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Abstract:
Tiled architectures, such as RAW, SmartMemories, TRIPS, and WaveScalar, promise to address several issues facing

conventional processors, including complexity, wire-delay, and performance. The basic premise of these architectures is that
larger, higher-performance implementations can be constructed by replicating the basic tile across the chip.

This paper explores the area-performance trade-offs when designing one such tiled architecture, WaveScalar. We use a
synthesizable RTL model and cycle-level simulator to perform an area/performance Pareto analysis of over 40 WaveScalar
processor designs ranging in size from 40mm2 to 400mm2 and having a 20 FO4 clock rate. We demonstrate that, for multi-
threaded workloads, WaveScalar performance scales linearly over this range, enabled in part by its scalable, hierarchical
interconnect (80% of communication is within a single tile). The analysis also reveals that area efficiency is more important
than raw performance when choosing a tile configuration and that the optimal tile configuration varies from one size processor
to another. Consequently, simple tile replication is insufficient for effective scaling. Not only must the data cache system be
adjusted, but the core tile of the architecture, the processing element, must be tuned for each chip size. Architectures with
parameterizable tiles that can be made more or less powerful will adapt better to variations in overall chip size.

Keywords: WaveScalar, Dataflow computing, ASIC, RTL

1 Introduction

To address a set of critical problems in processor design, including design complexity, wire delay, and fabrication reliabil-

ity, many computer architects are beginning to shift their focus away from today’s complex, monolithic, high-performance

processors. Instead, they are designing a much simpler processing element (PE) and compensating for its lower individual

performance by replicating it across a chip. Examples of thesetiled architecturesinclude RAW [1], SmartMemories [2],

TRIPS [3, 4] and WaveScalar [5]. Their simple PEs decrease both design and verification time, PE replication provides ro-

bustness in the face of fabrication errors, and the combination reduces wire delay for both data and control signal transmission.

The result is an easily scalable architecture that enables a chip designer to capitalize on future silicon process technologies.

Despite the high-level simplicity and regularity of the tiled structure, good performance on these architectures—more

importantly, good performance per unit area—is achievable only if all aspects of the microarchitecture are properly designed.

Architects face some of the same design issues in these systems as in conventional, more centralized processors (e.g., ALU

mix, cache hierarchy design, etc.). However, they also face a new set of issues. For example, should architectures have more

tiles to exploit additional parallelism or fewer, more highly utilized and possibly more powerful ones? Where should the

various data memories be located, and to what extent should they be partitioned and distributed around the die? Is it more

important to devote area to additional processing elements or memories? How should tiles be interconnected?

This paper explores the area-performance trade-offs encountered when designing a tiled architecture. The target archi-

tecture for this study is the WaveScalar processor, a tiled dataflow architecture. Like all dataflow architectures, each of

WaveScalar’s simple PEs execute instructions according to the dataflow firing rule [6]. Data communication between in-

structions in different PEs is explicitly point-to-point. To reduce data communication costs, instructions that Communicate



frequently are placed in close proximity [7, 8], and the data networks are organized hierarchically. All major hardware data

structures are distributed across the die, including the caches, store buffers and specialized dataflow memories such as the

token store.

To accurately conduct an area-performance study, we created two artifacts. The first is a synthesizable Verilog model of

the WaveScalar architecture. This model synthesizes with the latest commercial design tools to a fast clock (20 FO4) on the

latest available TSMC process (90nm). While the Verilog model can execute instructions, as with all RTL simulators it is

too slow for executing millions of them. For this purpose we wrote a corresponding cycle-level simulator and application

development tool-chain.

The paper uses these tools to make two primary contributions. First, it revisits the buildability of dataflow machines,

given today’s denser technology. Second, it explores a wide swath of the area-performance design space of this dataflow

architecture.

In particular, we describe the microarchitecture for two key parts of the WaveScalar processor: its most area-sensitive por-

tions, including those that implement its distributed dataflow capabilities, and the interconnection networks that localize data

communication, contributing heavily to performance. This basic structure can be used to build a continuum of WaveScalar

processors with varying performance and area. We detail the area budget for a particular configuration, showing where it is

crucial to optimize the design.

Then, to understand a larger design space, we use data from our RTL synthesis to develop an area model that describes

the area requirements for a range of designs. We use the resulting model to enumerate a large set of WaveScalar processors

that could be built in modern process technology. Our evaluation of these designs, a Pareto analysis of the design space,

demonstrates that multithreaded WaveScalar processor performance scales linearly from 40mm2to 400mm2of silicon, but

that naively scaling a small, high-performance design can yield designs that are twice as large as a Pareto-optimal design

that achieves the same performance. In other words, designing a tile that can seamlessly scale from small designs to large is

difficult. Instead, a better approach would be to design a flexible, easily-tuned tile that can be tailored for a specific processor

size. Finally, we analyze the effect of processor size on the on-chip interconnect performance, and find that our processor’s

hierarchical interconnect does an excellent job of minimizing latency by localizing communication, with more than 98% of

communication occuring within a single WaveScalar cluster.

This paper begins in Section 2 by describing our experimental infrastructure. Section 3 presents an overview of the

WaveScalar microarchitecture and its four main components: (1) the execution tile, i.e., the processing element (PE); (2) an

interface to memory that supports imperative languages, which we call awave-ordered storebuffer; (3) a conventional data-

cache hierarchy; and (4) a hierarchical interconnect to provide fast communication among these components. The description

of the four components is split between Section 3, which contains a basic description of their design and architecture, and an

appendix, which contains a detailed example of PE operation. Section 4 presents results of the area-performance analysis.

Section 5 describes tiled-architecture work and Section 6 concludes.

2 Experimental infrastructure

In this section we describe the RTL toolchain and simulation methodology that produced the area-performance results pre-

sented throughout this paper.
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2.1 The RTL model

Being a tiled dataflow processor, WaveScalar is different enough from conventional von Neumann processors that we cannot

draw on past research, existing tools, or industrial experience to understand area and cycle-time requirements. Since these pa-

rameters are crucial for determining how well WaveScalar performs and how to partition the silicon resources, we constructed

a synthesizable RTL model of the components described in later Sections 3.2 through 3.3.

The synthesizable RTL model is written in Verilog, and targets a 90nm ASIC implementation. Considerable effort was

put into designing, and redesigning this Verilog to be both area-efficient and fast. The final clock speed (20 FO4) comes from

our fourth major redesign.

The 90nm process is the most current process technology available, so the results presented here should scale well to

future technologies. In addition to using a modern process, we performed both front-end and back-end synthesis to get as

realistic a model as possible. The model makes extensive use of Synopsys DesignWare IP [9] for critical components such as

SRAM controllers, queue controllers, arbiters, and arithmetic units. The design currently uses a single frequency domain and

a single voltage domain, but the tiled and hierarchical architecture would lend itself easily to multiple voltage and frequency

domains in the future.

ASIC design flow: We used the most up-to-date tools available for Verilog synthesis. Synopsys VCS provided RTL sim-

ulation and functional verification of the post-synthesis netlists. Front-end synthesis was done using Synopsys DesignCom-

piler. Cadence FirstEncounter handled back-end synthesis tasks such as floorplanning, clock-tree synthesis, and place and

route [10]. By using back-end synthesis, the area and timing results presented here include realistic physical effects, such

as incomplete core utilization and wire delay, that are critical for characterizing design performance in 90nm and smaller

designs.

Standard cell libraries: Our design uses the 90nm high-performance GT standard cell libraries from Taiwan Semicon-

ductor Manufacturing Company (TSMC) [11]. The library contains three implementations of cells, each with a different

threshold voltage, for balancing power and speed. We allow DesignCompiler and FirstEncounter to pick the appropriate cell

implementation for each path.

The memory in our design is a mixture of SRAM memories generated from a commercial memory compiler (used for

the large memory structures, such as data caches) and Synopsys DesignWare IP memory building blocks (used for smaller

memory structures).

Timing data: Architects prefer to evaluate clock cycle time in a process-independent metric, fanout-of-four (FO4). A

design’s cycle time in FO4 does not change (much) as the fabrication process changes, thus enabling a more direct comparison

of designs across process technologies.

Synthesis tools, however, report delay in absolute terms (nanoseconds). To convert nanoseconds to FO4, we followed

academic precedent [12] and used the technique suggested in [13] to measure the absolute delay of one FO4. We synthesized

a ring oscillator using the same design flow and standard cells used in our design and measured FO1 (15.8ps). We then

multiplied this delay by three to yield an approximation of one FO4 (47.3ps). All timing data presented here is reported in

FO4 based upon this measurement.
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2.2 Cycle-level functional simulation

To complement our RTL model, we built a corresponding cycle-level simulator of the microarchitecture. The simulator

models each major subsystem of the WaveScalar processor (execution, memory, and network) and is used to explore their

design in more detail. It also answers basic questions, such as how the sizing of microarchitectural features affect performance.

To drive the simulations, we executed the suite of applications described below. These applications were compiled with the

DEC AlphaCC compiler and then binary translated into WaveScalar assembly. The assembly files are then compiled with our

WaveScalar assembler, and these executables are used by our simulator.

Applications: We used three groups of workloads to evaluate the WaveScalar processor; each focuses on a different aspect

of WaveScalar performance. To measure single-threaded performance, we chose a selection of the Spec2000 [14] benchmark

suite (ammp, art, equake, gzip, twolf andmcf). To evaluate the processor’s media processing performance we userawdaudio,

mgeg2encode, anddjpeg from Mediabench [15]. Finally, we use six of the Splash2 benchmarks,fft, lu-continuous, ocean-

noncontinuous, raytrace, water-spatial, andradix, to explore multi-threaded performance. We chose these subsets of the

three suites because they represent a variety of workloads and our binary translator-based tool-chain can handle them.

3 A WaveScalar Overview

This section provides a brief overview of the WaveScalar architecture and implementation to provide context for the area

model and performance results presented in Section 4. More detail about the instruction set is available in [5, 16]. Once

we have set the high-level stage in the next subsection, the following three subsections present the portions of the execution,

communication, and memory systems that contribute the most to WaveScalar’s area budget. This section describes the purpose

and function of each component. The appendix supplements this section with a step-by-step example of PE operation.

3.1 The WaveScalar Architecture

WaveScalar is a tagged-token, dynamic dataflow architecture. Like all dataflow architectures (e.g. [17, 18, 19, 20, 21, 22, 23]),

its application binary is a program’s dataflow graph. Each node in the graph is a single instruction which computes a value

and sends it to the instructions that consume it. An instruction executes after all its input operand values arrive according

to a principle known as thedataflow firing rule[17, 18]. WaveScalar can execute programs written with conventional von

Neumann-style memory semantics (i.e. those composed in languages like C/C++) and correctly orders memory operations

with a technique calledwave-ordered memory[5].

PEs form WaveScalar’s execution core. From the point of view of the programmer, the WaveScalar execution model

provides a PE for each static instruction in an application binary1. Since this is clearly not practical (or efficient), the processor

contains a smaller pool of PEs and dynamically binds instructions to PEs as an application executes, swapping them in and

out on demand. This binding process isnot the same as instruction fetch on conventional processors. The key difference is

that once an instruction is bound to a physical PE, it can remain there for many dynamic executions. Figure 1 illustrates how

a program can be mapped into a WaveScalar processor for execution.

A PE contains all the logic for dataflow execution. It has an input interface that receives tokens containing a data value

and information that associates the value with a particular instruction. These tokens are stored in a matching table, which

1More precisely, for each instruction in each programmer-created thread.
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int *V;
int a, b;
int c, d, r;

r = a*c + b*d;
V[a] = 2*r + d << 2; 

Add
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Figure 1: Three views of code in WaveScalar:At left is the C code
for a simple computation. Its WaveScalar dataflow graph is shown at
center and then mapped onto 2 8-PE domains in a WaveScalar processor
at right.
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Figure 2: The WaveScalar processor and
cluster: The hierarchical organization of the
WaveScalar microarchitecture.

is implemented as a small, non-associative cache. Once all tokens for an instruction have arrived, the instruction can be

scheduled for execution. An ALU executes the instructions and sends the results to an output network interface, which in turn

conveys them to consumer PEs or to the wave-ordered store-buffer (described below). The microarchitecture of the PE will

be described in detail in the next section. An evaluation of the best PE configuration (in relation to the rest of the design) is in

Section 4.

The wave-ordered store buffer manages load and store requests for PEs. Its key feature is the ability to order these opera-

tions in program order, which is critical to correct execution of imperative languages. A description of the microarchitecture

of the wave-ordered store buffer is contained in Section 3.3.

The instruction storage system is distributed across the PEs. The data storage system consists of a two-level cache

hierarchy backed by main memory. The first level of the hierarchy is a collection of L1 caches that are distributed across the

WaveScalar processor. These caches are kept coherent using a MESI-like directory protocol. A banked L2 cache sits between

the L1 caches and main memory. The L2 is distributed on the device but banked by address, so no coherence protocol is

required2.

To reduce communication costs, all of these components (PEs, store-buffers, and data-caches) are connected using a

hierarchical interconnection structure, depicted in Figure 2. Pairs of PEs are first coupled intopodswhich share ALU results

via a common bypass network. Pods are further grouped into domains; within a domain, PEs communicate over a set of

pipelined busses. Four domains form a cluster, which also contains wave-ordered memory hardware (in the store buffer), a

network switch, and an L1 data cache. A single cluster, combined with an L2 cache and traditional main memory, is sufficient

to run any WaveScalar program, but performance might be poor if the working set of instructions is larger than the cluster’s

instruction capacity. To build larger, higher performing machines, multiple clusters are connected by a grid-based on-chip

network.
2This is only true for single-chip WaveScalar systems, of course.
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Figure 3:PE Block Diagram: The processing element’s structure by pipeline stage. Note that the block at the end of Output
is the same as the block at the start of Input since wire delay is spread between the two stages.

3.2 Processing Elements

A set of processing elements (PEs) form the execution resources of a WaveScalar processor. We begin by describing the

PE’s function and presenting a broad overview of its pipeline stages. We then describe the structures and pipeline stages that

have the greatest impact on the PE’s area and performance. The appendix contains a detailed operational example of the PE

microarchitecture.

The PE (Figure 3) is the heart of a WaveScalar machine. It executes instructions and communicates results over a network.

Our RTL implementation uses a PE with five pipeline stages; they are:

1. INPUT: Operand messages arrive at the PE either from itself or another PE. The PE may reject messages if too many

arrive in one cycle; the senders will retry on a later cycle.

2. MATCH: Operands enter thematching table. The matching table contains a tracker board and operand caches. It

determines which instructions are ready to fire and issues eligible instructions by placing their matching table index

into the instruction scheduling queue.

3. DISPATCH: The PE selects an instruction from the scheduling queue, reads its operands from the matching table, and

forwards them to EXECUTE. If the destination of the dispatched instruction is local, this stage speculatively issues the

consumer instruction to the scheduling queue.

4. EXECUTE: Executes an instruction. Its result goes to the output queue and/or the local bypass network.
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5. OUTPUT: An instruction output is sent to its consumer instructions via the intra-domain network. Consumers may be

at this PE or at a remote PE.

An instruction store holds the decoded instructions that reside at a PE. To keep it single-ported, the RTL design divides

it into several small SRAMs, each holding decoded information needed at a particular stage of the pipeline. The instruction

store comprises about 33% of the PE’s area (Table 2)..

The matching table handles instruction input matching. Implementing this operation cost-effectively is essential to an

efficient dataflow machine. The key challenge in designing WaveScalar’s matching table is emulating a potentially infinite

table with a much smaller physical structure. This problem arises because WaveScalar is a dynamic dataflow architecture

e.g. [23, 24, 25, 20] with no limit on the number of dynamic instances of a static instruction with unconsumed inputs. We

use a common dataflow technique [20, 19] to address this challenge: the matching table is a specialized cache for a larger,

in-memory matching table. New tokens are stored in the matching cache. If a token resides there for a sufficiently long time,

another token may arrive that hashes to the same location. In this case, the older token is sent to the matching table in memory.

The matching table is separated into three columns, one for each potential instruction input (certain WaveScalar instruc-

tions, such as data steering instructions, can have three inputs3). Each column is divided into four banks to allow up to

four messages to arrive each cycle. Reducing the number of banks to two reduced performance by 5% on average and 15%

for ammp. Increasing the number of banks to eight had negligible effect. In addition to the three columns, the matching

table contains atracker board, which holds operand tags (wave number and consumer instruction number) and tracks which

operands are present in each row of the matching table.

Since the matching table is a cache, we can apply traditional cache optimizations to reduce its miss rate. Our simulations

show that 2-way set associativity increases performance by 10% on average and reduces matching table misses (situations

when no row is available for an incoming operand) by 41%. 4-way associativity provides less than 1% additional performance,

hence the matching table is 2-way. The matching table comprises about 60% of PE area.

To achieve good performance, PEs must be able to execute dependent instructions on consecutive cycles. When DISPATCH

issues an instruction with a local consumer of its result, it speculatively schedules the consumer instruction to execute on the

next cycle. The schedule is speculative, because DISPATCH cannot be certain that the dependent instruction’s other inputs are

available. If they are not, the speculatively scheduled consumer is ignored.

To allow back-to-back execution of instructions in different PEs, we combine two PEs into a singlePod. PEs in a pod

snoop each others bypass networks, but all other parts of their design remain partitioned – separate matching tables, instruction

store, etc. Our simulations show that the 2-PE pod design is 15% faster on average than isolated PEs. Increasing the number

of PEs in each pod further increases performance but adversely affects cycle time.

3.3 The Memory Subsystem

The WaveScalar processor’s memory system has two parts: the wave-ordered store buffers that provide von Neumann memory

ordering and a conventional memory hierarchy with distributed L1 and L2 caches. Both components contribute significantly

to chip area.

3The third bank is special and supports only single-bit operands. This is because three input instructions in WaveScalar always have one argument which
need only be a single bit. Other banks hold full 64 bit operands.

7



Ordering 
Table

Partial Store
Queues

Addr == 
partial store

Ready
ops.

yes

no
Data Cache

Partial store dataMem. Requests

Wave-
ordering 

Logic

4

ready

Figure 4: The store buffer: architecture. The main
area consumer is the ordering table. The processing
logic is pipelined (3 stages, not shown) and of negligi-
ble area. Two partial store queues (right) were found
to be sufficient for performance.

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

PE PE

PE PE PE PE

PE PE

StoreBuffer
D$ Switch

NetMem

NetMem

NetMem

NetMem

North

South

East

West

domain

pod intra-cluster
interconnect

inter-cluster
switch

intra-domain
interconnect

Figure 5: The cluster interconnects: A high-level
picture of the interconnects within a cluster.

3.3.1 Wave-ordered Interface

WaveScalar provides a memory interface called wave-ordered (described in memory [5]) that enables it to execute programs

written in imperative languages (such as C, C++, or Java [6, 26]), by providing the well-ordered memory semantics these

languages require.

The store buffers, one per cluster, are responsible for implementing the wave-ordered memory interface that guarantees

correct memory ordering. To access memory, processing elements send requests to their local store buffer via a specialized

PE in their domain, the MEM pseudo-PE (described below). The store buffer will either process the request or direct it to

another buffer via the inter-cluster interconnect. All memory requests for a section of code (called awavein [5]), such as

a loop iteration, including requests from both local and remote processing elements, are managed by the same store buffer.

Each store buffer can handle four iterations simultaneously.

The store buffer uses a technique calledstore decouplingto process store address and store data messages separately. If a

store address arrives and is ready to issue to the data cache before its data value has arrived, the store buffer assigns the store

address to apartial store queue, where it awaits its data value. In the meantime, any requests that issue from the store buffer

and target an address assigned to a partial store queue are placed in that partial store queue as well. When the missing data

value finally arrives, the partial store queue can issue all its requests in quick succession.

Our design includes two partial store queues, each of which can hold four memory requests. Each partial store queue

has one read and one write port. In addition, a 2-entry associative table detects whether an issued memory operation should

be written to a partial store queue or be sent to the cache. Adding partial store queues increase performance between 5 and

20%, depending upon the application. Adding more partial store queues than two provides a negligible additional increase in

performance, but makes achieving a short cycle time difficult.

All the store buffer hardware for one cluster, including the partial store queues, occupies 2.6mm2 in 90nm technology or

approximately 6.2% of the cluster, depending on the cluster’s configuration. The size of the store buffer is an architectural

parameter exposed to the ISA, so its area requirements are fixed. Each store buffer can handle four wave-ordered memory
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sequences at once.

3.3.2 Data-cache System

WaveScalar provides two levels of data cache. Each cluster contains an L1 cache, and the banks of an L2 cache and a

coherence directory surround the array of clusters. The L1 data cache is 4-way set associative and has 128-byte lines.

An L1 hit costs 3-cycles (2 cycles SRAM access, 1 cycle processing), which can overlap with store buffer processing. A

directory-based, MESI coherence protocol keeps the L1 caches coherent [27]. All coherence traffic travels over the inter-

cluster interconnect. The L2’s hit delay is 20-30 cycles, depending upon address and distance to a requesting cluster. Main

memory latency is modeled at 200 cycles.

An area analysis of the data-cache system appears with the rest of the results in the Section 4.

3.4 Interconnection Network Scalability

Section 3.2 describes WaveScalar’s execution resource, the PE. PEs communicate by sending and receiving data via a hierar-

chical, on-chip interconnect. This hierarchy has four levels: intra-pod, intra-domain, intra-cluster and inter-cluster. Figure 5,

which depicts a single cluster, illustrates all on-chip networks. While these networks serve the same purpose – transmission

of instruction operands and memory values – they have significantly different implementations. Section 3.2 described the

intra-pod interconnect. Here, we present the salient features of the remaining three.

3.4.1 The intra-domain interconnect

The intra-domain interconnect is broadcast-based. Each of a domain’s PEs has a dedicated result bus that carries a single data

result to the other PEs in its domain. Widening the broadcast busses makes little sense, since the PE can only generate one

output value per cycle (it has only one ALU) and fewer than 1% of messages need to be broadcast more than once (e.g. when

a receiver cannot yet handle an incoming message).

In addition to the normal PEs, each domain contains two pseudo-PEs (called MEM and NET) that serve as gateways to the

memory system and PEs in other domains or clusters, respectively. PEs and pseudo-PEs communicate over the intra-domain

interconnect using identical interfaces.

Although the intra-domain interconnect is the largest broadcast structure in the processor, it has far less impact on total

chip area than its size might indicate, because the interconnect wires reside mostly in metal layers above the PE logic.

Accessing the interconnect and accommodating vias causes the PE logic to expand by 7%. This expansion is essentially the

intra-domain network area.

3.4.2 The intra-cluster interconnect

The intra-cluster interconnect is a small network that shuttles operands between the domains. The NET pseudo-PEs of the

four domains within a cluster are connected to each other and to the inter-cluster network switch in a complete, point-to-point

network. Every point-to-point link is capable of moving one operand per cycle in each direction, although the NET pseudo-

PEs can only introduce a single operand to their respective domains each cycle. Area for the intra-cluster interconnect is

negligible. Its largest resource, the wires, reside in metal layers above the intra-domain network.
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3.4.3 The inter-cluster interconnect

The inter-cluster interconnect is responsible for all long-distance communication in the WaveScalar processor, including

operands traveling between PEs in different clusters and coherence traffic for the L1 data caches. At each cluster, the network

switch routes messages between six input/output ports. Four of the ports lead to the network switches in the four cardinal

directions, one is shared among the domains’ NET pseudo-PEs, and one is dedicated to the store buffer and L1 data cache.

Each input/output port supports the transmission of up to two operands per cycle. The inter-cluster network provides two

virtual channels which the interconnect uses to prevent deadlock [28]. Each output port contains two 8-entry output queues,

one for each virtual network. The output queues rarely fill completely (less than 1% of cycles). Our experiments found that

lowering bandwidth to one operand per cycle significantly hurt performance (by 52% on average), while increasing it to four

had a negligible effect. In this paper, we do not examine variations of the switch configuration further, primarily because

it comprises an extremely small area compared to the rest of the design. Its queues consume negligible area, and the inter-

cluster wires comprising the switch fabric are routed through the upper layers of metal on the chip. All told, the inter-cluster

interconnect represents only 1% of the total chip area forall of the configurations we consider in this work.

4 Evaluation

The architecture described in the previous sections defines a large set of WaveScalar processors of varying sizes and con-

figurations. At one end of the spectrum is a small WaveScalar processor, comprising just a single cluster, which would be

suitable for small, single-threaded applications. At the other end, a supercomputer processor might contain tens of clusters

and hundreds or thousands of processing elements. The ability to move easily along this design continuum is a key objec-

tive of tiled architectures. A second objective is that they be able to tolerate such drastic changes in area by localizing data

communication, thereby reducing latency. This section explores how well the WaveScalar architecture achieves these goals.

We begin in Section 4.1 with a detailed look at the area budget of a particular WaveScalar processor configuration. Then,

to understand a larger design space, in Section 4.2, we use data from our RTL synthesis to develop an area model that

describes the area requirements for a range of designs. We use the resulting model to enumerate a large class of WaveScalar

processor designs that could be built in modern process technology. We evaluate these designs using a suite of single- and

multi-threaded workloads and use the results to perform a area/performance Pareto analysis of the WaveScalar design space

covered by our RTL design and area model. Lastly, in Section 4.3, we examine changes in the network traffic patterns as the

size of the WaveScalar processor increases.

4.1 Area and timing results

Our RTL toolchain provides both area and delay values for each component of the WaveScalar processor. For this study, we

restrict ourselves to processors that achieve a clock rate of 20 FO4, which occurs for a wide range of designs in our Verilog

model. This is the shortest cycle time allowed by the critical path within the PE. For most configurations, the critical path

is through the execution unit’s integer multiplier, when using operands from the other PE in the pod. However, enlarging

the matching cache or instruction cache memory structures beyond 256 entries makes paths in the MATCH and DISPATCH

stages critical paths. Floating point units are pipelined to avoid putting floating-point execution on the critical path. INPUT

and OUTPUT devote 9 and 5 FO4 respectively to traversing the intra-domain network, so there is no need for an additional

stage for intra-domain wire delay.
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WaveScalar Capacity 4K static instructions (128 per PE)
PEs per Domain 8 (4 pods) Domains / Cluster 4
PE Input Queue 128 entries, 4 banks Network Latency within Pod: 1 cycle
PE Output Queue 4 entries, 2 ports (1r, 1w) within Domain: 5 cycles
PE Pipeline Depth 5 stages within Cluster: 9 cycles

inter-Cluster: 9 + cluster dist.
L1 Cache 32KB, 4-way set associative,

128B line, 4 accesses per cycle
Network Switch 2-port, bidirectional

Main RAM 200 cycle latency

Table 1:Microarchitectural parameters: The configuration of the baseline WaveScalar processor

Area in PE Area in Domain Area in Cluster% of PE % of Domain % of Cluster

PE
INPUT 0.01mm2 0.09mm2 0.37mm2 1.2% 1.1% 0.9%
MATCH 0.58mm2 4.60mm2 18.41mm2 61.0% 55.2% 43.3%
DISPATCH 0.01mm2 0.05mm2 0.18mm2 0.6% 0.6% 0.4%
EXECUTE 0.02mm2 0.19mm2 0.77mm2 2.5% 2.3% 1.8%
OUTPUT 0.02mm2 0.14mm2 0.55mm2 1.8% 1.7% 1.3%
instruction store 0.31mm2 2.47mm2 9.88mm2 32.8% 29.6% 23.2%
total 0.94mm2 7.54mm2 30.16mm2 100% 90.5% 71.0%

Domain
MemPE 0.13mm2 0.53mm2 1.6% 1.2%
NetPE 0.13mm2 0.53mm2 1.6% 1.2%
8×PE 7.54mm2 30.16mm2 90.5% 71.0%
FPU 0.53mm2 2.11mm2 6.3% 5.0%
total 8.33mm2 33.32mm2 100% 78.4%

Cluster
4× domain 33.32mm2 78.4%
network switch 0.37mm2 0.9%
store buffer 2.62mm2 6.2%
data cache 6.18mm2 14.5%
total 42.50mm2 100.0%

Table 2:A cluster’s area budget:A breakdown of the area required for a single cluster.

Since the critical path is the ALU for designs with smaller than 256-entry matching caches and 256-entry instruction

caches, we can resize these structures downward for optimum area-performance without dramatically altering the cycle time.

This allows us to evaluate a large number of potential processing element designs based on area without worrying about an

accompanying change in cycle time. We confirmed this by synthesizing designs with 16- to 256-entry matching caches and

with 8- to 256-entry instruction caches. The clock cycle for these configurations changed by less than 5% until the structures

reached 256 entries, at which point the cycle time increased by about 21% for the matching cache and 7% for the instruction

cache. These latencies and structure size limits for our study are summarized in Table 1 and Table 3, respectively.

Table 2 shows how the die area is spent for the baseline design described in Table 1. Note that the vast majority of the

area (71%) is devoted to PEs. Also, as shown in the table almost all of the area,∼80%, is spent on SRAM cells which make

up the instruction stores, matching caches, and L1 data caches.
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Parameter Symbol Description Range
Clusters C Number of clusters in the WaveScalar processor1 . . . 64
Domains/cluster D Number of domains per cluster 1 . . . 4
PEs/domain P Number of PEs per domain 2 . . . 8
PE virtualization degree V Instructions capacity of each PE 8 . . . 256
Matching table entries M Number of matching table entries 16 . . . 128
L1 Cache size L1 KB of L1 cache/cluster 8 . . . 32
L2 Cache size L2 total MB of L2 cache 0 . . . 32
Area component Symbol Value
PE matching table Marea = 0.004mm2/entry
PE instruction store Varea = 0.002mm2/instruction
Other PE components earea = 0.05mm2

Total PE PEarea = M ×Marea + V × Varea + earea

Pseudo-PE PPEarea = 0.1236mm2

Domain Darea = 2× PPEarea + P × PEarea

Store buffer SBarea = 2.464mm2

L1 cache L1area = 0.363mm2/KB
Network switch Narea = 0.349mm2

Cluster Carea = D ×Darea + SBarea + L1× L1area + Narea

L2 area L2area = 11.78mm2/MB
Utilization factor U = 0.94
Total WaveScalar processor areaWCarea = 1

U (C × Carea) + L2area

Table 3: WaveScalar processor area model.

4.2 Area model and Pareto analysis

Many parameters affect the area required for WaveScalar designs. Our area model considers the seven parameters with

the strongest effect on the area requirements. Table 3 summarizes these parameters (top half of the table) and how they

combine with data from the RTL model to form the total area,WCarea (bottom of the table). For both the matching table and

instruction store, we synthesized versions from 8 to 128 entries to confirm that area varies linearly with capacity. For the L1

and L2 caches, we used the area of 1KB and 1MB arrays provided by a memory compiler to perform a similar verification.

The “Utilization factor” is a measure of how densely the tools managed to pack cells together, while still having space for

routing. Multiplying by its inverse accounts for the wiring costs in the entire design.

The area model ignores some minor effects. For instance, it assumes that wiring costs do not decrease with fewer than

four domains in a cluster, thereby overestimating this cost for small clusters. Nevertheless, the structures accounting for most

of the silicon area (80% as discussed in Section 4.1) are almost exactly represented.

The area model contains several parameters that enumerate the range of possible WaveScalar processor designs. For

parametersD (domains per cluster),P (processors per domain),V (instructions per processor) andM (matching-table

entries), we set the range to match constraints imposed by the RTL model. As mentioned in Section 4.1, increasing any

of these parameters past the maximum value impacts cycle time. The minimum values forM andV reflect restrictions on

minimum memory array sizes in our synthesis toolchain.

The ranges in the table allow for over twenty-one thousand WaveScalar processor configurations, but many of them are

clearly poor, unbalanced designs, while others are extremely large (up to 12,000mm2). We can reduce the number of designs

dramatically if we apply some simple rules.

First, we bound the die size at 400mm2 in 90nm to allow for aggressively large yet feasible designs. Next, we remove

designs that are clearly inefficient. For instance, it makes no sense to have more than one domain if the design contains fewer
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than eight PEs per domain. In this case, it is always better to combine the PEs into a single domain, since reducing the domain

size does not reduce the cycle time (which is set by the PE’s EXECUTE pipeline stage) but does increase communication

latency. Similarly, if there are fewer than four domains in the design, there should be only one cluster. Applying these rules

and a few more like them reduces the number of designs to 344.

Further reducing the number of designs requires more careful analysis. As we mentioned in Section 3.2, the matching table

is a specialized cache. Operands for instructions in the instruction store compete for matching table entries. If the demands

on matching table space are too great, thrashing occurs, and performance can suffer (by up to 50%). On the other hand, if the

instruction store is too small, instructions are spread over a wide area and communication costs increase. Therefore, we need

to carefully balance the capacity of the matching table and the instruction store.

The first step is to prevent a single instruction from consuming an unfair share of the space in the matching table. This

occurs because dataflow programs sometimes generate tokens at a faster rate than they can be consumed. WaveScalar uses a

well-known dataflow technique,k-loop bounding [29], to restrict the number of inputs (to at most some constantk) that can

accumulate for a single instruction.

The next step is to tune the hash function that indexes into the matching table. If the PE’s instruction store holdsV

instructions, then the matching table needs no more thanM = V × k entries (i.e., at mostk input instances for each ofV

instructions). If0 ≤ I < V is an instruction’s index in the PE’s instruction store andw is its tag value, the hash function

I × k + (w mod k) guarantees that there are no matching table misses. A matching table withM = V × k entries prevents

misses, but may be larger than necessary. To prevent this, we add an over-subscription factor,u, to yieldM = V×k
u . We call

this thematching table equation.

Of the four parameters in the equation,u andk can be set on a per-application basis. For each application, we find the

optimal value ofk, kopt, by running the application on a simulated processor with an infinite matching table and raisingk

until performance no longer improves.

To determine the optimal value ofu, we fix V = 256 (the largest value possible in our RTL design), setM = 256×kopt
u ,

and increaseu starting from 1 to 64. The optimal value ofu, uopt, is the value just before performance starts to decrease

significantly. Rearranging the matching table equation, and inserting our new values givesM
V = kopt

uopt
. We call kopt

uopt
the

virtualization ratio of the application; this number provides the ratio of matching table size to instruction store size that

should ensure a low matching table miss rate and good performance.

Table 4 showskopt, uopt, and the virtualization ratios for our set of workloads. To build a processor, we must choose a

singlevirtualization ratio, which must be a power of 2. For our analysis we explored ratios from1/8th to8/1, but, in the end,

chose the most conservative, the maximum ratio found in Table 4 (1).

A virtualization ratio of 1 is conservative in two respects. First, any lower ratio can be emulated by not filling the

instruction store instruction misses (i.e., when an instruction is not yet resident on the processor) are 3× as expensive as

matching table misses (on average); erring on the side of additional instruction capacity is therefore wise. The cost of this

conservative choice is a doubling of the size of the instruction store. For the configuration in Table 2, this amounts to an

instruction store that occupies an additional 16% of a PE’s area and 11% of a cluster. Fixing the virtualization ratio at 1

produces only 53 viable designs. Finally, we require that the WaveScalar processor as a whole hold at least 4K instructions,

since smaller capacities result in thrashing and poor performance.
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Application uopt kopt Virt. ratio
gzip 16 3 0.19
mcf 8 2 0.25
twolf 16 3 0.19
ammp 8 3 0.38
art 8 4 0.5
equake 8 4 0.5
djpeg 8 3 0.38
mpeg2encode 16 4 0.25
rawdaudio 32 4 0.13
fft 16 3 0.19
lu 8 4 0.5
ocean 8 4 0.5
radix 8 3 0.38
raytrace 16 4 0.25
water 4 4 1

Table 4:Tuning the matching table: Per-application tuning parameters for the matching table.
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Figure 6:Pareto-optimal WaveScalar designs:The Pareto-optimal designs lie along the upper-left margin of the points in
each plot. Note the difference in AIPC scale for the Splash2 data.
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id Clusters Domains/ PEs/ Virt. Matching L1 L2 Inst. Area Avg. Area AIPC
Cluster Domain Entries (KB) (MB) Capacity (mm2) AIPC Increase Increase

1 1 4 8 128 128 8 0 4K 39 1.3 na na
2 1 4 8 128 128 16 0 4K 42 1.5 7.9% 17.4%
3 1 4 8 128 128 32 0 4K 48 1.8 14.6% 18.0%
4 1 4 8 128 128 8 1 4K 52 3.5 6.7% 98.9%
5 1 4 8 128 128 32 1 4K 61 3.7 17.9% 6.0%
6 1 4 8 128 128 32 2 4K 74 3.9 20.5% 4.0%
7 1 4 8 128 128 16 4 4K 92 3.9 25.7% 0.8%
8 4 4 8 64 64 8 1 8K 109 4.9 18.2% 24.6%
9 4 4 8 64 64 16 2 8K 134 5.2 22.8% 5.8%

10 4 4 8 64 64 32 1 8K 146 5.4 9.1% 3.7%
11 4 4 8 64 64 32 2 8K 159 5.5 8.6% 2.3%
12 4 4 8 128 128 8 1 16K 169 7.8 6.7% 42.0%
13 4 4 8 128 128 16 2 16K 194 8.0 14.7% 2.8%
14 4 4 8 128 128 32 1 16K 206 8.4 6.3% 4.3%
15 4 4 8 128 128 32 2 16K 219 8.6 6.1% 3.4%
16 4 4 8 128 128 32 4 16K 244 8.7 11.4% 0.4%
17 16 4 8 64 64 8 0 32K 387 10.2 58.5% 17.8%
18 16 4 8 64 64 8 1 32K 399 13.3 3.2% 30.4%

Table 5: Pareto optimal configurations for Splash2.

Ultimately, forty-one designs meet all of these criteria. We evaluated all 41 design points on our benchmark set. For the

Splash applications, we ran each application with a range of thread counts on each design and report results for the best-

performing thread count. Figure 6 shows the results for each group of applications. For all our performance results we report

AIPC instead of IPC. AIPC is the number of Alpha-equivalent instructions executed per cycle. All additional WaveScalar-

specific instructions [30, 16] are not included, so that performance is more intuitive. Each point in the graph represents a

configuration, and the circled points are Pareto optimal configurations (i.e., there are no configurations that are smallerand

achieve better performance). We discuss multi- and single-threaded applications separately and then draw some broader

conclusions.

Splash2 Figure 6 shows that Splash2’s use of multiple threads allows it to take advantage of additional area very effectively,

as both performance and area increase at the same rate. The collections of points are reflected in Table 5, which contains the

optimal configurations for Splash2 divided into five groups of designs with similar performance (column “Avg. AIPC”). The

first group is single-cluster configurations without an L2. The addition of a 1MB L2 almost doubles its performance, as the

average memory access latency drops by 42%.

The performance of configurations in the second group grows slowly as the size of both caches increases. The next big

jump in performance comes when the number of clusters rises to four, quadrupling the number of PEs available. Performance

increases by 25%, since applications can further spread out their computation.

Performance then remains relatively constant until configuration 12, which doubles the size of the matching tables and

instruction stores, while reducing data cache sizes. The total number of instructions this WaveScalar processor can hold

doubles to 8K and allows all applications exceptraytraceandwater to increase the number of executing threads from 16 to

64. The result is a 42% increase in performance (column “AIPC Increase”) over configuration 11 in return for a 6.7% increase

in area (column “Area Increase”).

With configurations 13 through 16 performance (“Avg. AIPC”) edges up with additional data cache capacity and them
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WaveScalar processor.:The vast majority of traffic
in the WaveScalar processor is confined within a sin-
gle cluster and, for many applications, over half travels
only over the intra-domain interconnect.

jumps by 18% with the move to 16 clusters and no L2 cache. Configuration 17 provides enough instruction capacity (32K

instructions) forwater and raytrace to increase to 64 threads. Performance immediately jumps by another 30% as the L2

returns, while area increases by only 3.2%.

Across these configurations, performance scales linearly from 1.3 AIPC at 39.2mm2 to 13.3 AIPC at 399mm2, with both

area and performance increasing by 10×. If the trend continues, we would expect that the next large jump in performance

(not shown in the Table 5) should come when the size of the matching table and instruction store doubles to 128 entries. Our

data show that this configuration occupies 640mm2 and achieves an AIPC of 17.6, a 13.5× performance increase for a 16.4×

increase in area vs. configuration 1.

Single-threaded workloads The data for all three groups of single-threaded workloads follow the same trend (see Figure 6).

A large matching table and instruction store are necessary to reduce instruction cache misses. After that, an L2 cache provides

most improvement per area. L1 cache capacity is least important.

None of the single-threaded applications can profitably use more than one cluster. In fact, the relatively large working sets

for the SpecInt applications, combined with their low AIPC, suggests that fewer processing elements with larger instruction

stores would be sufficient. Our analysis excludes these points, because the large instruction store would lengthen the critical

path. However, such configurations might be of interest for embedded applications.

Scalable design points One of the central claims of tiled architectures is that to build a larger processor, it is sufficient to

simply replicate the tile across the die. If a single tile has good performance (and if there is sufficient application parallelism),

overall performance should increase with the number of tiles. Our data provide a means to test this intuition.

Figure 7 shows average results for all of the single-threaded applications. The data show a clear “knee” around 90mm2

(labeled ’a’ in the figure). At that point, the optimal configuration is a single cluster, 128-entry matching tables and instruction
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stores, 4MB of L2 cache, and 16KB of L1. The same design is Pareto optimal for Splash2 (’a’ the Splash2 pane of Figure 6)

and is the highest performance one-cluster design.

Building a four-cluster WaveScalar processor by replicating this design results in a processor that occupies 370mm2 and

achieves 8.2 AIPC for Splash2 (labeled ’b’). It is far from any Pareto optimal point. If, instead, we replicate the one-cluster

design with the best performance per area (52mm2, 3.53 AIPC, labeled ’c’) rather than the best performance per cluster, the

resulting scaled design is very nearly Pareto optimal (207mm2, 8.17 AIPC, labeled ’d’). Interestingly, the two scaled designs

have almost identical performance, but design ’b’ is much less efficient area-wise.

It may seem that ’c’ is the correct tile configuration, but scaling ’c’ to 16 clusters produces a configuration that occupies

828mm2 and achieves 17 AIPC, a significant drop in area-efficiency. A better choice for a 16-cluster processor is to scale

configuration ’e’. Configuration ’e’ is nearly as area-efficient as ’c’ and is the smallest Pareto optimal 4-cluster configuration.

Unlike, ’c’ it uses 64-entry matching tables and instruction store. Scaling ’e’ by a factor of four yields a 436mm2 design that

achieves 15 AIPC. While its performance is lower, this design is more area-efficient and continues the linear scaling the data

show for smaller configurations.

There are two lessons here. The first is that scaling a design scales its inefficiencies as well. The Pareto optimal points

between configurations ’c’ and ’a’ add cache capacity in return for minimal performance gains. When we scale the design by

four, four times as much area is poorly-utilized, reducing efficiency. This suggests area efficiency is more important than raw

performance in choosing a tile configuration.

The second lesson is that the optimal tile configuration varies from one size of processor to another. An isolated cluster

from configuration ’e’ cannot hold enough instructions to accommodate the working sets of our applications, but it can serve

as an excellent tile in a larger machine. This suggests that architectscannot just design a tile once and replicate it. They

will need to tune the tile carefully to match the overall configuration of the machine they are building. To make this job

easier, tiles should have parameters (memory sizes, issue widths, etc.) that are adjustable, instead of making these parameters

architecturally visible and, therefore, fixed.

4.3 Network traffic

One goal of WaveScalar’s hierarchical interconnect is to isolate as much traffic as possible in the lower levels of the hierarchy,

namely, within a PE, a pod or a domain. Figure 8 breaks down all network traffic according to these levels. It reveals the

extent to which the heirarchy succeeds on all three workloads, and for the parallel applications, on a variety of WaveScalar

processor sizes. On average 40% of network traffic travels from a PE to itself or to the other PE in its pod, and 52% of

traffic remains within a domain. For multi-cluster configurations, on average just 1.5% of traffic traverses the inter-cluster

interconnect. The graph also distinguishes between operand data and memory/coherence traffic. Operand data accounts for

the vast majority of messages, 80% on average, with memory traffic less than 20%.

These results demonstrate the scalability of communication performance on the WaveScalar processor. Applications

that require only a small patch of the processor, such as Spec, can execute without ever paying the price for long distance

communication. In addition, the distribution of traffic types barely changes with the number of clusters, indicating that the

interconnect partitioning scheme is scalable. Message latency does increase with the number of clusters (by 12% from 1 to

16 clusters), but as we mentioned above, overall performance still scales linearly. One reason for the scalability is that the
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WaveScalar instruction placement algorithms isolate individual Splash threads into different portions of the die. Consequently,

although the average distance between two clusters in the processor increases from 0 (since there is only one cluster) to 2.8,

the average distance that a message travels increases by only 6%. For the same reason, network congestion increases by only

4%.

5 Related Work

Several research groups have proposed tiled architectures, with widely varying tile designs. Smart Memories [2] provides

multiple types of tiles (e.g., processing elements, reconfigurable memory elements). This approach allows greater freedom

in configuring an entire processor, since the mix of tiles can vary from one instantiation to the next, perhaps avoiding the

difficulties in naive scaling that we found in our study.

TRIPS [3, 4] provides two levels of tiles. The processor consists of a uniform array of functional units that combine to

form a processor. The processor itself can be tiled as well. The TRIPS group is building a prototype, but they have not yet

published a systematic study of area/performance trade-offs.

The RAW project [12] uses a simple processor core as a tile and builds a tightly-coupled multiprocessor. One study of

the RAW architecture [31] shares similar goals to ours, but it takes a purely analytical approach and creates models for both

processor configurations and applications. That study was primarily concerned with finding the optimal configuration for a

particular application and problem size.

FPGAs can be viewed as tiled architectures and can offer insight into the difficulties tiled processor designers may face.

FPGAs already provide heterogeneous arrays of tiles (e.g., simple lookup tables, multipliers, memories, and even small RISC

cores) and vary the mix of tiles depending on the size of the array.

6 Conclusion

This paper explored the area/performance trade-offs in a tiled WaveScalar architecture. We use RTL synthesis and cycle-level

simulation to perform a Pareto analysis of designs with a 20 FO4 clock cycle ranging from 40mm2 to 400mm2. Using

applications from SPEC, Splash2, and Mediabench, we investigated over 40 WaveScalar processor configurations.

Exploring the design space reveals some interesting conclusions. First, the performance of properly tuned WaveScalar

processors scales linearly with silicon area across the entire range of die sizes we examined. Second, many features of the

microarchitecture, including the data-cache, matching-table, and instruction store, must be tuned carefully to ensure good

scaling. This result demonstrates that naively scaling a small, high-performance design does not necessarily yield a larger,

efficient, high-performance design, because the design’s inefficiencies scale as well.

Finally, we explored the behavior of WaveScalar’s hierarchical, on-chip interconnect. Without a scalable interconnect,

a tiled architecture cannot scale efficiently. Our interconnect is very effective in this regard. Over 50% of messages in

WaveScalar stay within a domain and over 80% stay within a cluster, with memory accounting for nearly all inter-cluster

traffic.

7 Appendix

In Section 3 we described the WaveScalar processor architecture. This appendix contains an example illustrating the pipeline

operation for a PE. Figure 9 illustrates the two key differences between the PE pipeline and a conventional processor pipeline.
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Figure 9:The flow of operands through the PE pipeline and forwarding networks:The figure is described in detail in the
text.

Data values, instead of instructions, flow through this pipeline. Also, instructionsA andB are speculatively scheduled in

order to execute on consecutive cycles. In the sequences shown in Figure 9,A’s result is forwarded toB whenB is in

EXECUTE. In the diagram,X[n] is thenth input to instructionX. Five consecutive cycles are depicted; before the first of

these, one input each from instructionsA andB have arrived and reside in the matching table. The “clouds” in the dataflow

graph represent results of instructions at other processing elements, which have arrived from the input network.

Cycle 0: OperandA[0] arrives and INPUT accepts it.

Cycle 1: MATCH writesA[0] into the matching table and, because both its inputs are now available, places a pointer toA’s

entry in the matching table in the scheduling queue.

Cycle 2: DISPATCHchoosesA for execution, reads its operands and sends them to EXECUTE. At the same time, it recognizes

thatA’s output is destined forB. In preparation for this producer-consumer handoff, a pointer toB’s matching table entry is

inserted into the speculative fire queue.

Cycle 3: DISPATCH readsB[0] from the matching table and sends it to EXECUTE. EXECUTE computes the result ofA,

which isB[1].

Cycle 4: EXECUTE computes the result of instructionB usingB[0] and the result from the bypass network,B[1].

Cycle 5 (not shown): OUTPUT will sendB’s output toZ.
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