
Limits of Control Flow on Parallelism

Monica S. Lam and Robert P. Wilson
Computer Systems Laboratory
Stanford University, CA 94305

Abstract

This paper discusses three techniques useful in relaxing the
constraints imposed by control flow on parallelism: control
dependence analysis, executing multiple flows of control si-
multaneously, and speculative execution. We evaluate these
techniques by using trace simulations to find the limits of
parallelism for machines that employ different combinations
of these techniques. We have three major results. First, local
regions of code have limited parallelism, and control depen-
dence analysis is useful in extracting global parallelism from
different parts of a program. Second, a superscalar proces-
sor is fundamentally limited because it cannot execute inde-
pendent regions of code concurrently. Higher performance
can be obtained with machines, such as multiprocessors and
dataflow machines, that can simultaneously follow multiple
flows of control. Finally, without speculative execution to al-
low instructions to execute before their control dependences
are resolved, only modest amounts of parallelism can be ob-
tained for programs with complex control flow.

1 Introduction

The potential for parallelism can be evaluated from two dif-
ferent perspectives. The first is to propose an actual system
design; the performance of such a system is a lower bound
on the amount of available parallelism. The second is to
perform studies on the limits of parallelism for a particular
approach by enforcing only the constraints associated with
the approach and relaxing all other constraints. If the upper
bound of performance is found to be unacceptably low, then
the approach is inadequate. On the other hand, if the upper
bound is within expectations, the only conclusion is that the
approach may be sufficient. It is only from low limits that
we can draw interesting conclusions.

A recent study by Wall [17] contains a surprising result
that suggests a severe limitation in current approaches. One
of the experiments in that study examines the performance

This research was supported in part by DARPA contract N00039-91-C-0138
and by an NSF graduate fellowship.

In Proceedings of the 19th Annual International Symposium on Computer
Architecture Gold Coast,Australia, May 19–21,1992, pp. 46–57. Copyright
c� 1992 by ACM, Inc.

of a processor that uses an aggressive hardware algorithm to
predict the outcomes of branches. Instructions along the pre-
dicted path of a branch are speculatively executed before the
branch is resolved. The processor has perfect memory dis-
ambiguation, perfect register renaming, unlimited instruction
fetching, and a very large number of functional units. The
reported speedups for this processor on a set of non-numeric
programs range from 4.1 to 7.4. Given the assumptions of
perfect memory disambiguation and a large number of func-
tional units, these speedups are quite small.

Wall’s result contrasts sharply with experiments that as-
sume perfect branch prediction [10, 12]. Since a machine
with perfect branch prediction requires foreknowledge, we
refer to such a machine as an oracle. The effects of control
flow on parallelism are essentially eliminated on an oracle
machine because all of the branch outcomes are known in
advance. Much more parallelism is available on an oracle
machine, suggesting that the bottleneck in Wall’s experiment
is due to control flow.

The ultimate goal of our study is to discover ways to in-
crease parallelism by an order of magnitude beyond current
approaches. In this paper, we focus on control flow. Through
a study of the limits of parallelism, we hope to establish the
inadequacy of current approaches in handling control flow
and identify promising new directions.

This paper offers evidence that the limit of parallelism
discussed in Wall’s paper is likely to apply to many more
non-numeric programs than those measured. A processor
that uses speculation to only exploit local parallelism found
between mispredicted branches is fundamentally limited. A
compiler can locate more global parallelism in the code by
extracting the true control dependence of the program. How-
ever, this increased opportunity for parallelization cannot be
fully exploited unless the machine can simultaneously pur-
sue multiple flows of control. The degree of parallelism
is fundamentally limited by the von Neumann architecture.
Higher performance can be obtained with machines that can
simultaneously follow multiple flows of control.

In this paper, we analyze the techniques of speculative ex-
ecution, control dependence analysis, and following multiple
flows of control. We evaluate these techniques empirically
by computing the limits of parallelism for a set of programs
on machines that employ different combinations of these
techniques. So far, research on superscalar and multiproces-

1

sor architectures has mostly been conducted independently.
This work studies how instruction and processor levels of
parallelism interact. Our study also suggests that a useful
characteristic for predicting the parallelism in a program is
whether the control flow is data dependent.

We first introduce the major concepts of the paper in Sec-
tion 2. We explain speculative execution, control dependence
analysis, and pursuing multiple flows of control. Section 3
presents a set of abstract machine models that use these three
techniques in various combinations. In Section 4, we de-
scribe the experimental framework used to evaluate the limits
of parallelism. Section 5 presents the results of these experi-
ments and analyzes the parallelism for each machine model.
Finally, Section 6 presents the conclusions of our study and
describes its implications for some specific architectures that
have been proposed and implemented.

2 Relaxing Control Flow Constraints

The perfect branch prediction of an oracle machine is an
upper bound of all other techniques to relax control flow con-
straints. Unfortunately, it is also an unrealistic upper bound.
Because branch outcomes are known in advance on an or-
acle machine, no instructions have to wait for branches to
be resolved. To achieve the same performance, a machine
must speculatively execute all possible paths through a pro-
gram. This requires hardware resources exponential in the
number of outstanding conditional branches. Since perfect
branch prediction is not realistic, more practical techniques
are required to handle control flow. This section examines
three techniques: speculation with branch prediction, control
dependence analysis, and followingmultiple flows of control.

2.1 Speculation with Branch Prediction

While speculation on all possible paths is infeasible in prac-
tice, limited speculation is commonly used throughout com-
puter systems to improve performance. For example, almost
all modern processors prefetch the instructions following a
conditional branch. Some machines such as the IBM 360/91
pursue both execution paths by also prefetching the instruc-
tions at the branch target.

A common technique to improve the efficiency of specula-
tion is to only speculate on instructions from the most likely
execution path. The success of this approach depends on the
accuracy of branch prediction. Even for non-numeric code,
both hardware and software prediction algorithms have been
shown to be accurate over 85% of the time [6, 8].

Extending speculative instruction fetching to speculative
execution creates additional parallelism. However, unlike in-
struction fetching, speculatively executing an instructionmay
generate unwanted side effects. These side effects must be
discarded if the branch prediction is incorrect. Bothhardware

and software techniques can be used to implement speculative
execution.

Various hardware structures have been proposed to support
speculative execution [7, 11, 13, 16]. These structures store
the results of the speculative instructions until the branch
direction is determined. If the branch prediction was cor-
rect the results are committed, otherwise they are discarded.
Hardware scheduling, however, is limited by the fact that an
instruction simply cannot execute before it is fetched. It is
difficult to fetch instructions from far ahead along the pre-
dicted execution path, especially for programs with complex
control flow.

Software techniques overcome instruction fetch limitations
by reordering instructions. Trace scheduling identifies the
most commonly executed trace and schedules the instructions
within the trace as if they belong to one large basic block [2,
4]. However, implemented trace scheduling algorithms only
employ very limited forms of speculation. Smith et al. extend
software scheduling with hardware support for speculative
execution [15]. Instructions to be speculatively executed
are boosted before a conditional branch. These instructions
are labeled so that their results are discarded or committed
when the branch condition is determined. This combines
the ability of software to eliminate fetch limitations and the
ability of hardware to speculatively execute instructions with
side effects.

2.2 Control Dependence Analysis

For most hardware instruction schedulers, all speculatively
executed instructions must be discarded when a conditional
branch is mispredicted. This constraint is, however, unnec-
essarily strict. Consider the following simple example:

if (a < 0)
b = 1;

c = 2;

While the assignment b = 1 is executed only if a < 0,
the assignment c = 2 is always executed regardless of the
value of a. We say that b = 1 is control dependent on the
condition a < 0 and that c = 2 is control independent.
We refer to the branch on which an instruction is control
dependent as its control dependence branch.

A hardware scheduler generally cannot determine which
instructions are control independent. In this example, sup-
pose the scheduler speculatively executes c = 2 before the
condition is resolved. If the branch is mispredicted, the hard-
ware must discard the assignment to c only so that it can
repeat the identical assignment later. A compiler can com-
pute the control dependence and eliminate this inefficiency.
More generally, control dependence analysis allows instruc-
tions to be moved across many branches. By expanding the
range of code from which parallelism can be extracted, con-
trol dependence analysis increases the available parallelism.

2

Control dependence is an intuitively simple concept. For
block-structured programs, the immediate control depen-
dence for an instruction is simply the condition in the closest
enclosing control construct. For example, in the following
code,

for (i = 0; i < 100; i++)
if (A[i] > 0) foo();

bar();

the call of the foo function is control dependent on the
condition A[i] > 0, which in turn is control dependent on
the loop exit condition i < 100. The bar function is not
control dependent on any part of the loop and can execute in
parallel with the loop, assuming there is no data dependence
between foo and bar.

Control dependences in programs with arbitrary control
flow can easily be computed in a compiler using the reverse
dominance frontier algorithm [3]. Hardware techniques for
analyzing control dependences have also been considered
[9], but they can only detect a small subset of the control
independent instructions and require complex hardware.

2.3 Executing Multiple Flows of Control

Control dependence analysis discovers parallelism from
across different regions of code, each of which may have
its own flow of control. In the example above, control de-
pendence analysis shows that the bar function can run con-
currently with the preceding loop. However, a uniprocessor
can typically only follow one flow of control at any time. A
uniprocessor cannot fetch and execute the instructions from
within the loop while following the arbitrary control flow that
may be present in the bar function.

Support for followingmultiple flows of control is necessary
to fully exploit the parallelism uncovered by control depen-
dence analysis. Multiprocessor architectures are a general
means of providing this support. Each processor of a MIMD
multiprocessor can follow an independent flow of control. At
the other extreme, it is sometimes possible to generate unipro-
cessor code that corresponds to pursuing multiple flows of
control in the original computation. A small number of code
segments can be packed together by generating different ver-
sions of the code for every possible combination of control
flow. However, in general, combining independent control
flows can lead to significant code expansion.

3 Abstract Machine Models

To establish the fundamental limits of these three techniques
for relaxing control flow constraints, we define a set of ab-
stract machine models and analyze the parallelism for each
machine under ideal conditions. Each machine model uses a
different combination of the three techniques. Our approach
is to examine a set of instruction traces from real programs

BASE An instruction cannot execute until the imme-
diately preceding branch in the trace is resolved.
This implies that branch instructionsmust execute
in order, one per cycle.

CD An instruction cannot execute until its control
dependence branches are resolved. In addition,
branch instructions must execute in order, one per
cycle, to reflect the inability to pursue multiple
flows of control simultaneously.

CD-MF An instruction cannot execute until its con-
trol dependence branches are resolved. Multiple
branch instructions can execute in parallel and
need not be ordered.

SP An instruction cannot execute until the immedi-
ately preceding mispredicted branch in the trace
is resolved. This implies that a branch instruction
must wait for all preceding mispredicted branches.

SP-CD An instruction cannot execute until its mispre-
dicted control dependence branches are resolved.
In addition, a branch instruction must wait for all
preceding mispredicted branches, not just the ones
it is control dependent on.

SP-CD-MF An instruction cannot execute until its
mispredicted control dependence branches are re-
solved. There are no additional constraints on
branches.

ORACLE There are no constraints due to control flow.

Figure 1: Control Flow Constraints of Abstract Machines

and compute the available parallelism by simply enforcing
true data dependence constraints and the control flow con-
straints associated with each abstract machine model. Other
constraints due to imperfect memory disambiguation, reuse
of variables, and limited resources are ignored.

We define seven abstract machines. The BASE machine
uses none of the three techniques and provides a baseline
for comparison. The ORACLE machine has perfect branch
prediction, and its performance represents an upper bound of
parallelism given the assumptions in our experiments. The
other five machines use combinations of control dependence
analysis (CD), following multiple flows of control (MF), and
speculative execution with branch prediction (SP). There are
only five interesting combinations because we cannot recog-
nize independent flows of control without control dependence
analysis.

Each machine is distinguished by its ability to handle con-
trol flow. We model these abilities by imposing the sequenc-
ing constraints shown in Figure 1 on the execution of instruc-

3

tions in dynamic traces. More aggressive machines have less
restrictive constraints. Since the BASE machine uses none
of the three techniques, its control flow constraint is the most
severe; it prevents instructions from executing before any
preceding branches. The CD machine has perfect control
dependence information, and thus, instructions that are not
dependent upon a branch need not wait for it to be resolved.
To reflect the limitation of following one flow of control, we
also impose an ordering on the branch instructions. To model
the behavior of current compilers [1], this ordering requires
all branches in the program to execute in the original sequen-
tial execution order. The CD-MF machine may follow an
unlimited number of flows of control and does not require a
branch ordering constraint.

All of the machines with speculative execution in this study
only speculatively execute instructions on the most likely ex-
ecution path. Simultaneously executing instructions on alter-
nate paths would require that some instructions be cancelled
regardless of the branch outcomes. However, in the various
SP machines, all of the speculative instructions are poten-
tially useful, making these machines more realistic than the
ORACLE machine.

The SP machine can speculate on an infinite number of
consecutive branch outcomes. This essentially creates an in-
finitely long path of predicted instructions througha program.
Instructions from anywhere along this path may execute in
parallel. However, when a branch is mispredicted, all of the
instructions on the predicted path following the branch must
be cancelled. Only those instructions that are not cancelled
appear in the traces that we analyze. Therefore, the control
flow constraint on an instruction in a trace is that it cannot
execute until all of the preceding mispredicted branches are
resolved. As long as the branch predictions are correct, the
flow of control does not change and the branch instructions
can execute in any order. A mispredicted branch requires that
the flow of control transfer to the unpredicted branch path,
and thus, only one mispredicted branch can execute in each
cycle.

The SP-CD machine differs from the SP machine in its
treatment of mispredicted branches. Instead of cancelling all
of the instructions along the predicted path, only those in-
structions that are actually control dependent on the mispre-
dicted branch are cancelled. Due to following a single flow
of control, the mispredicted branches must still be executed
in order. The SP-CD-MF machine can follow multiple flows
of control simultaneously, and thus mispredicted branches
can execute in parallel.

To illustrate the power of the different abstract machine
models, consider the flow graph in Figure 2. Assume that
there are no data dependences in this program. Each node in
the graph consists of a single instruction. Next to each node
is the set of branch instructions on which it is immediately
control dependent. The edges represent the possible flow of
control, with the more likely branch outcomes highlighted
by bold arcs. One possible trace through this graph is also

1

2

3 4

5

6

7

∅

∅

{1, 5}

{2} {2}

{1, 5}

{1}

1

2a

5a

2b

5b

2c

5c

3a

4b

3c

6

7

Figure 2: Example Flow Graph and Trace

shown in Figure 2. Each instruction in the trace is identified
by the instruction node number and a letter to distinguish the
specific instance. Branch instructions are written in boldface
and circled if they are mispredicted. The edges in the trace
represent the control dependence relationships.

Since there are no data dependences in the program, the
ORACLE machine simply executes all of the instructions in
one cycle. The executions of the other machine models are
shown in Figure 3,where the edges represent the dependences
due to control flow and instructions at the same level execute
at the same time.

The BASE machine executes all of the branches sequen-
tially and each non-branch instruction one cycle after the
preceding branch. The CD machine executes instructions 6
and 7 earlier because they are not control dependent on the
immediately preceding branches. The CD-MF machine need
not execute the branches in order; the edges are simply the
control dependence edges from the trace in Figure 2. The
SP machine executes all of the instructions between mispre-
dicted branches in parallel. The SP-CD machine behaves
similarly but executes instructions 3c, 6, and 7 earlier be-
cause they are not control dependent on the mispredicted
branches. Finally, the SP-CD-MF machine executes all but
one of the instructions in one cycle. Since instruction 4b is
not on the predicted path, the machine does not speculatively
execute the instruction. The instruction is therefore not ex-
ecuted until the processor discovers that it has mispredicted
the branch 2b. In contrast, to achieve the performance of
the ORACLE machine, both instructions 3 and 4 must be
executed in parallel on every iteration. This illustrates the
fundamental difference between SP-CD-MF and ORACLE:
the SP-CD-MF machine does not pursue alternate paths si-
multaneously.

4

BASE

1

2a

5a

2b

5b

2c

5c

3a

4b

3c

6 7

CD

1

2a

5a

2b

5b

2c

5c

3a

4b

3c

6

7

CD-MF

1

2a 5a

2b 5b

2c 5c

3a

4b

3c

6

7

SP

1 2a 5a 2b

5b 2c 5c

3a

4b 3c

6 7

SP-CD

1 2a 5a 2b

5b 2c 5c

3a

4b

3c 6 7

SP-CD-MF

1 2a 5a 2b 5b 2c 5c3a

4b

3c 6 7

Figure 3: Execution of the Abstract Machines

4 Experimental Framework

This section describes the methodology used to analyze the
parallelism for each machine model. Since we are only in-
terested in evaluating techniques for handling control flow,
we limit the scope of the experiment to include only the
fundamental constraints related to control flow.

4.1 Data Dependence

We assume an idealistic approach to handling data depen-
dences. The only data dependence constraint enforced is that
a read operation in the trace must only wait for the imme-
diately preceding write operation to the same location. This
relaxes many constraints in reality.

First, since we are enforcing only true data depen-
dences (reads after writes), we have eliminated all the anti-
dependences (writes after reads) and output dependences
(writes after writes) for all register as well as memory ac-
cesses. In practice, various renaming techniques can be used
to remove some of these spurious data dependences.

Second, we also assume that memory references are per-
fectly disambiguated; that is, the machines can determine if
two addresses are identical even before they have been com-
puted. This perfect disambiguation is an upper bound for
what can be achieved by compiler analysis and by specula-
tive hardware disambiguation.

Third, an instruction must wait until it can be determined
that no preceding instructions will alter the instruction’s
operands. Different data dependences may occur along dif-
ferent control flow paths, as shown in the following example:

b = 0;
if (a < 0)

b = 1;

c = b;

Depending on the outcome of the a < 0 condition, the
b = 1 assignment may or may not be executed. Therefore,
the value assigned to c depends on the outcome of the con-
dition. The potential data dependence between c = b and
b = 1 delays the assignment to c at least until the condition
a < 0 is resolved.

Since potential data dependence constraints force instruc-
tions to wait for branches, speculation with branch prediction
can relax these constraints. For example, if we predict that
b = 1 will not execute, c = b can execute speculatively
with the assumption that b is 0. If the prediction was in-
correct, the assignment must be re-executed with the correct
value of b.

We are unable to include the potential data dependence
constraints in our experiment because only one execution
path is captured in a trace. These constraints must be an-
alyzed statically. Static analysis, however, cannot be com-
pletely accurate in the presence of indirect memory references
because perfect disambiguation is only possible when ana-
lyzinga trace. To ensure that our results are upper bounds, we
must avoid introducing constraints based on imperfect dis-
ambiguation, and so we ignore the potential data dependence
constraints.

4.2 Program Transformations

Procedure calls and loops are two control constructs that are
commonly implemented in ways that introduce unnecessarily
serializing constraints. These constraints can be eliminated
by alternate implementation techniques and simple transfor-
mations such as procedure inlining and loop unrolling. Our
study tries to model an upper bound of these techniques.

5

Procedure calls and returns introduce unnecessary control
flow and cause problems for branch prediction. Furthermore,
a new stack frame is typically allocated and deallocated in
every procedure by incrementing and decrementing the stack
pointer. Since there is a true data dependence between every
increment and decrement, these stack pointer manipulations
must be executed sequentially. For programs with many
small procedures, this may limit the parallelism. To simulate
the optimal case of inlining all procedures, including recur-
sive procedures, we ignore all call and return instructions in
a trace, as well as all instructions that manipulate the position
of the stack pointer.

Parallelism in many loops is inhibited by dependences on
the loop index variables. Loop index variables and induction
variables are incremented in every loop iteration1, creating
true data dependences between iterations. However, these
dependences are only a result of the way code is generated
for scalar processors and are not an inherent part of the loop
semantics. Loop unrolling is a simple technique that compil-
ers use to reduce such effects.

In our experiment, we simulate perfect and complete un-
rolling. First, we analyze the object code to discover the loops
in the program. We then use iterative data flow analysis to
identify registers that are incremented by a constant exactly
once per loop iteration. We only check the registers and not
memory locations because we assume that the compiler has
allocated the index variables in registers. If the index vari-
ables could not be register allocated, the loop index update is
unlikely to be in the critical path of the loop execution. Fi-
nally, the analysis marks all instructions that increment loop
index and induction variables, comparisons of loop indices
with loop invariant values, and branches based on the results
of such comparisons. These instructions are ignored when
they occur in the trace.

Admittedly, many more transformations could be applied.
A sophisticated compiler may be able to translate a program
into an equivalent one that is more amenable to paralleliza-
tion. This experiment does not, by any means, establish the
limit of parallelism for the problem solved by a program.
Finding such a limit is an undecidable problem. This ex-
periment only establishes the limits of parallelism for the
particular code generated by the compiler and subject to all
of the assumptions in our experiment. If the resulting limits
are considered inadequate, other techniques not considered
in this study must be used.

4.3 Benchmark Programs

Our benchmark suite consists of the six SPEC programs and
the four other benchmarks shown in Table 1. We have in-
cluded three of the FORTRAN SPEC programs for compar-
ison with the non-numeric programs. The standard inputs
were used for the SPEC benchmarks. The programs were

1This assumes that the compiler has identified the induction variables
and performed strength-reduction.

Program Language Description
awk C pattern scanning
ccom C C compiler front-end
eqntott C truth table generation
espresso C logic minimization
gcc (cc1) C Gnu C compiler
irsim C VLSI layout simulator
latex C document preparation
matrix300 FORTRAN matrix multiplication
spice2g6 FORTRAN circuit simulation
tomcatv FORTRAN mesh generation

Table 1: Benchmark Programs

compiled for a MIPS R3000 processor by the MIPS C and
FORTRAN compilers with full optimization. The traces were
obtained using the MIPS pixie tool, and each program was
simulated for up to 100 million instructions. Our instruction
traces include library routines but not system calls, so we
ignore dependences that occur within the operating system.

4.4 Simulation Algorithm

The basic simulation algorithm is to determine the execution
time of each instructionin a trace. The completion time of the
last instruction to execute is the total execution time for the
trace. The resulting parallelism is the ratio of the sequential
execution time to the parallel execution time. Since we want
to measure the actual parallelism and not the speedup for a
realistic machine, we use one clock cycle latencies for all in-
structions. With non-unit latencies, some of the parallelism
would be used to fill pipeline bubbles. The instructions re-
moved because of our perfect inlining and perfect unrolling
do not contribute to the sequential time, so the parallelism
does not include any speedup due to removing those instruc-
tions.

Our experiment allows instructions arbitrarily far apart in
the program trace to execute in parallel. This is necessary
to detect parallelism that could be exposed by aggressive
compiler transformations, such as loop interchange. Since
the simulator cannot record the data dependences in a limited
scheduling window, it records the time of the most recent
write to each register and memory location. A large hash
table is used to record writes to memory. Each bucket in this
table may contain entries for several different locations, and
additional space is allocated if a bucket overflows.

For each instruction, the simulator first determines when
the operands are available. This is straightforward for register
operands. For memory operands, we read the actual address
from the trace and check the hash table for the time of the last
write to that address. Next the simulator determines when the
control flow constraints are satisfied. For the BASE machine,
the execution time of the most recent branch in the trace is

6

recorded, and all subsequent instructions must wait until that
time. The implementations of the control flow constraints
for the other machine models are described below. Given
the constraints of control flow and operand availability, the
instruction execution time is the minimum time satisfying all
of these constraints. Finally, the simulator records when the
instruction result is written. For store instructions, the actual
address of the destination is read from the trace, and the time
is entered into the hash table.

4.4.1 Control Dependence Analysis

For the CD and CD-MF machines, the control flow constraint
is that an instruction cannot execute until after its immediate
control dependence branch has executed. Control depen-
dence analysis is performed in two stages. We first compute
the control dependences within each procedure by analyz-
ing the object code. Interprocedural control dependences are
handled dynamically as the traces are analyzed.

To analyze the control dependences within a procedure,
we must first build a control flow graph. We use the MIPS
pixie tool to identify the basic block boundaries. We then
decode and analyze the instructions from the object file to
determine the successors of each basic block. Using the flow
graph, the analysis computes all of the immediate control
dependences by finding the reverse dominance frontier of
each basic block [3]. All of the instructions within a basic
block are immediately control dependent on the branches in
the reverse dominance frontier of the block.

An instruction may be immediately control dependent on
multiple branches. However, each dynamic instance of an in-
struction only depends immediately on one of these branches.
For example, instruction 2 in Figure 2 is control dependent
upon both instructions 1 and 5. If control flows from in-
struction 1 to instruction 2, we need to consider only the
dependence on instruction 1. This is accomplished by se-
quentially numbering each basic block in the trace, and as we
analyze the trace, the simulator records for each basic block
in the code the sequence number of its most recent instance.
The immediate control dependence of an instance of an in-
struction is simply the branch within its reverse dominance
frontier with the latest sequence number.

Interprocedural control dependences are handled by main-
taining a stack that contains the control dependence infor-
mation for each active procedure. This stack records the
control dependence for each calling instruction and the se-
quence number at the start of each procedure. Each procedure
simply inherits the control dependence of the instruction that
calls that procedure. Without recursion, the control depen-
dence for an instance of an instruction is either the control
dependence on the top of the stack or an instance of a branch
in its reverse dominance frontier, whichever is most recent.

With recursion, the control dependence for an instruction
is either the dependence on the top of the stack or an instance
of a branch in its reverse dominance frontier from the same

procedure invocation. For expediency, our simulations do
not keep track of all the necessary information to accurately
compute the control dependence in a recursive procedure.
For each basic block in the code, along with the sequence
number of its most recent instance, the simulator also re-
members the sequence number at the start of its procedure.
Recursion is detected when any branch in an instruction’s re-
verse dominance frontier has a procedure sequence number
greater than the current procedure. At that point, to provide
an upper bound on the control dependence, we simply ignore
the control dependence for that instance of the instruction.

4.4.2 Speculative Execution

Our simulations of speculative execution use static branch
predictions based on profile information. These statistics
were collected from running the benchmarks with the same
inputs used in the simulations. Our prediction rates are
therefore an upper bound for static branch prediction tech-
niques. Dynamic techniques provide similar performance
[8]. Table 2 shows the branch prediction rates for conditional
branches in each benchmark. We do not attempt to predict
computed jumps.

A mispredicted branch in a trace is easily identified by
comparing the actual branch outcome with the predicted out-
come. The simulator for the SP machine simply remembers
the execution time of the most recent mispredicted branch,
and no subsequent instructions in the trace can execute be-
fore that time. For the SP-CD and SP-CD-MF machines,
an instruction must wait for its last mispredicted control de-
pendence branch. By recording for each branch in the code
whether its most recent instance was mispredicted, the simu-
lator can compute this control flow constraint.

Prediction Dynamic Instructions
Program Rate Between Branches
awk 93.48 6.8
ccom 92.02 7.5
eqntott 91.92 3.4
espresso 85.64 6.0
gcc (cc1) 89.29 7.9
irsim 87.71 6.7
latex 87.11 9.4
matrix300 99.02 20.0
spice2g6 97.66 13.1
tomcatv 99.09 58.8

Table 2: Branch Statistics

5 Evaluation and Analysis

The parallelism for each machine model is shown in Ta-
ble 3. The following sections examine these results for the

7

non-numeric benchmarks and discuss the implications. The
results for the numeric benchmarks are presented in Sec-
tion 5.3, and Section 5.4 discusses the effects of perfect loop
unrolling.

The BASE machine provides a standard for comparison
by determining the amount of parallelism when no special
effort is made to reduce the control flow constraints. For
the non-numeric benchmarks, the BASE machine has a har-
monic mean parallelism of 2.14, which is larger than in other
studies of similar machines because our assumptions are very
different. First, the BASE machine allows some instruction
scheduling across basic blocks. An instruction can execute
as soon as the previous conditional branch is resolved, even
if other instructions before the branch have not completed.
In addition to this overlap, basic blocks that are not separated
by conditional branches may also be executed in parallel.
Second, whereas all operations in our machines execute in
only one clock cycle, some previous studies used realistic
operation latencies. Since non-unit latency operations con-
sume some parallelism to fill pipeline bubbles, the reported
speedups do not measure all of the parallelism. Finally, we
do not include any limitations on fetching instructions [14].

At the other extreme is the upper bound of the ORACLE
machine. As expected, the amount of parallelism is quite
large and varies significantly between benchmarks. This re-
flects the different types of algorithms in the programs. For
example, eqntott primarily executes a quicksort function
which contains few data dependences. On the other hand,
ccom and latex are composed of algorithms with much
less inherent parallelism. Several factors cause our num-
bers to be considerably larger than in previous experiments
with perfect branch prediction. Our unlimited scheduling
window exposes parallelism across the entire program trace.
Anti-dependences and output data dependences are not con-
sidered. Our simulation of procedure inlining also removes
the instructions that adjust the stack pointer at the entry and
exit of most procedures. This is significant in the case of the
ORACLE machine because the stack pointer increments and
decrements often lengthen the critical path of a program.

5.1 Control Dependence Analysis

The CD machine has more parallelism than the BASE ma-
chine because basic blocks with the same control depen-
dences can be executed in parallel. However, the harmonic
mean parallelism of 2.39 for the CD machine is only slightly
better than for the BASE machine. Figure 4 shows the paral-
lelism for each benchmark compared to the BASE machine.
The parallelism for the CD machine is primarily limited by
the constraint that branches must be executed in order. Since
conditionalbranches occur frequently in our benchmarks, ex-
ecuting one branch at a time is a serious bottleneck. Table 2
shows the average number of dynamic instructions between
conditional branch instructions in the program traces. For
the non-numeric programs, a branch instruction occurs about

every six instructions in a trace. When all of these branches
are ordered, it is difficult to find much parallelism.

 BASE
 CD
 CD-MF

||0

|2

|4

|6

|8

|10

|12

|14

|16

 P
ar

al
le

lis
m

awk ccom eqntott espresso gcc irsim latex

Figure 4: Parallelism with Control Dependence Analysis

When the constraint on branches is removed in the CD-MF
machine, only the true control and data dependences must be
observed. The parallelism for each benchmark is shown in
comparison to the parallelism for the CD machine in Figure 4.
The parallelism increases for all of the programs, and espe-
cially for gcc, irsim, and espresso. However, there is
still not a massive amount of parallelism. This is really not
too surprising when one considers the types of benchmarks
that we are analyzing. There may be some parallelism within
individual components of these programs, but the overall al-
gorithms are simply not very parallel.

Since the constraints for the CD-MF machine only require
that true data and control dependences be observed, the par-
allelism for this machine is a limit for all systems without
speculative execution. Dataflow architectures, for example,
are able to execute programs with only these essential depen-
dences. Since there are not massive amounts of parallelism,
any machine attempting to exploit parallelism in non-numeric
programs without speculative execution must have low over-
head to be effective.

5.2 Speculative Execution

The parallelism for the SP machine ranges from 4.16 to 9.22,
witha harmonic mean of 6.80. Figure 5 shows the parallelism
for each benchmark compared to the BASE machine. These
results are comparable to Wall’s results for a similar machine
[17]. The differences can be attributed to procedure inlining,
perfect loop unrolling, and the unlimited scheduling window
in our simulator. The parallelism for the SP machine is fairly
consistent across the different benchmarks. The following
measurements offer an explanation for the consistency and
suggest that this limit of parallelism will probably apply to
many more non-numeric applications.

In the SP machine, a misprediction cancels the execu-
tion of all instructions following the branch, so mispredic-

8

BASE CD CD-MF SP SP-CD SP-CD-MF ORACLE
awk 2.85 3.24 5.32 9.22 12.89 41.88 242.77
ccom 2.13 2.51 5.61 6.92 9.83 18.05 46.80
eqntott 1.98 2.05 5.21 6.40 18.09 225.90 3282.91
espresso 1.51 1.54 7.49 4.16 19.55 402.85 742.30
gcc (cc1) 2.10 2.55 14.63 7.76 13.18 66.29 174.50
irsim 2.31 2.66 11.89 8.40 15.82 45.86 265.42
latex 2.71 3.17 6.18 7.60 9.72 18.65 131.69
Harmonic Mean 2.14 2.39 6.96 6.80 13.27 39.62 158.26

matrix300 293 432 68324 36192 108575 180632 188470
spice2g6 2.14 2.29 16.80 8.11 25.28 196.76 843.60
tomcatv 22.23 42.77 3237 124 1881 3918 3918

Table 3: Parallelism for each Machine Model

 BASE
 SP
 SP-CD
 SP-CD-MF

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
ar

al
le

lis
m

awk ccom eqntott espresso gcc irsim latex

226 403

Figure 5: Parallelism with Speculative Execution

tions are barriers to instruction scheduling. Parallelism can
only be found among the instructions between mispredicted
branches. Therefore, the overall limit of parallelism for the
SP machine is actually an average over many discrete seg-
ments of code separated by mispredicted branches. Each of
these segments has two vital characteristics: the degree of
parallelism and the misprediction distance, that is, the num-
ber of instructions in the segment. In our experiments, we
recorded the number of occurrences of each misprediction
distance. The cumulative distributions of these mispredic-
tion distances for each program are shown in Figure 6. These
distributions are quite consistent across the different bench-
marks, with over 80% of the mispredictions occurring within
a distance of 100 instructions. We expect other non-numeric
programs to have similar distributions.

We also recorded the degree of parallelism for each seg-
ment of code between two mispredicted branches and found
that the relationship between the degree of parallelism and
the misprediction distance is similar for all of the bench-
marks. Figure 7 is a combination of the statistics for all of
the programs. For each misprediction distance, we plot the

 awk
 ccom
 eqntott
 espresso
 gcc
 irsim
 latex

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|
225

|
250

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90
|100

 Misprediction Distance

 C
um

ul
at

iv
e

Pe
rc

en
t o

f
M

is
pr

ed
ic

tio
ns

Figure 6: Cumulative Distribution of Misprediction Dis-
tances

harmonic mean of the parallelism for all segments of that size.
To reflect differences in the significance of these numbers,
the bars for frequently occurring misprediction distances are
shaded darker. For short misprediction distances, there is
little parallelism. Instructions within these short segments
tend to be closely related and have many data dependences
between them, and thus the parallelism is limited. For longer
misprediction distances, there is a greater chance of having
unrelated instructions within the segments and more paral-
lelism can be found. However, as shown by the distributions,
long misprediction distances do not occur very frequently.
Therefore, non-numeric programs with predominantly short
misprediction distances have limited parallelism on the SP
machine due to the data dependence in short segments of
instructions.

The SP-CD machine does not need to discard all instruc-
tions following a mispredicted branch, and thus it can ex-
ploit parallelism across mispredicted branches. As a result,
the harmonic mean parallelism for this machine increases to

9

|
0

|
25

|
50

|
75

|
100

|
125

|
150

|
175

|
200

|
225

|
250

|0

|4

|8

|12

|16

|20

|24

|28

|32

 Misprediction Distance

 H
ar

m
on

ic
 M

ea
n

Pa
ra

lle
lis

m

Figure 7: Parallelism vs. Misprediction Distance

13.27. Figure 5 compares the parallelism for each benchmark
to the parallelism for the SP machine. The branch constraint
for this machine requires that a branch cannot execute before
a preceding misprediction. This is much less restrictive than
the branch constraint for the CD machine. The flow of control
only changes when a branch is mispredicted, and since mis-
predictions are relatively infrequent, the branch constraint is
not a bottleneck.

Finally, the parallelism for the SP-CD-MF machine is
much larger. Figure 5 illustrates the parallelism for each
benchmark. The eqntott and espresso programs have
especially large amounts of parallelism, and there is a large
increase for all of the benchmarks.

The SP-CD-MF model provides us with an interesting data
point. It is more aggressive than the SP machine but also more
realistic than the ORACLE machine. To achieve the perfor-
mance of the ORACLE machine, instructions from alternate
paths must be executed simultaneously, and only the instruc-
tions from one of the paths will be useful. On the other hand,
as long as branches are correctly predicted, the SP-CD-MF
machine does not have to cancel any instructions.

5.3 Numeric Applications

Numeric programs, programs which operate on floating-point
data and which are commonly written in FORTRAN, are
generally considered to contain more parallelism than non-
numeric programs. This section examines the parallelism
for our three FORTRAN benchmarks and shows that the
type of control flow in a program is a more useful indication
of the available parallelism. The parallelism measured by
our experiments for the FORTRAN benchmarks is shown in
Table 3.

The matrix300 and tomcatv programs have much
higher parallelism for all of the machine models. From the
ORACLE machine, we observe that there is less data depen-
dence in these programs. The CD-MF machine achieves a

large fraction of the ORACLE machine parallelism. Because
the control flow in these programs is not dependent on the
results of the computation, the control dependence analysis
exposes parallelism across different levels of nested loops
and across outer loops. As a result, speculation is not as im-
portant. In comparison to the CD-MF machine, the SP-CD
and SP-CD-MF machines only compress the critical path of
each inner loop by a small constant factor. Thus it is the data
independent control flow that sets these programs apart from
the non-numeric programs.

Among the FORTRAN benchmarks, the behavior of
spice2g6 is clearly different. The control flow in
spice2g6 is highly data dependent, thus causing it to be-
have like the non-numeric programs in this study. As numeric
programs evolve to model more complex phenomena, they
are likely to have increasingly complex control flow and data
structures. Distinctions based on the source language and
type of arithmetic will become less meaningful. Our study
suggests that a more relevant characteristic for predicting the
parallelism in a program is whether the control flow is data
dependent.

5.4 Effects of Perfect Loop Unrolling

Previous studies on limits of parallelism did not remove all
of the dependences on induction variables [17]. A ques-
tion often raised is whether the induction variable depen-
dences significantly affect the results of these studies. We
performed two experiments, one with and one without re-
moving the induction variable dependences. Table 4 shows
the percent change in parallelism compared to the case when
perfect loop unrolling is not performed. That is, a positive
percent change means that removing the induction variable
dependences improves parallelism. We discovered that re-
moving these data dependences and the associated control
dependences has mixed effects.

Although our simulation of perfect loop unrolling always
decreases the program execution times, this does not neces-
sarily imply that the parallelism increases. In fact, perfect
unrolling has two competing effects on parallelism. By re-
moving index variable dependences and loop branches, more
parallelism is exposed. However, at the same time, removing
the loop overhead instructions decreases the opportunities for
overlapping those instructions with the rest of the computa-
tion in the loop, thereby decreasing the parallelism. Either
one of these effects may dominate depending on the bench-
mark and the machine model.

For most of the non-numeric programs, unrolling has lit-
tle effect. For example, ccom and latex have almost no
change at all. These programs primarily contain loops with
a lot of control and data dependences, so the dependences
removed by unrolling are not very significant. The loops in
these programs also tend to iterate a small number of times.

The CD-MF machine is most sensitive to perfect un-
rolling. Removing induction variable dependences allows

10

BASE CD CD-MF SP SP-CD SP-CD-MF ORACLE
awk 30 36 10 48 52 41 -22
ccom 0 1 2 3 2 -2 -2
eqntott -1 -1 -54 11 11 -4 3
espresso -6 -6 134 -2 -16 15 -21
gcc (cc1) 0 2 -2 14 18 -3 -4
irsim 2 3 9 17 4 -9 -9
latex 0 0 -1 0 0 0 29
matrix300 2911 4317 16 182136 5488 2 0
spice2g6 12 12 35 21 23 0 -1
tomcatv 47 126 -9 149 13 -12 -12

Table 4: Percent Change in Parallelism due to Perfect Loop Unrolling

multiple iterations with arbitrary control flow to execute in
parallel. This can improve parallelism, as in the case of
espresso. However, the loop overhead constitutes much
of the parallelism found in some loops. Thus, parallelism
decreases when we remove such instructions, as in the case
of eqntott.

Perfect unrolling has the biggest impact on matrix300
and, to a lesser extent, tomcatv. These programs primar-
ily execute simple loops where index variable dependences
limit the parallelism. For these programs, the SP machine
benefits the most from perfect unrolling. For nested loops,
each iteration of an outer loop is separated by a mispredicted
branch from the end of the inner loop. This prevents the outer
loop iterations from executing in parallel. Perfect unrolling
removes the loop branches, essentially coalescing the loops,
so that these serializing mispredictions do not occur.

In general, the effects of loop index and induction variable
dependences on parallelism vary depending on the appli-
cation program and the machine model. As expected, the
matrix-oriented numeric programs benefit significantly from
perfect loop unrolling. For programs with complex control
flow, unrolling often makes no significant difference.

6 Conclusion

This paper shows that control flow in a program can severely
limit the available parallelism. The control flow of many
non-numeric programs and also some numeric programs is
complex and highlydata dependent. To increase the available
parallelism beyond the current level, the constraints imposed
by control flow must be relaxed.

This paper discusses three basic techniques for handling
control flow: speculative execution, control dependence anal-
ysis, and following multiple flows of control. Through a
study of abstract machines that utilize different combinations
of these techniques, we have established the importance of
each technique. These basic techniques also form a useful
set of criteria with which to evaluate real architectures.

This study suggests that some of the current highly parallel
architectures lack adequate support for control flow. For
example, a VLIW (Very Long Instruction Word) machine
can only follow one flow of control. It cannot find sufficient
parallelism in programs whose control flow is highly data
dependent. In contrast, a dataflow machine can execute from
many different parts of a program simultaneously. However,
our study shows that even if instructions are executed as soon
as all their data and control dependences are satisfied, the
parallelism is still quite limited. Speculation is necessary to
find sufficient parallelism in these programs.

This study of abstract machines also helps to identify useful
architectural features. The concept of boosting [15], which
relies on software for scheduling and a small degree of hard-
ware to support speculative execution, appears particularly
promising. Another interesting concept is guarded instruc-
tions [5]. A guarded instruction is conditionally executed
based on a value stored in a general register. This allows
a compiler to specify some amount of control dependence
information, that only the action is control dependent on
the guard. Furthermore, using guarded instructions, a basic
block can contain code from different conditional statements
by simply capturing their conditions in the guards. Guarded
instructions are particularly interesting when combined with
support for speculative execution, since they help increase the
distance between mispredicted branches. Though guarded
instructions give the processor some ability to execute from
different regions of the source code, they are inefficient for
following multiple complex flows of control simultaneously.
If higher performance is desired, a small-scale multiprocessor
system with guarded instructions and speculative execution
support would be an interesting possibility.

References

[1] D. Bernstein and M. Rodeh. Global Instruction
Scheduling for Superscalar Machines. In Proceedings
of the ACM SIGPLAN’91 Conference on Programming

11

Language Design and Implementation, pages 241–255,
June 1991.

[2] R. P. Colwell, R. P. Nix, J. O’Donnell, D. B. Papworth,
and P. K. Rodman. A VLIW Architecture for a Trace
Scheduling Compiler. IEEE Transactions on Comput-
ers, C-37(8):967–979, Aug. 1988.

[3] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. An Efficient Method of Computing Static
Single Assignment Form. In Proceedings of the 16th
Annual ACM Symposium on Principles of Programming
Languages, pages 25–35, Jan. 1989.

[4] J. A. Fisher. Trace Scheduling: A Technique for Global
Microcode Compaction. IEEE Transactions on Com-
puters, C-30(7):478–490, July 1981.

[5] P. Y. T. Hsu and E. S. Davidson. Highly Concurrent
Scalar Processing. In Proceedings of the 13th Annual
International Symposium on Computer Architecture,
pages 386–395, June 1986.

[6] W. W. Hwu, T. M. Conte, and P. P. Chang. Comparing
Software and Hardware Schemes For Reducing the Cost
of Branches. In Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture, pages
224–233, May 1989.

[7] M. Johnson. Superscalar Microprocessor Design. Pren-
tice Hall, Englewood Cliffs, NJ, 1990.

[8] S. McFarling and J. Hennessy. Reducing the Cost of
Branches. In Proceedings of the 13th Annual Inter-
national Symposium on Computer Architecture, pages
396–404, June 1986.

[9] K. Murakami, N. Irie, M. Kuga, and S. Tomita. SIMP
(Single Instruction stream/Multiple instruction Pipelin-
ing): A Novel High-Speed Single-Processor Architec-
ture. In Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 78–85,
May 1989.

[10] A. Nicolau and J. A. Fisher. Measuring the Parallelism
Available for Very Long Instruction Word Architec-
tures. IEEE Transactions on Computers,C-33(11):968–
976, Nov. 1984.

[11] Y. N. Patt, S. W. Melvin, W. Hwu, and M. Shebanow.
Critical Issues Regarding HPS, A High Performance
Microarchitecture. In Proceedings of the 18th Annual
Workshop on Microprogramming, pages 109–116, Dec.
1985.

[12] E. M. Riseman and C. C. Foster. The Inhibition of Po-
tential Parallelism by Conditional Jumps. IEEE Trans-
actions on Computers, C-21(12):1405–1411, Dec.
1972.

[13] J. E. Smith and A. R. Pleszkun. Implementation of
Precise Interrupts in Pipelined Processors. In Proceed-
ings of the 12th Annual International Symposium on
Computer Architecture, pages 36–44, June 1985.

[14] M. D. Smith, M. Johnson, and M. A. Horowitz. Limits
on Multiple Instruction Issue. In Proceedings of the
Third International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 290–302, Apr. 1989.

[15] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting
Beyond Static Scheduling in a Superscalar Processor. In
Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, pages 344–354, May
1990.

[16] G. S. Sohi and S. Vajapeyam. Instruction Issue Logic for
High-Performance, Interruptible Pipelined Processors.
In Proceedings of the 14th Annual International Sym-
posium on Computer Architecture, pages 27–34, June
1987.

[17] D. W. Wall. Limits of Instruction-Level Parallelism. In
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 176–188, Apr. 1991.

12

