 cycles. Write miss latencies can be hidden very effectively by hardware

techniques [ Gharachorloo et al. 1991], so that they rarely stall the processor

in most applications; we therefore assume that local write misses cost a

single cycle and remote write misses 3 cycles.

6. THE IMPORTANCE OF TEMPORAL LOCALITY ON COMMUNICATED DATA

In this section, we show that the reuse obtained by caching shared data (from
local or remote memories) is the key form of locality in the Barnes-Hut

application, and that this locality is exploited both automatically and very

effectively by caches on shared-address-space machines. On the other hand,

data distribution in main memory—to allocate the particle/cell data as-

signed to a processor in that processor’s local memory—is both difficult to

implement and not nearly so important. We shall demonstrate similar results

for the FMM in Section 8.1.

We demonstrate the importance of temporal locality on communicated data

first qualitatively, by describing the structure of communication in the appli-
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cation, and then quantitatively through simulation. In Section 9, we shall

discuss how different architectural or programming models exploit temporal

locality, and shall argue further for the advantages in this regard of shared-

address-space architectures that cache shared data.

6.1 Structure of Communication

The interprocessor communication patterns in these applications are differ-

ent in different phases of computation. The vast majority of time in each

application, however, is spent in the force calculation phase. In the Barnes-

Hut application, the force calculation for a particle/cell requires reading

position and mass information from many other particles/cells that are

potentially not in its processor’s partition. However, the information thus

shared is not modified during the force calculation phase, but only later on in

the update phase of the time-step. The nonlocal data read to compute the

force on one particle/cell can therefore be replicated (cached) and reused

locally to compute the forces on other particles/cells in the processor’s

partition. Partitioning schemes that preserve contiguity of partitions in phys-

ical space, such as the ones we use, reduce the amount of data that a

processor needs to replicate and enhance the degree of temporal locality.

Redistributing data in main memory as partitions change, on the other

hand, is difficult in these applications. The applications share data at a fine

granularity: that of individual particles or cells. The particles and cells that

are in a processor’s partition are close to one another in physical space, but

not necessarily in the shared array data structures that hold the particle and

cell data. This is not a problem for caches in hardware-coherent machines,

since the unit of data transfer (the cache line size) is relatively small.

However, because of the large granularity of the pages that are the units of

data movement in main memory, redistributing data in main memory across

time-steps requires rearranging the layout of particles and cells in the shared

arrays .3 Besides this complexity of implementation for the application pro-

grammer, data redistribution is also very expensive, both because of the

overhead of rearranging data structures and because redistribution involves

invoking the operating system. (For the same reason as for granularity,

replicating at the page level in main memory causes fragmentation and

unnecessary communication.)

6.2 Measurements and Discussion

To demonstrate the importance of exploiting temporal locality on communi-

cated data, we examine the benefits obtained by caches in our simulated

multiprocessor architecture (Section 5), as well the benefits obtained by

dynamic data redistribution in main memory. Note that we only redistribute,

3The alternative of providing support in the multiprocessor for data migration in main memory

at the granularity of program ObJeCtS (particles/cells) has drawbacks too: the memory overhead

associated with the software tables needed to maintain information about these object-sized

units can be very large when the objects are small (see Chapter 9 as well).
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and do not replicate, data in main memory. All replication, and hence

temporal locality, on communicated data is handled by the caches.

Despite the difficulties and overheads associated with data redistribution,

as described above, we give all possible (unrealistic) allowances to data

redistribution in our experiments. Our simulator allows us to redistribute

data at any granularity and at no cost whatsoever.

We run a fixed problem for an application on a fixed number of processors

(16), but vary the per-processor fully associative cache size.4 For each cache

size, we run two versions of the application: one in which we do not distribute

shared data explicitly at all, but allow pages of memory to be allocated in a

round-robin interleaved manner among processing nodes, and the other in

which shared data are redistributed every time-step (at no cost). Data that

are private to a processor are allocated in that processor’s local memory in

both cases.

The execution times for the Barnes-Hut application, normalized to the

execution time with infinite caches and appropriate dynamic data distribu-

tion, are shown in Figure 5, Figure 5(a) shows the normalized execution times

for the reference latencies we used in our earlier experiments (see Section 5).

The results clearly reveal the importance of temporal locality as obtained by

caching. Even for these reference latencies, not having caches (actually,

having 8-byte caches) degrades performance by about a factor of 3 over

having large-enough caches. There is a sharp knee in the curve at a critical

cache size (between 14KB and 16KB in this case). Caches larger than this

critical size exploit temporal locality successfully, while smaller caches sub-

stantially degrade performance. The amount of private data that needs to be

replicated in the caches is very small, so that the improvements shown in the

figure (at least from the 4KB data point on) are mostly due to caching shared

data. In Section 7.5, we shall show that the critical working sets and hence

cache sizes needed for typical problems are relatively small and scale slowly

with problem and machine size, so that there is no need for replication in

main memory. Figure 5(a) also shows that, regardless of whether caches are

or how large they are, even unrealistically free data redistribution helps

performance only marginally.

The read latencies assumed in Figure 5(a) have a larger ratio between

cache hits and cache misses that are satisfied in local memory (1 :15 cycles)

than between cache misses satisfied in local memory and cache misses

satisfied in remote memory (15 :60 cycles). If the latter ratio is made larger,

the benefits of redistribution are increased. However, the benefits of caching
nonlocal (communicated) data are increased much more. Figure 5(b) shows

results for a remote read latency of 500 cycles, a remote-to-local ratio which is

very large compared to those in shared-address-space machines that people

are contemplating to build, and which therefore exaggerates the impact of

data redistribution. Even in this case, the benefits of (free) data redistribu-

tion are only about a 10% increase in performance, whereas the difference

4The use of fully associative caches is justified in Section 7.5.1.
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Fig. 5. Normalized execution time for the Barnes-Hut application: n = 8192, 19= 1.0, p = 16.

between caching and not caching is over 500%. Similar results were obtained

with other problem sizes and numbers of processors.

The reasons for the above results follow from the communication structure

and granularity of the application, as described in Section 6.1. A key property

that inhibits the benefits of data distribution (ignoring its cost and complex-

ity) is that, regardless of whether caches are large enough or not, most of the
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shared references that miss in the cache are to parts of the tree that are in

other processors’ partitions. The cost of these misses is not alleviated by

redistribution, but only by replicating and thus reusing communicated data.

7. IMPACT OF SCALING PROBLEM AND MACHINE SIZE

As larger and more-powerful machines become available, scientists will want

to simulate larger physical systems. It is therefore very important for archi-

tects to understand how problems are likely to be scaled and the implications

of scaling for the effectiveness and design of larger machines. Specifically,

two important implications of scaling are: (1) how do the communication-to-

computation ratios that a machine must support scale with the number of

processors and (2) how do the sizes of a processor’s important working sets,

which determine the amount of cache or perhaps local memory it needs for

ideal cost-effectiveness, scale? The answers to these questions are likely to

vary across problem domains and applications. The way to study scaling,

therefore, is through careful analyses of important applications or application

classes. In this section, we perform such an analysis for the Barnes-Hut

application. We assume that a multiprocessor is scaled by adding identical

processors to it, each added processor having the same amount of main

memory as the others already in the ensemble.

In another article [Singh et al. 1993], we discussed methodological issues in

studying the scaling of parallel applications and architectures. We argued

that the scaling of real applications is more complicated than the common

practice in which people consider only the effects of scaling the input data set

size on the computation and communication complexities of individual algo-

rithms. Realistic scaling studies must incorporate considerations imposed by

the applications that use these algorithms. In particular, other application

parameters often need to be scaled along with the data set size to meet the

application user’s goals in running larger problems.

For example, in the large class of scientific applications that simulate

physical phenomena, a primary goal of running larger problems is to reduce
the errors introduced by various approximations made in the simulation. The

approximations include the temporal and spatial discretization of the prob-

lem domain and the limited accuracies of the numerical algorithms used.

Each of the approximations is usually represented by a different application

parameter. The data set size, for instance, often represents the spatial

resolution of the model, and increasing this size reduces the error contribu-
tion owing to spatial discretization. However, this is only one source of error,

and reducing it will often call for the reduction of other errors as well in order

to efficiently reduce overall simulation error.

While error is a dominant consideration in determining how to scale

parameters in many scientific applications, the specific guiding principles for

scaling parameters might be different in different domains. For example, if

errors due to different sources combine in analytically predictable ways, it

may make sense to scale in order to minimize the overall simulation error

subject to a constraint on execution time or memory usage, or to minimize
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time or memory usage subject to a bound on simulation error. In gravita-

tional N-body simulations, however, errors do not combine very predictably.

We therefore use a scaling principle that is considered most realistic in

practice for this as well as many other classes of scientific applications

(personal communication, J. E. Barnes, May 1991) [Singh et al. 1993]:

—All sources of error should be scaled so that their error contributions are

about equal.

This scaling principle addresses the question of how an application’s

parameters should be scaled relative to one another. It is independent of how

much an application is scaled, that is, of the constraints (on execution time,

memory usage, etc.) under which an application is scaled to use a larger

machine. In our study, we examine the following three scaling models that

are generally accepted in the literature for the constraints under which an

application might be scaled to use more processing nodes (processors and

memory).

—constant problem size scaling (CPS): Keeping all application parameters

constant when more processors are used. (The problem size is specified by

the particular input parameters that the application is run with.) The

assumption is that the user simply wants to solve the same problem faster.

—memory-constrained scaling (MC): Scaling the problem so that the maxi-

mum amount of physical memory required on a single processing node

remains constant. The assumption is that the user always wants to run the

largest data set possible without overflowing any processor’s memory.

—time-constrained scaling (TC): Scaling the problem so that the machine

takes the same amount of absolute time to solve the problem as processors

are added. Thus, the user wants to solve the largest possible problem in the

fixed amount of time at hand.

Of course, no one model can be claimed to be the most realistic for all

applications and all users. Users are in fact unlikely to follow any model very

strictly. However, these models constitute simple and useful tools for an

analysis of scaling.

Using the above scaling principle and models, we employ the following

methodology-as in Singh et al. [1993] —to study scaling issues in our

applications. We first understand the relationships between application pa-

rameters in terms of their error contributions, and use our equal-error

principle to develop a rule for scaling the parameters relative to one another.

Then, we examine how memory requirements and time complexity depend on

different parameters. This allows us to understand how the parameter scal-

ing rule interacts with different scaling models (constraints). Finally, we

examine how the execution characteristics of interest scale with the number

of processors under the appropriate rule and models.

7.1 Relative Scaling of Application Parameters

Discrete N-body simulations have several sources of error in their approxima-

tion of a continuous physical process. For the collisionless gravitational
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problems to which hierarchical N-body techniques are well suited, these

sources include the following in the Barnes-Hut application: (1) Monte-Carlo

sampling of phase-space to approximate the system by a finite number of

bodies (spatial discretization), parametrized by the number of bodies n; (2)

the use of a discrete nonzero time-step in integrating the equations of motion

(temporal discretization), parametrized by the time-step duration At; (3)
approximations made in force computation within a time-step, parametrized

by the Barnes-Hut accuracy parameter 6; (4) force softening to render the

force computation expression F = Gm ~m2/(r2 + C2) nonsingular,

parametrized by e; and (5) roundoff due to finite word length in the computer.

The last source is a static machine characteristic, and we ignore it. Studies in

the astrophysics community have investigated the impact of the other param-

eters on simulation accuracy [Barnes and Hut 1989; Hernquist 1987]. While

some of the error contributions are not always completely independent, the

following rules emerge as being generally valid in interesting parameter

ranges.

—n: The error from the increased relaxation rate due to Monte Carlo

sampling scales as 1/ 6; thus, an increase in n by a factor of s leads to a

decrease in simulation error by a factor of ~,

—A t: The leap-frog method used to integrate the particle orbits has a global

error of the order of At 2.Thus, a reduction in error by a factor of 6 (to

match that due to an s-fold increase in n) requires a decrease in At by a

factor of 4fi, and hence that many more time-steps to simulate a fixed

amount of physical time, which is usually held constant.

— O: The results in Hernquist [1987] and Barnes and Hut [1989] demon-

strate a scaling of the force calculation error proportional to 62 in the

range of practical interest, for common distributions. (This is for the

original Barnes-Hut algorithm—the one we use—which does not incorpo-

rate quadruple corrections to the force approximation. If quadruple

corrections are incorporated, the error scales as 94.) Reducing the error by

a factor of 6 thus requires a decrease in (3 by a factor of ‘d.

—~: The error due to force softening can be ignored if the value of ● is

smaller than the average interparticle spacing, as it usually is.

The rule for scaling problem parameters together that results is:

Barnes-Hut Scaling Rule: If n is scaled by a factor of s, then At and e

should each be scaled by a factor of 1/ 46.

Let us now examine how each of the parameters separately impacts the

serial computational complexity and storage requirements of the applications.

Since we used the Barnes-Hut application as our primary example in the

scaling methodology article [Singh et al. 1993], some of what follows can also

be found in that article. However, we repeat it here for completeness.
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7.2 Scaling of Memory Requirements and Computational Complexity

Memory. The main sources of memory requirement in the Barnes-Hut

application are the data for particles and tree cells. The former require

memory proportional to n, The latter depend on the spatial distribution as

well as n, but are also found to be proportional to n for distributions of

interest [Hernquist 1987]. The other two parameters we scale ((3 and At) do

not affect the data requirements of the application in a shared address space.

Time Complexity. The serial time complexity depends on n in an

O(n log n) fashion for realistic ranges of 6. The dependence on 0 is found to

be roughly proportional to 1/02 for fixed n [Hernquist 1987]. Finally, the

complexity can be assumed to be proportional to the number of time-steps,

that is, inversely proportional to At when a fixed amount of physical time is

being simulated (as is usually the case). Thus, an increase in the input data

size (n) by a factor of s from a base size nO leads to a storage requirement

increase of the same factor, but a serial complexity increase of a factor of

under our scaling rule, if we make the generally valid assumption—within

useful parameter ranges—that the execution time scales independently with

n, 0, and the number of time-steps. The first two terms in the above

expression are due to an increase in n by a factor of s, the third due to an

increase in the number of time-steps by a factor of 4fi, and the last due to a

decrease in (1 by a factor of 46.

7.3 Impact on Memory-Constrained and Time-Constrained Scaling

The issue of scaling problem parameters is irrelevant to constant problem

size scaling, Let us see how the above effects of scaling the parameters

interact with the memory- and time-constrained scaling models. Specifically,

we examine how the parallel execution time grows under memory-con-

strained scaling and how the data set size (or number of particles that can be

simulated) grows under time-constrained scaling.

Execution Time Under Memory-Constrained Scaling. Under memory-con-

strained scaling, an increase in the number of processors by a factor of k

gives us k times as much memory and allows us to run a problem with k

times as many bodies (assuming a shared address space with no replication of

data in main memory; see Section 9.6.2 for a discussion of how this changes

for message passing). This is because increasing the number of processors

does not affect the shared-data requirements, and the amount of per-processor

private memory used is negligible in comparison. Under naive scalability

analysis (scaling only the number of bodies n), the parallel execution time

would increase only slightly—by a factor of kn ~ log (kn O)/k * nO log n ~ or

(1 + log k/log no), where no is the number of bodies run on the original,
smaller machine—assuming perfect speedup with no communication or other

overheads due to parallelism. Under our more realistic parameter scaling
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rule, however, an additional factor of 4W * & or k 3/4 applies (see Section 7.2).

This additional factor is much larger than that already yielded by the naive

analysis, and in fact constitutes an unacceptable increase in execution time

under memory-constrained scaling (see Figure 6(a)); scaling from one to 1024

processors, for example, would increase the parallel execution time by a
factor of 300, even if perfect speedup were achieved. Moving from naive to

realistic scaling turns the problem from perhaps being memory bound to
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being clearly computation time bound. Time-constrained scaling is therefore

likely to be more important than memory-constrained scaling in practice.

Data Set Size Under Time-Constrained Scaling. If only the number of

particles, n, were scaled under time-constrained scaling, the 0( n log n)

complexity of the algorithm suggests that n would scale almost linearly with

the number of processors, i.e., almost as fast as under memory-constrained

scaling. Because other parameters have to be scaled, however, the number of

particles that can be simulated in a fixed amount of time grows much more

slowly (Figure 6(b)). Under our equal-error scaling rule, for example, if s and

k are the factors by which the number of runnable particles and the number

of processors grow, respectively, then s is related to k by the following

expression (assuming perfect speedup):

‘=s7’4(1+23
where nO is the number of particles run on the smaller machine. That is, s

grows by a factor that is closer to & than to k. Thus, if a uniprocessor can

run a problem with 16K particles in one day, then a machine with 1024

processors would run a problem with only about 700K particles in the same

time, rather than the almost 10 million particles that scaling only the data

set size would predict.

The realistic scaling of parameters has already led us to two different

results than scaling only the data set size: first, that memory-constrained

scaling is unrealistic since it causes computation time to grow too quickly,

and second, that the number of particles that can be simulated in a fixed

amount of time grows much slower with computational power than the O(n)

complexity in terms of data set size might suggest. Let us now examine how

the inherent communication in the application—that is, the minimum com-

munication-to-computation ratio that an architecture must sustain—scales

with machine size under the different scaling models.

7,4 Scaling of Inherent Communication

The communication-to-computation ratio of a parallel application is an impor-

tant determinant of how efficiently a multiprocessor can run the application.

Beyond a threshold of easily sustainable communication, higher ratios lead to

deteriorating performance. In many scientific applications, the primary deter-
minant of the communication-to-computation ratio is the data set size per

processor, i.e., the ratio is inversely related to n/p. Common examples are

applications that partition a uniform grid into contiguous subgrids, one per

processor, with a processor computing at all elements in its partition but

communicating only at interpartition boundaries. Since memory-constrained

scaling usually keeps the data set per processor constant in a shared address
space, it keeps the communication-to-computation ratio constant, promising

constant per-processor efficiency as larger machines run “proportionally

larger” problems. Such results were shown in the Sandia experiments
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[Gustafson et al. 1988]. However, we showed in Singh et al. [1993] that

primarily because the data set size does not grow linearly with the number of

processors under the most appropriate scaling model—time-constrained scal-

ing—the communication-to-computation ratio becomes worse under this

model. In this section, we study the communication-to-computation ratio for

Barnes-Hut in more detail.

7.4.1 Experimental Methodology. Communication in a multiprocessor

arises from two sources: the inherent communication required by the parallel

program and communication that is an artifact of how the program’s data

requirements or referencing patterns interact with the particular memory

system organization. On shared-address-space multiprocessors such as the

ones we use, the artifacts include false sharing of large cache lines, replace-

ment of communicated data in finite caches, and inappropriate allocation of

memory on physically distributed nodes. Since we are interested in inherent

communication behavior in this section, we would like to eliminate these

artifacts. To virtually eliminate false sharing, we use a small cache line (8

bytes) in our simulated multiprocessor (Section 5). To eliminate replacements

and the impact of memory allocation after the cold-start period, we simulate

infinite per-processor caches. And to eliminate cold-start misses, which are

negligible in realistic runs that last many hundreds of time-steps, we do not

measure the first two time-steps of the computation.

We measure the communication-to-computation ratio as the average num-

ber of read misses per 1000 busy cycles per processor. In the multiprocessor

model described above, read misses represent the fundamental communica-

tion required to solve the problem (in fact, they represent the minimum

amount of inherent communication that would be required in any communi-

cation abstraction). Write references can also generate communication traffic

in a real cache coherence protocol, but they still do not affect the trend for

communication-to-computation ratios with infinite caches in these cases.

7.4.2 Results. Figure 7 shows how the communication-to-computation

ratio in the Barnes-Hut application scales under time and memory-con-

strained scaling. “Naive” scaling in the figure refers to changing only the
number of particles (data set size) without scaling other parameters. For all

the curves in the figure, the base problem size on a single processor simulates

128 particles with O = 1.0 and At = 0.025. Since this base problem is very

small (so we could simulate the scaled problems easily), we also examined the

trends with other base problems sizes as well as by factoring out load
imbalance; the trends were very similar. Clearly, the communication-to-corn-

putation ratio grows under realistic TC scaling.

Communication is very difficult to model accurately in this application,

particularly for a nonuniform distribution. We therefore qualitatively explain

how the communication-to-computation ratio depends on different parame-

ters and use this explanation to understand the trends seen in the figure for

the different scaling methods. The parameters that we use in our discussion

are the granularity of the partitions (parametrized by the average number of

particles, n~, assigned to a processor in every time-step; n~ = n/p), the
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spatial extent of the partitions (parametrized by I/p, the reciprocal of the

number of processors), the force calculation accuracy parameter O, and the

time-step interval At. The spatial extent of a partition is independent of n

since the input spatial dimensions of the galaxies—and in fact even the

nature of the particle distribution—are independent of n: larger n corre-

spond simply to higher-resolution samplings of the galaxies.

Granularity n~. As the granularity, ng, increases for fixed P, O, and At,

the amount of computation per processor scales as O(nglog n). Communica-

tion scales more slowly, however, primarily because most of the communi-

cated data are heavily reused by other particles in the partition. Also, most of

the new data referenced by a particle due to an increase in n are relatively

close to the particle and therefore quite likely to be in the particle’s own

partition. These are data from cells that are not far enough away to be

approximated by their center of mass, but that earlier had only a single

particle and now have more (and are hence opened).

Accuracy O. The communication-to-computation ratio also improves with

increased force calculation accuracy (decreased 8) for the same n, P, and At,

for the same reasons of data reuse.

Processors p. For the same n~, 0, and At, the amount of communication

increases with p (i.e., under naive MC scaling), both because log n increases

and because more of the data that a processor references are not in its (now

spatially smaller since p is larger) partition. Computation in this case

increases as only O(log n), and the result is a slow increase in the communi-

cation-to-computation ratio under naive MC scaling.

Time-Step Interval At. Finally, as At is refined, the spatial distribution

changes more slowly across time-steps, which should reduce communication a
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little. These trends can be used to explain the results for different scaling

models in Figure 7 as follows.

Under CPS scaling (not shown in the figure), both n~ and I/p decrease

rapidly, while other parameters are held constant. The communication-to-

computation ratio therefore increases quickly. We have seen above that naive

MC scaling (i.e., scaling p while keeping ng, 6, and At fixed) is not enough to

keep the ratio constant in this application, but results in a slow increase

(unlike in the Sandia applications [Gustafson et al. 19881). Keeping the ratio
in check in fact takes realistic MC scaling, in which case 0 and At also

decrease while n~ still stays fixed, and the ratio actually falls a little with

scaling. However, we have also seen that MC scaling is a highly unlikely

method for this application in practice since execution time increases rapidly.

The results of greatest practical interest are those for TC scaling, in which

case also the trends for naive and realistic scaling are different. Naive TC

scaling is quite close to naive MC scaling in this case (with only a log n

difference owing to the O(n log n) complexity), so that the communication-

to-computation ratio in this case increases almost as slowly. Realistic TC

scaling, however, causes n to grow much more slowly (see Section 7.3) and

therefore n~ to decrease quite quickly as p increases. The communication-to-

computation ratio increases more quickly than under naive TC scaling,

though still not very quickly, even though the rate of increase is inhibited by

the scaling of O and At.

Under the most appropriate scaling model, then, the communication-to-

computation ratio increases slowly in the Barnes-Hut application as larger

problems are run on larger machines. However, when appropriate partition-

ing and scheduling techniques are used [Singh et al. 1992a], the ratio

remains very small for realistic problems on today’s machines. For example, a

typical simulation today uses 64K particles with /3 = 1.0 and quadruple

moments (personal communication, J. E. Barnes, May 1991), When run for

512 time-steps, this problem takes about three days to run on a single

processor of an SGI 4D\240. When run on a 64-processor machine, this

problem has a communication-to-computation ratio of less than 1 double-pre-

cision word per 2000 instructions. The same problem running on 1024

processors has a ratio of 1 double-precision word per 170 instructions. The

largest problems people run today are on the order of several million parti-

cles, and these are run on machines with fewer than 1024 processors (using

quadruple moments rather than just centers of mass to represent cells); for
these problems, the ratios are on the order of a double-precision word per

several thousand instructions. Since there is also abundant concurrency and

no other major problem for parallel force computation, we can continue to

expect good parallel performance for quite a while from the Barnes-Hut

application as larger parallel machines are built. The problem likely to limit

speedup first is the performance of the tree-building phase, as discussed in

Singh et al. [1992a] and Holt and Singh [1995].

Let us now examine the scaling of the other important architectural

parameter we study in this article: the size of a processor’s working set.

ACM TransactIons on Computer Systems, Vol 13, No 2, May 1995



Implications of Hierarchical N-Body Methods . 163

7.5 Scaling of Working-Set Size

As discussed in Section 5, modern multiprocessors are built with hierarchical

memory systems, in which smaller, faster levels of the hierarchy can serve as

hardware- or software-managed caches on successively larger, slower levels.

An important question facing architects of large-scale multiprocessors is how

large the caches or memories at each level of the hierarchy should be for good

cost performance. A part of the answer is determined by practical issues such

as hardware cost or packaging constraints. A crucial part of the answer,

however, should depend on how much capacity the applications likely to run

on these machines require at different levels for effective performance and

how these requirements scale as larger problems are run on larger machines.

In this section, we address this question for our hierarchical N-body applica-

tions by examining the scaling of the different working sets in the applica-

tions.

The working-set model of program behavior [Denning 1968] is based on the

temporal locality exhibited by the data-referencing patterns of programs.

Under this model, a program has a set of data that it reuses substantially for

a period of time, before moving on to other data. The shifts between one set of

data and another may be abrupt or gradual. In either case, there is at most

times a” working set” of data that a processor should be able to maintain in a

fast level of the memory hierarchy, to use that level effectively. We have

found that many scientific applications in fact have a hierarchy of well-defined

working sets, the ability to contain each of which in a given level of the

memory hierarchy has its own impact on performance.

Consider, for example, the first level of the memory hierarchy external to

the processor: the first-level cache. We saw in Section 6 that a cache is a key

performance-enhancing resource for N-body applications on shared-address-

space multiprocessors. A cache is an expensive resource, however. For a given

application, and in the absence of time-sharing, ideally the cache should be

just large enough to hold a working set that (1) is of a size that can be

expected to fit in a processor cache and (2) can substantially aid overall

program performance. How the size of this working set scales therefore

directly impacts the effectiveness of different cache sizes and determines how

the cache size should be scaled on larger machines for optimal cost effective-

ness. The working-set hierarchy also tells us which working sets can be

expected to fit in which levels of the cache hierarchy.

In message-passing architectures, a processor’s local memory is often used

as a software-controlled cache for communicated data, in addition to holding

the processor’s own assigned data partition; that is, data are replicated in the

memories of those processors that need to use them. In addition to the active

working sets for caches, then, message-passing programs also have a “work-

ing set” of communicated data that helps determine the size and scaling of a

processor’s local memory. We focus on active working sets for caches here and

leave a discussion of message-passing machines to Section 9.

7.5.1 Experimental Methodology. We measure working sets using the

simulated architecture described in Section 5, again with a small 8-byte
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cache line size. As in Section 6, for the same problem size and number of

processors, we vary the per-processor fully associative cache size and plot the

execution time—normalized to that obtained with infinite caches—versus

the cache size used. For every important well-defined working set, there

should be a knee in the execution time versus cache size curve at the cache

size corresponding to that working set. Cache sizes are varied at a fine

granularity to identify working sets precisely.

Caches on shared-address-space machines suffer misses from four sources:

(1) communication, both inherent and due to false sharing; (2) replacement of

useful data due to limited cache capacity; (3) replacement due to conflicts

within the cache caused by an associativity smaller than the cache size; and

(4) cold-start effects. As in our earlier experiments, the cold-start period is
ignored by starting the measurements after the second time-step. By using

fully associative caches with LRU replacement, we omit conflict misses in the

cache and include only communication and capacity misses. While fully

associative caches are unrealistic in practice, they provide us with a clean

measure of working-set size, untainted by the many low-level artifacts that

can cause cache conflicts. We do, however, comment on results obtained with

low-associativity caches as well. Once again, since the problem sizes we

simulate are very small, we verified our scaling trends by examining some

larger base problems as well as by factoring our load imbalance. Let us now

examine the results for the two applications.

7.5.2 Results. Figure 8 shows the results for the Barnes-Hut application

for a fixed problem size and number of processors. The ordinate is normalized

so that 1.0 represents the execution time with infinite caches.

There are clearly three levels in the working-set hierarchy in this applica-

tion. The first, or level-l working set (levlWS), is the amount of temporary

storage used to compute an interaction between a particle and another

particle/cell, and reused in successive interactions. Its size is very small, is

independent of n, (3, or the number of processors p, and depends only on the

kind of moment used to compute an interaction. The levlWS is about 0.5KB

in size when centers of mass are used, and 0.7KB when quadruple moments

are used. Having a cache large enough to hold the levlWS reduces the read

miss rate from 100% with no cache to about 20% in most cases we have

simulated. While this is a large reduction, the miss rate is still not low

enough for effective performance since most of the remaining misses are to

nonlocal data (see Figure 8).
The second, or level-2 working set (lev2WS), is the most important working

set in the application. It is very sharply defined and takes the normalized

execution time from over 1.8 to less than 1.05 within a range of 2–4KB in

cache size. For the small problem shown in Figure 8, the size of the lev2WS

set is about 11.5KB. We shall discuss its scaling shortly.

Beyond the lev2WS, performance improves much more slowly with cache

size until the cache size reaches the lev3WS. The size of this working set is

roughly the maximum of(1) the amount of data in a processor’s partition and

(2) the amount of data a processor needs to compute the forces on all the
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Fig. 8. Workings sets for the Barnes-Hut application: n = 1024, 6 = 1.0, p = 4

particles in its partition. Thus, the lev3WS size decreases with increasing

number of processors and increases with increasing n and decreasing 0.

However, since the lev3WS marks the culmination of a slow decrease in miss

rate, and since the capacity miss rate is already very small after the lev2WS

is accommodated, it is not important to performance, and we do not consider

it further. Let us look at the important level-2 working set more carefully (in

the rest of the Barnes-Hut discussion, we refer to lev2WS as the important

working set or simply the working set).

An interesting, initially somewhat surprising, observation about the impor-

tant level-2 working set is that its size is independent of the number of

processors used. That is, although a processor’s partition of the data set

diminishes rapidly under CPS scaling, the size of its important working set

stays constant. From another perspective, although the communication-to-

computation ratio with infinite caches increases substantially under CPS

scaling, as we saw in Section 7.4, the cache size required to approximate an

infinite cache stays the same. This result runs counter to what might be

expected from many scientific applications, in which a problem domain is

decomposed and in which a processor only needs data from its own subdo-

main and from the borders of its neighboring subdomains. In those cases, the

working set per processor becomes smaller under CPS scaling. Let us now

examine what determines the size of the important working set in the

Barnes-Hut application and understand how it scales under different models.

To compute the force acting on it, a particle reads position data from other

cells and particles in the tree, at lower levels close to it and at higher levels

further away. Figure 9 shows the section of the tree that a particle references

for force calculation. The costzones partitioning scheme we use ensures that

both the partitions and the particle ordering within them are spatially

contiguous (see Section 9.4. 1), so that successive particles in a processor’s

partition reuse most of the previous particle’s section of the tree. The amount
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Fig. 9. Important working set for the Barnes-Hut force computation phase

such aof displacement, mass, and moment data from particles/cells in

section, which remains essentially the same in size and changes only very

slowly with time in composition, is therefore a good measure of the important

working set.

This amount of data, and hence the working-set size, is clearly independent

of the number of processors. It is roughly proportional to (1/O 2) log n (see

Section 7.2), with the constant of proportionality being a few kilobytes for our

application. That is, it grows very slowly with n and much more quickly with

0. Under the equal-error scaling rule, if n is scaled by a factor of s, then O

should be scaled by 1/ 4& when only centers of mass are used. Thus, the

contribution of n to the scaling of working-set size is an additiue term of

O(log s), while that of O is a multiplicative term of O(&). (When quadruple

moments are used, the working-set size increases by about 60% over the

same problem configuration with only centers of mass, and the contribution

of scaling o realistically is a multiplicative term of 0(4&) rather than O(k).)

The contribution of scaling the accuracy parameter is clearly much more

significant than that of scaling only the data set size, which reinforces the

importance of studying scaling under application considerations in order to

reach the correct architectural conclusions.

Figure 10 shows simulation results for how the important working-set size

scales with the number of processors under the equal-error scaling rule under

all three scaling models, as well as under naive TC scaling. The problem sizes

used are the same as those used to measure the scaling of the communica-

tion-to-computation ratio in Figure 7. As already mentioned, the working-set

size remains constant under CPS scaling. Under naive TC scaling, n is

increased quite quickly, but its contribution is only a very slow increase in

working-set size. Under realistic TC scaling, which is the most appropriate
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Fig. 10. Scaling of the important working set under all scaling models for the Barnes-Hut

application.

method, n is increased less quickly. However, o is also decreased. Since the

impact of d is much larger than that of n, the result is a faster increase in

working-set size under realistic TC scaling than under naive TC scaling.

Once again, this is particularly interesting since the important working-set

size increases under realistic TC scaling despite the fact that the amount of

data in each processor’s partition actually decreases: the size of a processor’s

partition is clearly not a good indicator of its cache requirements in hierarchi-

cal N-body methods. Finally, under the impractical MC scaling, both n and /3

are scaled very quickly, and the increase in working-set size is very rapid

(though not so if only n is scaled in a memory-constrained way).

While the results in Figure 10 are for small simulated problems, as these

scaling trends indicate, the actual values of the level-2 working sets for

realistic problems today are quite small as well, and are likely to fit in caches

on shared-address-space machines even as problems and machines are scaled

in the foreseeable future. Let us look at some concrete examples, assuming

that the level-2 working set scales as (6/$2) log n. kilobytes.

We begin with the typical problem discussed in Section 7.4.2 (64K particles

with O = 1.0 and quadruple moments) running on a 64-processor machine.

The working-set size for this problem is about 32K13. Let us see what happens

when we scale up to a 1024-processor machine and a million-processor

machine.

Under MC scaling, a 1024-processor machine would run a problem with 1

million particles (near the large end of the numbers of particles that people
can run on the most-powerful parallel machines today), and the million-

processor machine would run a problem with a billion particles (inconceivable

today). Under naive MC scaling, the working sets would grow to 40KB and
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60KB, respectively. Under the inappropriate realistic MC scaling, the work-

ing set grows much faster, but would still be only 80KB with a million

particles (/3 = 0.71) and under 300KB even with a billion particles (O = 0.6,

octopole moments).5

Under the most appropriate realistic TC scaling, a 1024-processor machine

would run only 256K particles (0 = 0.84), and the important working-set size

would be only 5 lKB. A million-processor machine would run about 32 million

particles (6’ = 0.6, octopole moments), and the working-set size would still be

under 250KB. As for associativity, experiments we have performed with up to

16K particles indicate that the cache size needed to hold the important

working set increases by at most a factor of 2–3 in going from fully associa-

tive to even direct-mapped caches with the largest change being in going from

two-way associativity to direct mapping.

Thus, although the important working set for this application grows slowly

with problem size, it is inherently still well under 100KB for the largest

problems people run today, and it is likely to stay small enough to fit in a

cache even for problems whose solution is far beyond the realm of possibili-

ties today.

The Fast Multipole Method exhibits results that are largely similar to

those we have just seen for the Barnes-Hut method: in the importance of

temporal locality as well as in scaling issues and characteristics. We address

these issues for the FMM in the next section. Since we are interested in the

adaptive FMM, and even a sequential three-dimensional adaptive code was

not available at the time of this study, we study a two-dimensional FMM

instead. The parallelization and the qualitative results extend to the three-

dimensional case. The differences are that the constant factors are substan-

tially larger in three dimensions (both in working sets and particularly in

execution time, where the large constant factors have caused people to prefer

using Barnes-Hut for most realistic problem sizes despite the superior

asymptotic and error properties of the FMM), and the dependence of execu-

tion time on the force computation accuracy parameter e is log4e rather than

log2~ (see below).

8. THE FAST MULTIPOLE METHOD

The Fast Multipole Method (FMM) comes in two flavors: uniform and adap-

tive. We use the adaptive FMM since it subsumes the uniform and is more

useful in practice.
The FMM also uses a recursive decomposition of the computation domain

into a tree structure and a similar strategy of approximating cells of the tree

by equivalent single “particles” when they are far enough away. There are

two key differences between it and the Barnes-Hut method. One is that while

the Barnes-Hut method only computes particle-particle and particle-cell in-

teractions, the FMM allows the direct computation of cell-cell interactions as

5As 8 starts to shrink beyond about 0.6, people will tend to stop reducing @ and obtain higher

force calculation accuracy by using higher-order moments instead.
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Fig. 11. The fast multipole method.

well. If an internal cell in the tree (cell A in Figure 11) is far enough away

from another internal cell (cell B), then the interaction between these two

cells is computed directly, and the effect of the interactions is propagated to

the descendants of A and B. This reduces the computational complexity,

since the individual particles or lower-level cells within cell A do not have to

compute interactions separately with cell B, and vice versa. In fact, the use of

cell-cell interactions makes the complexity of this algorithm 0(n), rather

than O(n log n) as in Barnes-Hut, at least for uniform distributions

[Greengard 1987; Singh 1993].6
The other key difference is that force calculation accuracy in the FMM is

not determined by controlling which cells are considered far enough away

with respect to a given cell. A cell, A, is simply considered far enough away

(or” well separated) from another cell, B, if its separation from B is greater
than the length of B. Cells that are far enough away are represented by

higher-order series approximations (called multipole expansions) in the FMM

than simply their centers of mass. In fact, the accuracy of the force computa-

tion algorithm is determined by the number of terms, m, retained in these

series expansions.

The phases in a time-step of the FMM application are essentially the same

as in Barnes-Hut: (1) building the tree, (2) computing multipole expansions of

all cells about their geometric centers in an upward pass through the tree, (3)

GIt is shown in Singh [1993] that the complexity of the FMM is not O(n) for nonuniform

distributions as originally believed.
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. . . List U (leaf cells only): all leaf cells adjacent to C.
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v u c ... These are well-separatedfiom C but notfiom C’s parent.
u u
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. . .
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~ : : : : ::. . . . . center, but their individual particle fields can.

Fig. 12. Interaction lists for a cell in the adaptive FMM

computing forces (as described in the next paragraph), and (4) updating

particle properties. Let us look at the force calculation phase in more detail.

For efficient force calculation, a tree cell b divides the rest of the computa-

tional domain into five lists of cells, each list containing cells that bear a

certain spatial relationship to b. The four lists that b interacts with are

shown in Figure 12; the fifth list (not maintained by the program) comprises

cells that are not in the first four lists. The first step in the force computation

phase is to construct these lists for all cells. Then, the interactions of every

cell are computed with the cells in its four lists. The hierarchical nature of

the algorithm ensures that a cell b never directly computes interactions with

cells that are well separated from b‘s parent (the cells in the fifth unlabeled

list in Figure 12). Interactions with these distant cells are accounted for by

b’s ancestors at higher levels of the tree. Once the interactions for internal

cells are computed, their effects are propagated down the tree until they

reach the leaves, where they are evaluated at individual particles. Details of

the different types of interactions, which are not very important for our

purposes, can be found in Greengard [1987].

The efficiency of the FMM is improved by allowing cells at the lowest level

of the tree to contain more than a single particle (we allow a maximum of 40

particles per leaf cell, as Greengard [1987] suggests and as works best in our

implementations, unless otherwise mentioned). Thus, both the leaves and the
internal nodes of the tree represent space cells in the FMM, and both

maintain interaction lists as described above. The natural unit of parallelism

in the FMM is a cell rather than a particle as in Barnes-Hut.

8.1 The Importance of Temporal Locality

The issues and results for temporal cache locality versus data distribution

and locality in main memory are similar to those for Barnes-Hut. Figures

13(a) and 13(b) show the results for 60- and 500-cycle remote latencies,

respectively, With the very large remote-to-local latency ratio (500-cycle
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Fig. 13. Normalized execution time for the FMM application: n = 4096, e = 10-5, p = 16

remote latency), the impact of the idealized data distribution we use is quite

significant in the FMM. This is because—compared to Barnes-Hut—rela-

tively more of a processor’s references to shared data are to data in its own
partition rather than other partitions. However, we recall that our measure-

ments do not consider the substantial difficulty and runtime overheads of

redistribution. In reality, redistribution is not likely to help much even with
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these large latencies, and the temporal locality provided by caching communi-

cated data remains the most effective way to obtain high performance. This

property holds to a larger extent for the Barnes-Hut application than for the

FMM.

8.2 Relative Scaling of Application Parameters

The FMM application also has the n, At, and e parameters of the Barnes-Hut

application. The only difference is in the force calculation accuracy parame-

ter. In the FMM, force calculation accuracy is controlled by the number of

terms, m, retained in the multipole expansions used to represent cells, rather

than by a parameter like the Barnes-Hut O that determines which cells are

far enough away from a given point. Greengard [1987] shows that an error

bound of E in force calcualtion can be guaranteed by using a number of terms

m equal to log ~. The equal-error scaling principle therefore yields the

following parameter scaling rule for the FMM:

FMM Scaling Rule. If n is scaled by a factor of s, At must be scaled by a

factor of 1/ 46, and the number of expansion terms m must be increased by

an additive term of log&.

8.3 Scaling of Memory Requirements and Computational Complexity

Memory. The number of bodies n is the major determinant of memory

usage in the FMM as well. The contribution of increasing the number of

terms, m, in the multipole expansions is negligible for practical purposes,

particularly given how slowly m scales relative to n.

Time Complexity. The serial complexity scales as 0(m2 * n/At). (As dis-

cussed in Singh [1993], at least one phase of the FMM has a complexity that

is not quite 0(n) as claimed in Greengard [1987]. However, the O(n) compo-

nents dominate for the problem sizes we have run, and we assume an 0(n)

complexity in this article.) Under the equal-error scaling rule, then, an

increase in the input data set size (n) by a factor of s leads to a storage

requirement increase of essentially the same factor s, but a serial complexity

increase of a factor of

s’4&*(logia2.

8.4 Impact on Memory-Constrained and Time-Constrained Scaling

Execution Time Under Memory-Constrained Scaling. An increase in the

number of processors, and hence memory, by a factor of k allows us to

simulate roughly k times as many particles. Under naive scalability analysis,

the 0(n) complexity suggests that the parallel execution time would not

change at all. Under realistic scaling, however, the parallel execution time

increases by a factor of 4fi * (log K)z, assuming perfect speedup. If the base

problem took 1 day on a single processor, the scaled problem on 1024

processors would take 187 days rather than the 1 day predicted by naive
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scaling analysis. This is slower than the increase in the Barnes-Hut case, but

is still unacceptable.

Data Set Size Under Time-Constrained Scaling. Under naive time-con-

strained scaling, the 0(n) complexity of the algorithm would suggest that n

would scale linearly with the number of processors, i.e., just as fast as under

memory-constrained scaling. Under the equal-error scaling rule, however, the

relationship between the factor s by which n grows and the factor k by which

the number of processors (p) grows is given by:

() log2s
k=s5\41+—

log2e0 ‘

where e. is the force calculation accuracy used on the smaller machine. Thus,

if a problem with 16K particles and a force calculation accuracy of 10 8 takes

one day to complete on a uniprocessor, then a machine with 1024 processors

would run a problem with only about 3.8 million particles in the same time,

rather than the 16 million particles predicted by scaling only data set size.

8.5 Scaling of Inherent Communication

Communication in the FMM can be quite easily modeled analytically for a

uniform distribution (see Appendix A). The dominant terms in the computa-

tion and communication expressions for far-field interactions (those which

use multipole expansions) using the tree can be shown to scale as 0(m2 * n~ )

r
and O(m. * ng ), respectively, where m is the number of terms used in the

expansions.7 For the near-field (direct) interactions, the dominant terms are

0(c2 ng ) and O(c&), respectively, where c is the number of particles in a

leaf cell. The communication-to-computation ratio is therefore proportional to
1/( a * n~ ) in both cases, where a represents either m or C.

Under (X% scaling, a does not change while n~ decreases linearly with the

number of processors p. The communication-to-computation ratio therefore

grows roughly linearly with p. It takes the unrealistic MC scaling (naive,

which is unrealistic, or realistic, which is impractical) to keep the communi-

cation-to-computation ratio roughly constant in the FMM as well.

Under realistic TC scaling, ng decreases a little faster than as I/k 1/5

(since n increases a little slower than k 4/5; see Section 8.4). c remains

constant, and m increases only very slowly (as log k 415; see Section 8.2). The

communication-to-computation ratio therefore increases slowly in the FMM

application as well. However, even in this application, the absolute values of

the ratio are very small for the problem and machine sizes that people use

today or are likely to use in the foreseeable future. Hierarchical N-body

methods are therefore likely to benefit substantially from large-scale paral-

lelism.

7There is a log p term in the communication expression, as shown in Appendix A, but it is

relatively unimportant until the number of processors becomes very large.
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Fig. 14. Working sets for the FMM application: n = 4096, e = 10-5, p = 4.

Scaling of Working-Set Size

FMM application has four well-defined levels in its working-set hierar-

as shown in Figure 14. The levlWS and lev2WS represent the amount of

temporary storage needed to compute single interactions of different types.

The levlWS is for interactions that do not involve multipole expansions, such

as direct particle-particle interactions in the U lists, while the lev2 WS is for

interactions that involve the manipulation of expansions. Both these working

sets are very small. The levlWS is about O.125KB, independent of n, p, or m.

It brings the miss rate down to about 60%. The lev2WS is proportional to m

(the number of terms in the expansions). More precisely, its size is about
0.625m kilobytes, independent of n or p. It brings the miss rate down from

about 60% to about 2070, still not low enough for effective performance since

most of the remaining misses are to nonlocal data in this application as well.

The most important working set is the lev3WS. Like the important working

set in the Barnes-Hut application, it too is very sharply defined, taking the

normalized execution time down from about 150% to about 11070. For the

small problem shown in Figure 14, the size of the lev3 WS set is about

4.75KB. We shall discuss its scaling shortly.

Once the lev3WS is crossed, performance improves much more slowly with

cache size until the lev4WS is reached. The lev4WS set has the same
characteristics as the lev3WS in the Barnes-Hut case, and we do not consider

it further.

Let us examine the composition and scaling of the important level-3

working set. The dominant part of the application is the computation of list

interactions, in which a processor computes the U, V, and W/X list interac-

tions, as applicable, of all cells in its partition (see Figure 12). Because

partitions are spatially contiguous, the lists for successive cells are likely to

overlap substantially, providing much reuse of data. For simplicity of expla-

nation, and because most of the time is spent in processing V list interac-
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tions, let us understand the scaling of the working set assuming that it

contains only V list interaction data. That is, the working-set size is roughly

proportional to the product of two factors: the number of cells in the average

V list that are reused and the amount of data needed from each cell.

Both these factors, and hence the working-set size, are clearly independent

of the number of processors p (as in Barnes-Hut). Interestingly enough, and

unlike in the Barnes-Hut case, the working-set size is essentially indepen-

dent of the number of particles, n, as well, and is therefore constant under all

naive scaling models. Larger n does mean more cells in the system, but it

does not affect either of the factors that contribute to the working-set size.

The only parameter that the working-set size depends on is the number of

terms m used in the multipole expansions, since the amount of data needed

from each cell in a V list interaction is proportional to m. For the galactic

distributions we have used, we find that the size of the level-3 working set

can be expressed as 19* 16* m bytes. The 19 factor comes from the 18 cells

(out of a maximum of 26) in a V list that are reused on average, plus the cell

whose expansion is being written. The 16 factor comes from the 16 bytes of

data that constitute each term in the expansion.

Under the equal-error scaling principle, if n is scaled by a factor of s, then

m should be scaled by a factor of log &. T%us, while the important working-set

size remains constant under the naive scaling models, it grows, albeit ex-

tremely slowly, under realistic TC or MC scaling. In this sense, the FMM

highlights the importance of scaling parameters other than the data set size

more dramatically than does Barnes-Hut, even though the growth of the

working set is much slower in the FMM: whereas in Barnes-Hut the accuracy

parameter caused the working-set size to scale more quickly than did the

data set size, in the FMM the accuracy parameter (m) is the only application

parameter that affects the size of the working-set, so that the difference

between naive and realistic scaling is qualitative rather than only quantita-

tive.

We now turn our attention to the last of the architectural implications

discussed in this article. We examine whether certain communication charac-

teristics in applications that use hierarchical N-body methods lead to signifi-

cantly larger programming complexity or runtime overheads when imple-

mented under one or other of the dominant communication abstractions in

parallel computers.

9. IMPLICATIONS FOR COMMUNICATION ABSTRACTIONS

Parallel applications have two broad classes of data: logically shared data,

whose values need to be accessed by more than one processor and therefore

have to be communicated among processors, and private data, whose values

are needed by only a single processor. Programming paradigms for parallel

computers differ primarily in the abstractions they provide for managing the

communication of logically shared data among processors. These differences

have implications for ease of programming, for the structuring of communica-

tion, for performance, and for scalability. The two dominant abstractions
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today are implicit communication through a shared address space and ex-

plicit communication through message passing among private address spaces.

The communications architecture of a multiprocessor exports a hardware

communication abstraction or set of primitives to software, and a program-

ming language built on top of these primitives exports a communication

abstraction to the programmer. The abstractions at the two levels may be

different, but are likely to be most efficient when they match. In this section,

we argue that a shared address space, particularly with automatic and

coherent caching of shared data, has substantial advantages in programming

complexity over explicit message passing for applications with irregular,

dynamically changing behavior, and that the complexity of managing commu-

nication in a message-passing abstraction is likely to translate into runtime

disadvantages as well. A question that follows naturally is whether a shared

address space and automatic caching should be supported in hardware, and

we comment on this as well.

We begin by describing four important aspects of communication manage-

ment and how the dominant programming paradigms differ in these aspects

in general. Then, we examine how our hierarchical N-body applications in

particular interact with the programming paradigms in the four aspects.

9.1 Communication Management in the Shared-Address-Space and
Message-Passing Paradigms

The 4 important aspects of communication management are (1) naming and

protection, (2) exploiting temporal locality on logically shared data, which

includes both managing data replication and renaming as well as maintain-

ing the coherence of replicated data, (3) the granularity and overhead of

communication, and (4) synchronization.

Naming. When a process needs a datum that is logically shared, how does

it reference that datum or find it in the machine? In the shared-address-space

(henceforth abbreviated SAS) paradigm, the burden of finding data is placed
on the hardware or system software [Li and Hudak 1989], so that any

application process can directly reference any variable that is declared in the

shared address space (we assume hardware support for this address transla-

tion or naming and present some recently published results for software-

versus-hardware address translation in Section 9.10). In the message-passing

paradigm, on the other hand, the burden of finding data is on the application

programmer. A processor can directly reference only those data that are in its
local address space (local memory) .8 To reference a datum, the application
program must therefore first know or determine which processor’s address

space it resides in and send a message to that processor requesting the

datum.

8We use the terms “local address space” and “local memory” interchangeably for message-pass-

mg machmes m this article. That is, we ignore the fact that secondary (disk) storage may be used

to provide a per-processor virtual address space that is larger than the local memory. We also

ignore disk storage in shared-address-space machines.
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Related to naming is the problem of protection, i.e., ensuring that a process

does not access physical data to which it does not have the appropriate access

rights. In hardware cache-coherent machines, protection is provided by stan-

dard hardware virtual memory mechanisms just as on uniprocessors, though

on many machines software may have to be invoked when virtual-to-physical

mappings change. In the message-passing abstraction, the lack of hardware

address translation for nonlocal data makes protection the responsibility of

software for all but operating environments (such as gang scheduling).

Temporal Locality. As we have seen, in a machine with a physically

distributed memory system it is often advantageous for a processor to repli-

cate data locally that are communicated from other processors and exploit

temporal locality by reusing the local copies rather than recommunicating

every time the data are needed.g There are two aspects to exploiting temporal

locality on communicated data: replicating the data and maintaining the

coherence of the replicated data. We discuss data replication first.

Replication. Pour issues distinguish how data are replicated on different

systems: (1) who is responsible for doing the replication, i.e., for making local

copies of the data, (2) where in the memory hierarchy is the replication done,

(3) at what granularity are data replicated, and (4) how is the replacement of
replicated data managed?

In the message-passing paradigm, the only way to replicate communicated

data is for the user to copy the data into a processor’s private address space

explicitly in the application program. Data are always replicated in main

memory first: a processor’s cache holds only those data that are allocated in

the processor’s local address space (typically implemented by its local mem-

ory). The granularity of replication is variable and depends entirely on the

user. We shall discuss replacement a little later.

The SAS paradigm allows machines to provide system support for replicat-

ing communicated data automatically, without user intervention. The sup-

port may be provided in hardware or software, depending on the particular

architecture and the level of the memory hierarchy at which data are being

replicated. For example, some SAS architectures (such as the Stanford DASH

[Lenoski et al. 1990] and the MIT Alewife [Agarwal et al. 1991]) automati-

cally replicate communicated data in the processor caches under hardware

control, even without replication in main memory. Replication is managed at

the fixed, usually small, granularity of a cache line in these cases. Other

systems provide automatic replication in main memory under system soft-
ware control. For example, IVY [Li and Hudak 1989] and its descendants

provide replication at the fixed relatively large granularity of physical mem-

ory pages. Page replication has two potential disadvantages: (1) the software

management and large granularity of pages make page replication expensive

‘Replication may be viewed as sometimes exploiting spatial locality, when the granularity of

communication is larger than a single data word and no individual data word in that unit of

communication. However, this spatial locality at the granularity of individual data words can be

viewed as temporal locality or reuse at the larger granularity at which data are communicated.
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and (2) the large granularity can lead to unnecessary traffic when the actual

data sharing in the application is fine grained.l” We assume SAS machines

with hardware caching of communicated data in our discussion.

If the processor caches on these machines are not large enough to exploit

temporal locality effectively, data may be replicated at subsequent levels of

the memory hierarchy, with the performance benefits decreasing as access

latencies to successive levels increase. These next levels may include soft-

ware-managed main memory—as in DASH- or Alewife-like machines—in

which case replication is done at the level of pages with the attendant

disadvantages or implicitly by the program, or they may themselves be

hardware-managed caches, as in cache-only memory architectures [Hagar-

sten et al. 1990]. As we have seen in Section 7.5, the working sets of our

hierarchical N-body applications fit comfortably in even relatively small

processor caches by today’s standards. For these applications, therefore, we

do not need any system support for replication beyond the processor caches to

argue the advantages of SAS machines that cache communicated data.

Finally, let us look at replacement, which is necessitated by the finite

capacity of caches and memories. How replacement is managed has implica-

tions for the amount of communicated data that needs to be maintained in

the relevant level of the memory hierarchy. Hardware caches manage re-

placement automatically and dynamically with every reference, so that the

cache needs only be as large as the active working set of the application at

any time (see Section 7.5). While replacement can be managed just as

dynamically by the user in the message-passing paradigm as well—for

example, by maintaining a cache data structure in local memory and manag-

ing it like a hardware cache for communicated data—this is both difficult and

expensive to do in the application program. In typical usage of message-pass-

ing machines, replacements are managed less dynamically. Communicated

data are allowed to accumulate in local memory and are flushed out explicitly

at certain points in the program, typically when it can be determined that

they are not needed at least for some time.

Coherence. Replication implies maintaining multiple copies of a logically

shared datum in different caches or local memories. If a modification is made

to one of the copies, correctness demands that the owners of other copies that

10A proposed alternative to page replication is to handle replication in main memory at the

granularity of logically defined, variable-sized program objects. This is not without problems

either. If the granularity of the objects is small (as in our N-body applications, where an object is

a particle or cell), the overhead of maintaining translation information about objects in software

can be excessive. Also, it is rarely the case that an entire object needs to be replicated at a given

time; usually, it is only a part of an object. For example, in the force computation phase in the

Barnes-Hut application, only the position and mass information need to be rephcated, not the

velocity or acceleration. Even object replication can thus lead to unnecessary traffic and replica-

tion. And finally, although in some applications the natural objects from the data abstraction and

object-oriented programming points of view are the same as the objects that one wants to

communicate or replicate for locality, this is very often not the case, and the latter “objects” have

to be defined differently.
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are still interested in the datum be notified before they use that datum again.

Preserving this correctness is called maintaining the coherence of the mem-

ory system.

In the message-passing abstraction, the burden of managing coherence is

also placed on the application programmer, just like naming and replication.

A processor’s modifications to data do not propagate beyond the local node

unless the user program explicitly sends the appropriate messages to other

nodes.

In the SAS abstraction, on the other hand, the burden of coherence may be

placed on hardware, system software, the application programmer, or any

combination of these. The granularity at which coherence is maintained is

usually the same as that at which data are communicated and replicated,

although this is not necessary. For example, the DASH multiprocessor keeps

cached data coherent in hardware (transparently to the user) at the fixed,

fine granularity of a cache line. And the IVY system supports its main

memory replication by providing coherence at the coarser page level in

system software. Such coarse-grained replication/coherence systems, how-

ever, can incur a lot of unnecessary coherence traffic due to the so-called

false-sharing problem. For example, detailed studies of coherence traffic in

some parallel applications have found the ideal granularity for

replication/coherence in SAS machines to be much smaller than a page

(under 128 bytes) for the applications studied [Eggers and Katz 1989; Torrel-
las et al. 1990; Weber and Gupta 1989].

We examine message-passing machines on one hand and SAS machines

with hardware-supported cache coherence on the other (we assume hardware

coherence, although it could be an efficient combination of hardware and

system software). We call the latter machines SAS-CC (for “cache-coherent”)

and assume that the mechanisms they use to maintain coherence are scalable

[Gupta et al. 1990; James 1989; Scott 1991; Simoni and Horowitz 1991].

Overhead/Granularity of Communication. Finally, the structure and

granularity of communication are usually very different in SAS-CC and

message-passing machines. The SAS paradigm promotes a style of program-

ming that is a natural extension of uniprocessor programming: data items are

referenced (read or written) as and when needed, thus generating receiver-

initiated, fine-grained implicit communication through loads and stores.

Since SAS-CC machines manage translation, protection, and communication

in hardware and at the fixed granularity of relatively small cache lines, they

support this fine-grained communication efficiently. The fixed granularity of

communication makes efficient buffer management easy in hardware.

In the message-passing paradigm, the programmer is responsible for com-

posing the messages that processors send to one another. This has certain

advantages in the flexibility to control the structure and granularity of

communication (e.g., sender- or receiver-initiated, coarse- or fine-grained).
The flexibility, however, comes at the cost of substantial overhead in sending

and receiving messages: messages have to be packaged and unpacked in

software, and the need to manage incoming messages (e.g., ensure the desired
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protection and data alignment, buffer messages until the destination process

is ready for them, etc.) typically involves the copying of messages into and out

of buffers and the expensive intervention of an operating system. Thus,

although there is no natural predilection for coarse-grained messages in the

message-passing paradigm itself, there is a tremendous push in this direction

from the performance viewpoint—to amortize the fixed overhead of a mes-

sage over the many words of data being sent—at least on current message-

passing systems. Moving a large chunk of data from one processor to another

is usually more efficient with coarse-grained bulk transfer messages than

through individual loads and stores. Note that there is nothing in the

existence of a shared address space that precludes the use of coarser-grained

communication. In fact, bulk transfer support in SAS machines can utilize

the shared address space for efficiency of end-to-end transfer. However, most

existing SAS machines do not yet provide efficient support for bulk transfer,

but rely on fine-grained load/store communication.)

New message-passing systems are being proposed and implemented that

try to “get the operating system out of the way” for most messages and

optimize message-sending efficiency for the common case. Fine-grained mes-

sages will continue to be substantially more expensive in these systems than

in SAS-CC machines. However, the need for coalescing messages together

will decrease as the overhead of sending and receiving messages decreases.

Synchronization. A potential advantage of the message-passing abstrac-

tion is that, since data communication is explicit, synchronization is implicit

in the data communication itself, i.e., a send-receive pair implements a data

transfer and a pairwise synchronization event. In a load/store shared ad-

dress space, synchronization is conceptually separate from the implicit data

communication and must be performed separately and implicitly. Message

passing can thus have both conceptual and performance advantages in this

regard, since a single message can implement both data transfer and syn-

chronization. However, this must be traded off with the complexity of nam-

ing, which is involved even in synchronization in message passing (at least

for naming the processes with which to synchronize).

9.1.1 Summary: General Advantages and Disadvantages of the Two

Paradigms. Table I summarizes the differences between machines that

support the two paradigms. The primary advantage of explicit message

passing is the ease and efficiency of building scalable machines, since pro-
cessing nodes require minimal hardware/ software support for communica-

tion management. On the other hand, several research projects (for example,

Agarwal et al. [1991], Hagarsten et al. [1990], Lenoski et al. [1990]) are

demonstrating that the overheads of providing cache coherence are relatively

small, and that cost-effective, scalable SAS-CC machines can indeed be built.

In fact, the cost of the extra main memory which is needed on message-pass-

ing machines for explicit replication of operating system and application code

and data often dominates the hardware cost of cache coherence, as we shall

see.
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Table I. Comparison of Communication Abstractions

Aspect Cache-Coherent Message

Shared Address Space Passing

Naming Hardware address No hardware address
translation translation

Communication Efficient support for Inefficient for fine-grain

Overhead fixed-size, fine-grain efficient for coarse-grain
communication

Replication and Automatic, hardware- No hardware support

Coherence supported in caches

Synchronization Separate explicit Implicit in explicit
synchronization events communication

Advantages * Ease of programming * Hardwiwe design and cost
* Performance? * Bulk dara transfer

The primary disadvantage of the message-passing paradigm is program-

ming complexity. In many scientific applications, the interprocessor commu-

nication patterns are naturally well structured and predictable, so that the

complexity of managing communication in the user program is not very

severe. (For example, see dense linear algebra computations and Singh and

Hennessy [1992]). For the hierarchical N-body applications considered here,

however, we will show that communication management adds substantial

conceptual, programming, and runtime overheads in message-passing imple-

mentations. In fact, these overheads are observable in a range of applications

(computer graphics, for example) which share certain characteristics (de-
scribed in Section 9.3) of hierarchical N-body methods.

9.2 Axes of Comparison for an Application

Other than system cost, there are two axes along which we can compare the

SAS and message-passing paradigms for a particular application: program-

ming complexity and performance. By programming complexity we mean the

conceptual design and programming effort required to obtain effective paral-

lel performance, not just to get a parallel program to run correctly (a shared

address space is clearly advantageous for the latter purpose). Comparisons

along this axis are difficult to quantify but are instructive. Direct compar-

isons of performance, while easier to quantify, are often less useful since they

are very specific to the platforms on which performance is evaluated. We

therefore focus on a comparison of programming complexity, and point out

cases in which the complexity translates directly to runtime overhead, such

as extra work done by the program, extra memory requirements, or extra

communication. We use the Barnes-Hut application first to make most of our
points, since it is simpler than the FMM and since a good message-passing

implementation exists for it. Then, we examine some additional issues raised

by the FMM.
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9.3 Problems for Message-Passing Implementations

The complexity of managing communication in message-passing implementa-

tions of hierarchical N-body applications arises from two sources:

—the nonuniform and dynamic nature of the domain (particle distribution),

which implies that the partitions assigned to processors change with time

to maintain load balancing and data locality, and

—the need for long-range communication which is irregular as a result of

the nonuniformity.

This leads to the following difficulties for the various aspects of communica-

tion management in the message-passing paradigm.

Naming. The structure of the tree changes slowly but unpredictably

across time-steps, as do the assignments of particles/cells to processors.

Hence, the address spaces (processes) from which a processor has to get the

nonlocal data it needs change unpredictably across time-steps. Particularly

given the irregular access patterns to the tree, a naming problem arises: how

does a processor know where to find the data it needs, without resorting to the

highly undesirable recourse of having every processor build and store a local

copy of the entire tree in every time-step? As we shall see, the application-level

orchestration required to address this naming problem—which hardware

takes care of in SAS-CC machines—adds substantial algorithmic and pro-

gramming complexity in message-passing implementations and is the largest

source of execution time overhead (much larger than communication itself).

Replication. Replication can cause problems too, particularly owing to

how replacement is managed. The typical message-passing strategy of allow-

ing communicated data to accumulate in local memory and flushing them out

at certain points in the program does not work well here like it does in

regular, predictable programs. The reuse patterns even within a computa-

tional phase are irregular and unpredictable—for example, reusing the tree

data structure in the force computation phase. Thus, the only convenient

points at which to flush communicated data in the application program are

the boundaries between computational phases. Since the amount of nonlocal

data read from the tree during the force computation phase is large, the

memory overhead due to data replication can be large when replacement is

managed in this typical message-passing style (common cases require more

than five times as much memory per process for replication as for holding the

inherent data set; see Section 9.6.2), even though the active working set

needed by a processor is small, as we have seen for the SAS implementation.

Replication requirements can be reduced in some naming schemes by emulat-

ing a hardware cache in software for nonlocal data, thus needing to replicate

only the active working set, but this incurs the overhead of runtime software

checks of the emulated cache and determining whether the data are local or

remote.

Coherence. Two levels of coherence need to be provided in these applica-

tions. First, as in many scientific programs [Singh et al. 1992 b], some phases
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of computation have the property that the shared data read in those phases

are not modified in them. For example, the portions of particle\cell data that

are read in the force computation phase of the Barnes-Hut application are not

modified in that phase but only later in the update phase. Coherence does not

need to be provided within these phases, but only at the boundaries between

them.

Other phases, however, require finer-grained coherence within them as

well. In building a globally shared tree as in our SAS implementation, for

example, different processes read and modify the same parts of the logically

shared tree in an unstructured way (see Singh et al. [1992a]). The patterns of

this read/write sharing are unpredictable, so that maintaining the required

coherence in the application program is difficult. Nonetheless, there is signifi-

cant reuse of data even in this phase, so caching and automatic coherence are

helpful.

The tree-building and center-of-mass or expansion computing phases are

also the ones that need complex synchronization (mutual exclusion and

point-to-point event synchronization on cells; global barriers between phases

are convenient elsewhere). However, given the problem of naming processes

that own tree cells, it is not clear that message passing has any advantage

here over using shared flags and locks with no naming problem.

Communication Granularity. The natural data-referencing patterns in

these applications lead to fine-grained communication. Successive references

to logically shared data follow the links in the tree—and depend on the

opening criterion or interaction lists—so that they do not access predictable,

contiguous data in the application’s data structures. Significant programmer

effort is required to combine messages and hence increase the granularity of

communication as needed for performance in message-passing implementa-

tions, as we shall see. It would be very difficult for a compiler to do this

automatically, for example. Also, since data transfer itself is not a severe

performance bottleneck (see Section 7.4), bulk data transfer is not too likely

to help performance much anyway.

In the rest of this section, we examine in more detail how these communi-

cation management problems have been or can be addressed in actual

message-passing implementations, both to obtain a deeper understanding of

the complexities and to quantify some of their effects. Since effective tech-

niques to solve the above communication management problems depend on

how the computation and data are partitioned among processors, let us first

look at two partitioning techniques that yield effective performance.

9.4 Partitioning Methods

The goal in partitioning is to balance the workload across processors, and to

provide locality of data reference by ensuring that the particles/cells as-

signed to a processor are close together in space. We describe two partitioning
methods, initially in the context of the Barnes-Hut application: one (called

costzones) is a simple technique that we have proposed for shared-address-

space implementations, and the second (called Orthogonal Recursive Bisec-
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tion or ORB) is a more complex technique used by Salmon [1990] in a

message-passing Barnes-Hut implementation (which we shall describe), and

which we have also implemented for shared-address-space machines. Details

of the techniques can be found in Singh et al. [1992a].

9.4.1 Costzones. The Barnes-Hut algorithm already has a representation

of the spatial distribution encoded in its tree data structure. In cost zones

partitioning, the tree is conceptually laid out in a two-dimensional plane,

with a cell’s children laid out from left to right in increasing order of child

number. The cost of (or work associated with) every body is profiled in the

previous time-step and stored with the body. A cell stores the sum of the work

associated with all the bodies it contains. The total work in the system is

divided among processors so that every processor has a contiguous, equal

range or zone of work (for example, a total work of 1000 units would be split

among 10 processes so that zone 1-100 units is assigned to the first process,

zone 101-200 to the second, and so on). Which cost zone a body in the tree

belongs to can be conceptually determined by the total cost of an in-order

traversal of the tree up to that body. Processes partially traverse the tree in

parallel, picking up the bodies (or usually entire large internal cells) that

belong in their cost zone. The partitioning algorithm requires only a few lines

of code, has negligible runtime overhead, and yields very good load balance

[Singh et al. 1992al. The partitions produced by the costzones scheme are not
shaped regularly in space for nonuniform particle distributions, however (see

Figure 15), which has implications for message-passing implementations as

we shall see.

9.4.2 Orthogonal Recursiue Bisection (ORB). The ORB technique [Fox

1988] obtains more-regular partitions (at least in Barnes-Hut; see Section

9.7) by directly partitioning space rather than the tree. The tree is not used in

the partitioning process at all. The idea here is to divide space recursively

into two subspaces with equal cost, until there is one subspace per process

(see Figure 15). This introduces a new data structure: a separate binary ORB

tree whose nodes represent the recursively subdivided subspaces and the

processors associated with them, and whose leaves are the final spatial

partitions. A parallel median finder is used to determine where to split the

current subspace in the direction chosen for the split. The result is a set of

regularly shaped partitions that are each contiguous in space. A complete

description of the application of ORB to this problem can be found in Salmon
[ 1990] and Singh et al. [ 1992a]. Besides introducing new data structures,

ORB incurs substantially more runtime overhead and is more complex to

implement and debug than the costzones tree-partitioning scheme we de-

scribed above [Singh et al. 1992a].
In our SAS-CC implementations, we find the costzones scheme to perform

better than ORB, particularly as the number of processors increases. The

performance of the force calculation phase is almost equally good in the two

schemes ( costzones being a little better since it has slightly better load

balancing and since it automatically orders the particles within a partition to
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Clmmi’m ORB

Fig. 15, Tree partitioning and spatial locality.

maximize temporal locality), but the cost of partitioning itself grows much

more quickly with the number of processors in ORB [Singh et al. 1992a].

The only prior parallel implementation of a nonuniform hierarchical N-body

method is a message-passing, galactic Barnes-Hut application by Salmon

[1990]. His implementation uses ORB partitioning and yielded good parallel
performance on a 512-processor NCUBE system. We shall call his approach

the locally essential trees approach. In the rest of this section, we first briefly

describe this approach, discuss how it handles the aspects of communication

management described above, and compare its programming complexity with

that of our shared-address-space Barnes-Hut implementations. Then, we

examine the runtime overheads resulting from various sources in the locally

essential trees approach. We argue that the programming and performance

overheads are likely to be even greater for the FMM application than for

Barnes-Hut. We comment briefly on possible improvements to Salmon’s

implementation of the approach, and discuss two other approaches with less

well structured communication that might be used in the message-passing

paradigm. These approaches are more flexible than locally essential trees and

can reduce the replication requirements, but neither of them significantly

alleviates the complexity of communication management or the performance

overheads. Let us begin with the locally essential trees approach.

9.5 Salmon’s Message-Passing Approach: Locally Essential Trees

9.5.1 Concept. This approach solves the naming problem by having the

sender of data initiate and manage communication rather than the receiver.

A new phase is introduced in every time-step, between the partitioning and

force computation phases. In this phase, sender-managed communication
brings to every processor all the particle/cell data that that processor will

need to compute forces on the particles assigned to it. The part of the

Barnes-Hut tree that these data comprise for a process is called the process’
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Fig. 16. A locally essential tree.

locally essential tree (see Figure 16, in which the shaded irregular part of the

tree represents the locally essential tree of the process whose partition of

particles is in the shaded rectangle). Clearly, the locally essential trees of

different processes overlap substantially.

Once a process has its locally essential tree in its local memory, it can

perform its force computation phase without any further interprocessor

communication. Because the locally essential trees approach relies on a

partitioning scheme (ORB) that provides physical locality, a process’ locally

essential tree is substantially smaller than the whole Barnes-Hut tree (see

Figure 16). In fact, a complete Barnes-Hut tree that includes all particles is

never constructed in this approach, but can be viewed as the union of all

processes’ locally essential trees. In contrast, our SAS approaches construct a

single, complete shared tree, from which all processes directly reference the

data they need during the force computation phase, implicitly communicating

with other processes as necessary.

9.5.2 Implementation. To build locally essential trees, Salmon relies on
two properties specific to the ORB partitioning scheme: the geometrically

regular structure of the partitions it yields and its recursive, hierarchical

nature. (As we shall see, the locally essential trees approach cannot easily be
adapted for use with costzones partitioning, which is the most successful

partitioning technique on a shared-address-space machine.)

The insight exploited is the following. Although a processor that needs a

particle/cell C does not know which process’ partition C is in, the process P

that owns C can quite easily determine if C’s children might be needed by

some particle in another process’ regularly shaped spatial subdomain S.
Process P can do this by assuming that there is a particle at the point in S

that is nearest to cell C (since the actual distribution of particles in S is yet

unknown) and evaluating the Barnes-Hut opening criterion for that point
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BuikfTree (bodylkt)

{
Initialize locally essential tree to empty root cell, which represents entire domain
Load bodies in bodylist into loudly essential tree

for (each bisection in ORB partitioning) {
Traverse locally essential &ee and queue data that maybe necessary

to some processor in the domain on other side of biseetor
Traverse locally essential tree and delete data that were temporarily

received as a partner processor in a previous itwation but are
no longer needed on this prmessor’s side of cwrent bisector

Exchange queued data with “partner” processor
on other side of biseetor

Merge received data into locally essential tree

}

Fig. 17. Algorithm to build locally essential trees

s d
x

— cd’

d = original B-H distance
(domain @ cm. of cell)

d’ = new distance
(domain to cell)

1 = Iengtb of cell

Fig. 18. Opening criterion for a subdomain and a cell in Salmon’s method,

and the cell C. The algorithm to build locally essential trees is outlined in

Figure 17. Details can be found in Salmon [1990].

Locally essential trees built in this way are conservatively large. The

reason is that while the Barnes-Hut opening criterion is evaluated between a

particle and the center of mass of a cell (see Section 3.1) the actual center of
mass of cell C is not known at the time of the above opening-criterion

evaluation: although C is in process P‘s locally essential tree, other processes

might have particles in their partitions that are within cell C but that have

not yet made their way into process P’s locally essential tree. So, P must

conservatively assume that C’s center of mass is at the point within C that is

closest to subdomain S, which can result in the opening criterion being

satisfied and C’s children being communicated when they are not really

needed by particles in S for force computation (see Figure 18). This is a

problem not only for the original Barnes-Hut criterion, but for any of the very
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useful opening criteria that require knowledge of the distribution of particles

within a cell (personal communication, J. K. Salmon, 1991).

9.5.3 Summary of Communication Management. Communication in

Salmon’s locally essential trees method is initiated and managed by the

sender of data rather than by the receiver. The naming problem is addressed

by having the sender determine potential consumers of a datum and send it

to them, rather than by having a processor that needs a datum determine

where to find it. Replication is managed by explicitly copying logically shared

data into different processors’ locally essential trees (i.e., in local main

memory). Replacement of communicated data is managed in typical

message-passing style, so that a processor’s local memory must be large

enough to accommodate all the processor’s local data as well as all the

nonlocal data in its locally essential tree.

Coherence at phase boundaries is managed explicitly. For example, before

processors need to read the new positions of nonlocal particles/cells in the

force computation phase, they will already have deleted their old data and

received the new data by explicit message passing when building locally

essential trees. The finer-grained coherence needed in building a globally

shared tree is not an issue per se in the locally essential trees approach, since

a globally shared tree is not built at all. (Since the sum of the locally essential

trees is much larger than the global shared tree, this approach can be seen as

trading off redundancy for coherence.) However, a processor does have to

maintain several checks and orderings between receiving, transmitting, and

merging data when building locally essential trees. Some of the complications

introduced by merging data into these trees are listed in Appendix B, and are

very difficult to program and debug. Details of merging can be found in

Salmon [1990], as can descriptions of several more-subtle complications in

building locally essential trees that we have glossed over here.

Finally, the structure of communication is clearly large grained and sender

initiated in Salmon’s approach, rather than demand driven and fine grained

as in our SAS implementations.
The design, programming, and debugging complexity of managing commu-

nication through building locally essential trees is clear, especially when

compared with the fact that none of this has to be done in a shared-address-

space implementation. The fact that Salmon’s message-passing version took

several times longer to implement than our shared-address-space version

indicates the difference in complexity (personal communication, J. K. Salmon,
199 1). The difference is also demonstrated by our experience with having

groups of graduate students implement the application on SAS-CC and
message-passing machines, in a ten-week parallel programming project course

at Stanford University. The SAS versions were produced very quickly and

yield very good speedups on the DASH multiprocessor. A message-passing

version, however, is yet to be completed within the time allotted for the

project (even though the starting point for the message-passing versions is a
high-level description of the algorithms, which even removes most of the

conceptual complexity). The complexity and characteristics of the message-
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passing implementation also have significant implications for runtime behav-

ior, as we shall see in Section 9.6.

It is worth noting that the locally essential trees cannot reasonably be used

with costzones partitioning, even though costzones is the best partitioning

scheme for an SAS abstraction. There are two reasons for this. First, cost-

zones partitioning requires the complete Barnes-Hut tree to have been al-

ready built before the partitioning is done. This complete tree is not built at

all in the locally essential trees approach, and even the locally essential trees

which are built require the partitioning to have been done already. Second,

even if the complete tree were available, the costzones scheme produces

irregularly shaped—albeit physically contiguous-partitions, and does not

have the regular rectangular partitions of ORB partitioning on which the

locally essential trees approach relies.

9.6 Runtime Implications of the Locally Essential Trees Approach

We divide the implications for runtime behavior into three parts: (1) execu-

tion time overheads, (2) the management of temporal locality and its implica-

tions for the problem sizes that can be run on a machine, and (3) communica-

tion volume.

9.6.1 Execution Time Overheads. Building locally essential trees incurs a

lot of overhead in both computation and communication. Two tree traversals

are required in each of the logz p iterations in the BuildTree algorithm (see
Figure 17), each involving evaluations of the opening criterion at every

visited node. Merging received data into a locally essential tree is also a

high-overhead operation. In fact, Salmon finds that the vast majority of the

runtime overhead in his parallel message-passing implementation is due to

building the locally essential trees [Salmon 19901.

Salmon breaks down the overheads in his parallel implementation by their

source. He finds that the largest source of overhead in the entire application

is the extra work done in the parallel implementation. By far the dominant

source of this extra-work overhead is associated with building the locally

essential trees, not with doing the partitioning [Salmon 1990]. The next

highest source of overhead is the load imbalance or waiting time at synchro-

nization events, which is also found primarily in the phase of building locally

essential trees. The overhead of communication itself (the time that a proces-

sor spends sending and receiving data) is comparably small. A representative

example is a run with 100,000 particles on 512 processors, in which the

complexity overhead of building locally essential trees is about five times the

waiting-time overhead and a hundred times the communication overhead (a

complete set of data for various problem configurations can be found in

Salmon [1990]). In an SAS implementation, locally essential trees do not have

to be built at all. And the synchronization and communication overheads

involved in collaboratively building the shared Barnes-Hut tree are not very

significant relative to total execution time for typical ratios of problem size to
number of processors (cache miss rates of under 1% are typical, and the

major source of performance loss is a load imbalance that is present, even in

the locally essential trees message-passing approach). Thus, our SAS imple-
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mentation does not suffer either of the overheads that most substantially

lower the performance of the message-passing implementation.

9.6.2 Temporal Locality and Its Implications. We have already stated

that the amount of replication needed in our SAS implementation is equal to

the amount of data needed to compute forces on a single particle and that this

replication is done only in the cache, whereas in the locally essential trees

approach it is the amount of data needed to compute forces on all of a

processor’s particles, and that nonlocal data are replicated in main memory

as well. Both Salmon and we have measured the memory overhead of

replication in the locally essential trees approach. Memory overhead is de-

fined as the ratio of the size of the locally essential tree to the size of the local

tree constructed using only the processor’s assigned particles. The latter

quantity is a good approximation to the per-processor main memory require-
11 our meaSUrernentS are for a versionments in as SAS-C!C implementation.

of Salmon’s code that has been altered to match the mathematical functional-

ity of our SAS code and that we have run on a 32-processor iPSC/2 computer.

For 200K particles running on 256 processors with a low force calculation

accuracy, Salmon found the extra memory overhead to be a factor of five! Our

results for a range of parameters are shown in Table II. The amount of

replication with locally essential trees is clearly very large compared to the

memory requirements in a single address space. The replication overhead

grows quickly with the number of processors and with the force calculation

accuracy (i.e., with decreasing @), and decreases with increasing number of

particles. In contrast, the amount of replication in caches needed in our SAS

implementation is very small—much smaller than the partition size—even

though it includes both local and nonlocal data.

The large amount of replication in main memory has implications for the

size of a problem that is possible to fit in memory on a message-passing

machine. On an SAS-CC machine, there is no need for replication in main

memory (see Sections 6 and 7), so the number of particles that can be run

grows linearly with the number of processors (and hence memory). On the

other hand, although the amount of data in a processor’s partition stays

about the same if both the number of particles and number of processors are

doubled, Table II shows that the size of a processor’s locally essential tree

increases (this can also be seen from the data presented in Salmon [1990]).

Figure 19 shows the resulting dramatic difference in the number of particles

that can be accommodated as the number of processors and amount of
memory increase, using data from Salmon’s thesis [Salmon 1990] for the

locally essential trees approach. In fact, these results assume that only the

number of particles is scaled with the number of processors. If the accuracy

parameter 6 is also scaled as discussed in Section 7, (1) the amount of

replication needed is larger (see Table II) and (2) the number of particles that

11In fact, it is an overestimate, since the amount of data per cell needs to be a little larger m the

locally essential trees case than m our SAS approach, and since many cells that exist in different

processors’ local trees in Salmon’s approach are in fact shared in the SAS implementation
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Table II. Barnes-Hut: Ratio of Locally Essential Tree Size to Local Tree Size

in Salmon’s Approach

Num. ri=4k n=flk = 16k
Procs 8=0.6 0=0.8 e=l.o 0=0.6 0=0.8 0=1.0 8=0.6 ‘0=0.8 O=l.O

8 3.16 2.% 2.45 2.64 2.46 2.12 2.28 2.12 1.86

16 5.34 4.82 3.s6 4.16 3.78 3.07 3.36 3.07 2.56

32 9.18 7.93 5.98 6.78 5.86 4.61 5.18 4.53 3.62
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Fig. 19. Maximum number of particles that can be run using 100KB of memory per processor.

can be run grows even more slowly in the message-passing approach. Thus,

even memory-constrained scaling does not allow the number of particles to

increase linearly with the number of processing nodes, and the scalability of

the locally essential trees approach is clearly limited.

Finally, we note that the consequences of a phase-structured replacement

policy in message passing are even greater for partitioning schemes that do

not incorporate physical locality but focus only on load balancing. Singh et al.

[ 1992al showed that such schemes can be quite successful on small to

medium-scale SAS machines. These schemes, however, are very undesirable

with phase-structured replacement on message-passing machines of any size.

Because the particles assigned to a processor under these schemes are

scattered all over the domain, every processor references almost the entire

Barnes-Hut tree during force computation, and phase-structured replication

severely limits problem size and scalability.
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9.6.3 Communication Volume. While the number of data words communi-

cated in the force calculation phase of the SAS approach is inherent to the

Barnes-Hut algorithm, the amount of data communication in building locally

essential trees is significantly larger. There are two reasons for this. First, a

processor receives a lot of data in each iteration of the Buildtree algorithm

(from its partner at that bisection) that it does not itself need but must pass
on to another processor in a later iteration (see the earlier description of the

Buildtree algorithm and Salmon [1990]). Our measurements over a range of

problem parameters show that about 40% of the communication volume falls

into this nonessential category. Second, the conservatism of the opening

criterion used in building locally essential trees (as discussed in Section 9.5)

often results in cell information being communicated that will not be used in

the force computation, which uses the true (nonconservative) opening crite-

rion.

It is possible to avoid the first source of extra communication. A processor

can first use the ORB tree structure to determine all the processors that

might need any data from its partition, and then send those data directly to

all those processors, rather than sending data indirectly through correspond-

ing partner processors at each node of the ORB tree. This also reduces the

amount of merging and pruning of data that needs to be done in building

locally essential trees. However, a fair amount of merging of received data

remains, and the resulting communication is less structured and can cause

more contention for network resources than in Salmon’s implementation.

It may be argued that although there is extra communication in the

ORB-based building of locally essential trees, the communication is coarse

grained and well structured, which is better than the fine-grained, demand-

driven communication in our SAS implementation. However, this is not a

significant issue in these applications. We have seen that caching shared data

keeps the communication-to-computation ratio very low. And the fine-grained

communication that remains is handled efficiently, owing to the hardware

address translation, protection, and buffer management discussed earlier. A

change in communication management strategy is not likely to be necessary

even on larger machines, particularly since the problem size also scales, so

the communication-to-computation ratio does not increase very quickly (see

Section 7.4).

9.7 Additional Complications for Locally Essential Trees in the FMM

The fact that the natural unit of parallelism in the FMM is a cell rather than
a particle further complicates message-passing implementations using locally

essential trees. A processor’s locally essential tree in this case is the union of

the four interaction lists of all cells in its partition (see Section 8) as well as

all ancestors and children of its cells, The additional complications arise from

two sources, both discussed in the context of partitioning in Singh et al.

[1992a]. First, it is not only leaf cells that are partitioned in the FMM, but

internal cells as well. Second, many cells will straddle the bisectors that ORB

partitioning produces (unlike particles, which fall on one or the other side of a

bisector). These border cells have to be partitioned separately for load balanc-
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ing, which makes the resulting partitions irregular in the FMM. The result-

ing complications are:

(1) The cells that will exist in the current time-step are not known until
locally essential trees are built. However, building locally essential trees

requires the partitioning of cells (leaf and internal) to have been done. To

solve this problem, internal cells might be partitioned as they are con-

structed during the building of locally essential trees. However, the cells

are incomplete at this time; and their predicted costs will be inaccurate.

In the Barnes-Hut application, this incompleteness of cells caused a more

conservative opening criterion to be used; in the FMM, it would lead to

poor load balancing as well.lz

(2) The ownership of border cells (leaf or internal) has to be determined. The
identities of processors that share border cells can be determined by an

ORB tree traversal. However, determining which processor should be

assigned which cells is more difficult.

(3) The fact that partition borders are irregular even with ORB implies that
conservatively larger regular partitions must be defined to build locally

essential trees.

Solving the above problems requires additional ORB tree traversals, each

involving substantial computation and communication. Since we are unaware

of a message-passing implementation of the adaptive FMM, we do not know

how large the resulting overhead will be. Clearly, it will be significantly

larger than in the Barnes-Hut case.

9.8 Summary of Drawbacks of the Locally Essential Trees Approach

In summary, then, the following are the main drawbacks of the locally

essential trees approach for message passing, relative to our shared-address-

space approach.

—Complexity of implementation and debugging.

—Performance overheads that result directly from this complexity.

—Restrictions on the number of particles that can be run and on the scaling

of the number of particles with the number of processing nodes.

—The need for a modified cell opening criterion in Barnes-Hut and the

general inability to use opening criteria that depend on the distribution of

particles within a cell.

—The greater volume of communication.

—The inappropriateness of straightforward, load-balanced partitioning

schemes even on small-scale multiprocessors.

—The fact that the approach cannot reasonably be used with costzones

partitioning.

12A possible solution for partitioning internal cells traverses the ORB tree three times: first, to

partition particles; second, to exchange particles in border cells and hence construct these cells

completely; and third, to partition cells.
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Finally, the locally essential trees approach relies on a property of classical

N-body applications, which is that the need to examine an interaction be-

tween two entities (bodies or cells) depends only on the entities themselves

and the distance between them, not on any other factors in the domain.

More-complicated interactions exist in other applications that use a hierar-

chical N-body approach. In a hierarchical radiosity application that we have

studied, for example, the need for subdividing a patch (opening a cell) is also

determined by the extent to which two patches are directly visible from each

other, which requires knowing what other patches lie between the two [ Singh

et al. 1992a]. Building locally essential trees as described in this section is not

feasible for such applications.

9.9 Alternatives to Locally Essential Trees for Message Passing

The locally essential trees approach has the advantage that the sender of

data initiates and manages communication, which makes it quite easy to

increase communication granularity and impose structure on the communica-

tion. Despite the drawbacks discussed above, this approach may well be the

best way to implement the Barnes-Hut application on a message-passing

machine with high message overheads. Other message-passing approaches

can be developed, however, in which the receiver initiates communication (as

is natural to shared-address-space implementations). These approaches are

more flexible for other opening criteria and other applications such as the

FMM, and the second among them may be preferable even for the Barnes-

Hut application in the long run, particularly as message overheads become

smaller.

9.9.1 Virtual Pointers. One approach is to have every processor hold a

virtual copy of the tree, which includes actual data for the parts of the tree

that are in its partition, and pointers to the owning processors of other parts.

When a processor encounters such a “virtual pointer” in its traversal of the

tree, it can either request the necessary data from the processor pointed to, or

ask it to perform the required computation. Managing the virtual pointers

and rebuilding the tree are complex tasks, however, since both the processors

to which the virtual pointers point and even whether a given pointer is

virtual or local change as the tree and partitioning change (see Appendix C).

The overheads of this management may not be any better than those of

building locally essential trees. However, the virtual pointers technique can

be used just as well with costzones partitioning as with ORB.

9.9,2 Hashing. A better alternative is to distribute logically shared data
statically among processing nodes. A simple hashing algorithm can be used to

allow processors to determine where a given particle has its “home” and

request it from that home when necessary .13 This is very close to a shared-

address-space style of programming, except that the programmer implements

an application-specific shared address space. Since cells do not persist across

time-steps, the hashing is a little more complicated for cells than for parti-

13Such an approach has been used in Warren and Salmon [ 1993] since this writing
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cles. A consistent scheme must be constructed so that all processors refer to a

given cell by the same identifier. This approach avoids many of the flexibility

disadvantages of the locally essential trees approach and allows the program-

mer to manage temporal locality in any manner desired, including by emulat-

ing a hardware cache in the application progmam. However, it has some

disadvantages:

(1) The natural communication is demand driven and very fine grained. At
least on current message-passing machines, individual data request or

reply messages will have to be grouped together before sending them out.

More significantly, substantial programming contortions will be required

to hide the large latencies of messages by overlapping other computations

with them.

(2) At every reference, the application program has to check if the datum
being referenced is local, if it is nonlocal but has already been cached

(replicated) locally, or if it has to be fetched from another processing node
(in which case the translation and messaging have to be done). Such

checks do not have to be made in the locally essential trees approach.

(3) There is now a need to provide coherence at a fine granularity, just as in
the SAS implementation, when collaboratively building the single

Barnes-Hut tree. This can be quite complicated and may motivate turning

off caching for this phase.

(4) A key underpinning of this static data distribution approach is that good

performance should not require redistribution of data as partitions change.

That is, that a processor’s partition of the tree should not have to reside

in its local memory. If data redistribution is required, the tasks of naming

and providing coherence become much more complicated. In Section 6, we

showed that data distribution is not very important for the relatively

small latencies encountered on SAS machines. On message-passing ma-

chines, the latencies for remote references are substantially 1arger. Hav-

ing partitions be in local memory may therefore be more important,

particularly in the FMM application (see Figure 13(b)).

Thus, while this SAS-like approach is more flexible than locally essential

trees, it is not at all clear whether it is any easier to implement or has less

runtime overhead. A recent implementation by Warren and Salmon [1993]

indicates that the greatest benefit is in flexibility-to handle opening criteria

and even FMM-like methods—and not in programming complexity or execu-

tion time. Nonetheless, we believe that it is a useful approach for supporting

many classes of irregular, unpredictable applications which exhibit temporal

locality on message-passing machines, particularly together with emulating a

cache in software (see Singh et al. [1994] as well), and may behoove us to

provide efficient support for in a language, runtime system, and compiler for

these machines.

From the above discussion, it seems clear that providing system support for

a shared address space—especially with coherent caching of shared data—is

very advantageous for hierarchical N-body applications from the algorithm
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Table III. Results for Software-Supported Shared Address Space (SAM) for Barnes-Hut

(n = 25K, p = 32)

Machine Address Translation (Nam”ng) Speedup

Overhead (% of exec. time) over 1 proc.

Intel iPSC/860 19 10
IntelParagon 17 10

ThinkingMachinesCM-5 20 16

design, programming, and runtime overhead points of view. The fact that

individual communications in our shared-address-space implementations are

fine grained is more than compensated for by two facts: that caching shared

data is very effective at keeping communication-to-computation ratios low for

N-body problems and that the hardware mechanisms for naming and cache

coherence support fine-grained communication efficiently,

9.10 Is Hardware Support Necessary?

An interesting architectural question that remains is whether the cache-

coherent shared address space should be supported in hardware. The alterna-

tive is to support it in a software layer on a message-passing machine.

Several people have built such optimized software layers. Scales and Lam

[1994] have implemented the Barnes-Hut application on one such optimized

system (called SAM) that they have designed. Table III shows some of their

results on three current message-passing machines for a 25 K-particle prob-

lem. Thirty-two processors are used in all cases. For comparison, our SAS

implementation yields a speedup of about 28 on 32 processors on the DASH

machine for the same problem. While we do not claim that these results are

decisive, it appears that hardware support at least for naming nonlocal data

is very useful for applications with fine-g-rained, irregular referencing and

communication patterns.

Before we conclude, let us note one other, more general disadvantage of the

explicit message-passing paradigm. In any message-passing scheme, the

burden is on the application programmer to get all the communication

management (keeping track of data, coherence, etc.) exactly right to obtain a

correct program. As we have seen, this is difficult for a programmer to do in

nonuniform, dynamically changing applications that require long-range com-

munication. In SAS implementations, on the other hand, the programmer’s

main concerns in communication management are to use an appropriate

partitioning scheme that minimizes communication, and perhaps to manage

data distribution explicitly (although the latter is not required in these

applications). The programmer can in many cases afford to be somewhat lax

about these issues, especially in complex but unimportant phases of a pro-

gram, since the penalty for this laxity is not correctness but only a small

amount of performance. Thus, even if some applications might benefit from

mechanisms that are traditionally associated with message passing—such as

bulk transfer of data—having an efficiently supported shared address space
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remains very useful, and these mechanisms should be built on top of an

efficient shared-address-space machine.

10. CONCLUDING REMARKS

We have examined the properties of an important class of parallel applica-

tions—those that use hierarchical N-body methods—and how these proper-

ties impact the design of current and future parallel machines. We have

shown the following results.
First, we examined the kinds of locality available in an architecture and

how they interact with these applications. We found that the key form of

locality is temporal locality on both local as well as communicated data. The

degree of temporal locality on communicated data is high enough that

excellent parallel performance is obtained, despite the irregular and dynami-

cally changing data-referencing patterns of the applications. Hardware caches

exploit this temporal locality very effectively, and there is no need to manage

locality in physically distributed main memory, which would be quite difficult

for these applications under program control. We have found this to be true of

other classes of irregular applications as well, such as some in computer

graphics [Singh et al. 1994].

Then, we examined the implications for scaling the applications to run

larger problems on larger machines. We demonstrated the following results

for scaling.

—Using scaling models that reflect the goals of the application scientist leads

to different results about the scaling of important application characteris-

tics than more-naive scaling models.

—Time-constrained scaling is more realistic than memory-constrained scal-

ing for these and other scientific applications.

—The input data set size per processor, and the memory requirements in a

shared address space, diminishes under time-constrained scaling.

—The communication-to-computation ratio grows slowly under time-con-

strained scaling.

—The size of the most important working set, which helps determine the size

of cache that is desirable, grows under time-constrained scaling (and grows

even more quickly under memory-constrained scaling).

—The number of particles that can be run on a message-passing machine

does not scale linearly with the number of processors even under memory-

constrained scaling (without substantial programming contortions and

performance loss), although it does on a shared-address-space machine.

—The per-processor local memory requirements on message-passing ma-

chines are likely to decrease under time-constrained scaling.

Although our results show that the communication-to-computation ratio and

the working-set size increase slowly under realistic scaling rules, both these

important parameters are small enough with good partitioning schemes that

we are likely to obtain very good parallel performance from hierarchical

N-body applications for some time to come.
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Finally, we examined the interaction between the communication proper-

ties of the applications and the use of a shared address space or explicit

message passing between private address spaces as the method for interpro-

cessor communication. We found that an efficiently supported shared address

space (particularly with coherent replication) has substantial advantages in

programming complexity over explioit message passing—owing to the irregu-

lar, dynamically changing communication needs—and that the complexity of

message passing translates to substantial performance overheads as well.

Our experiences lead us to believe that as people solve more and more

complex and irregular problems on parallel machines—in order to model

physical phenomena more accurately and efficiently-and as people run

more-general workloads than numerical scientific applications [ Singh et al.

1994], the advantages of a hardware-supported coherent shared address

space over explicit message passing become substantial.

APPENDIX A. COMMUNICATION COMPLEXITY OF THE FMM

In this appendix, we derive the communication complexity of the FMM,

assuming a uniform distribution of particles. Suppose that every processor’s

partition contains g-by-g leaf cells (g = ~Z, where n is the total

number of particles, p the number of processors, and s the number of

particles per leaf cell). If the root of the tree is level O, then every processor

can be assumed to own a subtree whose root is at level (log g – 1) and which

has g-by-g leaf cells at level (log n – 1). Cells at levels O through (log g – 1)

are shared among processors. Let us first ignore the direct particle-particle

computations at the leaf level and look only at the communication incurred

when cells compute their interactions with cells in their interaction lists.

Every processor’s partition (from level (log g – 1) to the leaves) can be

thought of as a pyramid of cells whose base is of size g-by-g. The volume of

interaction-list communication due to the cells in this pyramid is proportional

to the number of cells outside the pyramid that the cells in the pyramid

interact with. Given the interaction patterns of the FMM, this amounts to the

number of children of all cells on the sides of a (g/2 + 2)-by-( g/2 + 2)

pyramid (i.e., a pyramid that just surrounds the original, except for the leaf

level). This number of cells is

= (internal cells on faces of pyramid + edge cells of pyramid + vertex cell)

* 4 children

(–;1+;+;+. )..-logg terms *4 + (logg– 1)*4 + I*4

= 16(g + logg)

‘16(E+10gE1

since g = ~n/(p * s) .
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For the cells in levels O through (log g – 1), the two extreme points are (1) a

processor that owns all the cells from the root of the whole tree (level O) to the

root of its partition at level (log g – 1) and (2) a processor that owns no cells

above level (log g – 1). In the former case, the processor owns (log p) cells in

the levels above level (log g – 1), which communicate with approximately

(8* log p) other cells outside the processor’s partition. Thus, the total commu-
nication for a processor that owns the path from the root of the whole tree to

the root of its partition at level (log g – 1) is

8m*2*(E+10gl=)‘lOgp
where m is the number of terms used in the multipole expansions. The total

communication for a processor that does not own any cells above its partition

at level (log g – 1) is of order

8m”2*(L=+’OgL=)
For the direct particle-particle interactions that leaf cells compute with cells

in their near-field, the number of nonlocal leaf cells with which these interac-

tions are computed is the number of cells adjacent to the base of the pyramid,

which is (4g + 4) or 4 *(~- + 1). The processor communicates with

half these cells, resulting in a communication of order s * ~-, or

M.

APPENDIX B. COMPLICATIONS IN MERGING DATA INTO A LOCALLY
ESSENTIAL TREE

Some examples of the complications involved in merging data into a locally

essential tree are the following.

—A cell into which some piece of received data (a body or another cell) is

going to be merged may itself be scheduled for transmission (in its original

form) at the end of that iteration. For this reason, cells that are scheduled

for transmission must be marked and, if they are to be modified in the

merge phase, copied before modification.

—Data that are eligible for pruning may also be scheduled for transmission

in the same iteration. These data cannot be deleted until sent. The deletion

procedure must therefore check whether they have been marked for trans-

mission and then mark them for the sending procedure to remove after

transmission.

—The local tree may not yet be refined to the level at which an internal cell

received from another processor must be inserted. The latter cell has a

fixed position and level in its tree and must be inserted into a cell at its

parent’s level. The local tree may therefore have to be refined to that level
first.

—The center-of-mass information for a cell must be checked for being up-to-

date on two occasions and perhaps recomputed: when it is enqueued for
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transmission (since the structure of the cell might change between this

time and when it is actually transmitted), and when the subtree below it is

to be pruned.

—Even data that are not needed by a processor itself are merged into its tree

and later pruned.

APPENDIX C. ORB WITH VIRTUAL POINTERS

In the virtual pointers approach, the Barnes-Hut tree is broken down into a

set of subtrees, each being the largest subtree that is owned by a single

processor. Every processor then holds its subtrees, the part of the tree (some

“upper” nodes and edges) that is not owned by any single processor, and

pointers to the owning processors of the other subtrees. These pointers give

the scheme its name. Attaching the subtrees they point to to the virtual

pointers (edges) on a processor would yield the entire Barnes-Hut tree. When
a processor reaches a virtual pointer in the course of a tree traversal and

needs information from the subtree underneath it, it sends a message to the

owning processor as revealed by the pointer. For example, if a processor

determines during the force computation traversal for a particle that a cell

pointed to by a virtual pointer must be opened, it may simply send the

owning processor a message with the particle information. The owning pro-

cessor then computes the forces due to the subtree “underneath” that cell and

send back the result. Of course, the structure of the tree, the partitions, and

therefore the virtual points change across time-steps. Maintaining the virtual

pointers to keep the tree up-to-date is still the programmer’s task, as is

catching references to virtual pointers and translating them to the appropri-

ate messages. One mechanism to rebuild the tree with virtual pointers is as

follows. The starting point is the tree structure with virtual pointers from the

previous time-step, and the new partitions of particles for the new time-step

computed using ORB. The tree-building process in this case includes the

following steps:

Remove all particles (not internal cells or virtual

pointers) from local tree.
Load particles in local partition into tree:

If particle goes into virtual pointer, send
to that processor to load (along with
sender process id)

if new cell is created, not part of owned subtree,
figure out owner by some rule consistent across

processors and send to owner (with sender id)
Traverse tree to

compute cm. of owned subtrees

change ownership information of local subtrees
enqueue new subtrees, those whose ownership has

changed, and those that are no longer needed
Broadcast enqueued subtrees
Merge received subtrees into tree if owner, or

set up virtual pointers

This method can use the original Barnes-Hut opening criterion just as our

shared-memory implementation can. However, the communication in it is not
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as regular or block-structured as the method of locally essential trees with

ORB partitioning. Like the shared-memory implementation, this method

includes communication during the force computation phase, and the commu-

nication can be on-demand or larger grained. While it reduces replication

needs relative to the locally essential trees method, the less-structured

communication and the need for global communication of virtual pointers

may hurt its relative performance.
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