Limits of Control Flow on Parallelism

Monica S. Lam and Robert P. Wilson
Computer Systems L aboratory
Stanford University, CA 94305

Abstract

This paper discusses three techniques useful in relaxing the
constraints imposed by control flow on parallelism: control
dependence analysis, executing multiple flows of control si-
multaneously, and speculative execution. We evaluate these
techniques by using trace simulations to find the limits of
parallelism for machines that employ different combinations
of these techniques. We have three major results. First, local
regions of code have limited parallelism, and control depen-
dence analysisisuseful in extracting global parallelism from
different parts of a program. Second, a superscalar proces-
sor is fundamentally limited because it cannot execute inde-
pendent regions of code concurrently. Higher performance
can be obtained with machines, such as multiprocessors and
dataflow machines, that can simultaneously follow multiple
flows of control. Finally, without specul ative execution to a-
low instructionsto execute before their control dependences
are resolved, only modest amounts of parallelism can be ob-
tained for programs with complex control flow.

1 Introduction

The potential for parallelism can be evaluated from two dif-
ferent perspectives. The first isto propose an actual system
design; the performance of such a system is a lower bound
on the amount of available paralelism. The second is to
perform studies on the limits of paralelism for a particular
approach by enforcing only the constraints associated with
the approach and relaxing all other constraints. If the upper
bound of performance is found to be unacceptably low, then
the approach is inadequate. On the other hand, if the upper
bound is within expectations, the only conclusion is that the
approach may be sufficient. It is only from low limits that
we can draw interesting conclusions.

A recent study by Wall [17] contains a surprising result
that suggests a severe limitation in current approaches. One
of the experiments in that study examines the performance

Thisresearchwas supportedin part by DARPA contract NOO039-91-C-0138
and by an NSF graduatefellowship.

In Proceedings of the 19th Annual International Symposium on Computer
Architecture Gold Coast, Australia, May 19-21,1992, pp. 46-57. Copyright
© 1992by ACM, Inc.

of aprocessor that uses an aggressive hardware algorithm to
predict the outcomes of branches. Instructionsaong the pre-
dicted path of a branch are speculatively executed before the
branch is resolved. The processor has perfect memory dis-
ambiguation, perfect register renaming, unlimitedinstruction
fetching, and a very large number of functional units. The
reported speedups for this processor on a set of non-numeric
programs range from 4.1 to 7.4. Given the assumptions of
perfect memory disambiguation and alarge number of func-
tional units, these speedups are quite small.

Wall's result contrasts sharply with experiments that as-
sume perfect branch prediction [10, 12]. Since a machine
with perfect branch prediction requires foreknowledge, we
refer to such a machine as an oracle. The effects of control
flow on parallelism are essentially eliminated on an oracle
machine because al of the branch outcomes are known in
advance. Much more parallelism is available on an oracle
machine, suggesting that the bottleneck in Wall’s experiment
is dueto control flow.

The ultimate goal of our study is to discover ways to in-
crease parallelism by an order of magnitude beyond current
approaches. Inthispaper, wefocus on control flow. Through
astudy of the limits of parallelism, we hope to establish the
inadequacy of current approaches in handling control flow
and identify promising new directions.

This paper offers evidence that the limit of parallelism
discussed in Wall's paper is likely to apply to many more
non-numeric programs than those measured. A processor
that uses speculation to only exploit local paralelism found
between mispredicted branches is fundamentally limited. A
compiler can locate more globa paralelism in the code by
extracting the true control dependence of the program. How-
ever, thisincreased opportunity for parallelization cannot be
fully exploited unless the machine can simultaneously pur-
sue multiple flows of control. The degree of paralelism
is fundamentally limited by the von Neumann architecture.
Higher performance can be obtained with machines that can
simultaneously follow multiple flows of control.

In this paper, we analyze the techniques of speculative ex-
ecution, control dependence analysis, and following multiple
flows of control. We evaluate these techniques empirically
by computing the limits of parallelism for a set of programs
on machines that employ different combinations of these
techniques. So far, research on superscalar and multiproces-

sor architectures has mostly been conducted independently.
This work studies how instruction and processor levels of
parallelism interact. Our study also suggests that a useful
characteristic for predicting the parallelism in a program is
whether the control flow is data dependent.

We first introduce the major concepts of the paper in Sec-
tion 2. We explain specul ative execution, control dependence
analysis, and pursuing multiple flows of control. Section 3
presents a set of abstract machine modelsthat use these three
techniques in various combinations. In Section 4, we de-
scribethe experimental framework used to evaluatethe limits
of parallelism. Section 5 presents the results of these experi-
ments and analyzes the parallelism for each machine model.
Finally, Section 6 presents the conclusions of our study and
describes itsimplicationsfor some specific architectures that
have been proposed and implemented.

2 Relaxing Control Flow Constraints

The perfect branch prediction of an oracle machine is an
upper bound of all other techniquestorelax control flow con-
straints. Unfortunately, it is also an unrealistic upper bound.
Because branch outcomes are known in advance on an or-
acle machine, no instructions have to wait for branches to
be resolved. To achieve the same performance, a machine
must speculatively execute al possible paths through a pro-
gram. This requires hardware resources exponentia in the
number of outstanding conditional branches. Since perfect
branch prediction is not realistic, more practical techniques
are required to handle control flow. This section examines
three techniques: speculation with branch prediction, control
dependence analysis, and followingmultipleflows of control.

2.1 Speculation with Branch Prediction

While speculation on al possible pathsisinfeasible in prac-
tice, limited speculation is commonly used throughout com-
puter systems to improve performance. For example, almost
all modern processors prefetch the instructions following a
conditional branch. Some machines such asthe IBM 360/91
pursue both execution paths by also prefetching the instruc-
tions at the branch target.

A common techniqueto improve the efficiency of specula-
tionisto only speculate on instructionsfrom the most likely
execution path. The success of this approach depends on the
accuracy of branch prediction. Even for non-numeric code,
both hardware and software prediction algorithms have been
shown to be accurate over 85% of thetime [6, 8].

Extending speculative instruction fetching to speculative
execution creates additional parallelism. However, unlikein-
structionfetching, speculatively executing an instruction may
generate unwanted side effects. These side effects must be
discardedif the branch predictionisincorrect. Bothhardware

and software techni ques can be used to implement specul ative
execution.

Varioushardware structures have been proposed to support
speculative execution [7, 11, 13, 16]. These structures store
the results of the speculative instructions until the branch
direction is determined. If the branch prediction was cor-
rect the results are committed, otherwise they are discarded.
Hardware scheduling, however, is limited by the fact that an
instruction simply cannot execute before it is fetched. Itis
difficult to fetch instructions from far ahead along the pre-
dicted execution path, especially for programs with complex
control flow.

Softwaretechniquesovercomeinstructionfetch limitations
by reordering instructions. Trace scheduling identifies the
most commonly executed trace and schedulestheinstructions
withinthe trace as if they belong to one large basic block [2,
4]. However, implemented trace scheduling agorithms only
employ very limited formsof speculation. Smithet al. extend
software scheduling with hardware support for speculative
execution [15]. Instructions to be speculatively executed
are boosted before a conditional branch. These instructions
are labeled so that their results are discarded or committed
when the branch condition is determined. This combines
the ability of software to eliminate fetch limitations and the
ability of hardware to speculatively execute instructionswith
side effects.

2.2 Control Dependence Analysis

For most hardware instruction schedulers, al speculatively
executed instructions must be discarded when a conditional
branch is mispredicted. This constraint is, however, unnec-
essarily strict. Consider the following simple example:

if (a <0
b = 1;
c = 2;

While the assignment b = 1 is executed only if a < O,
theassignment ¢ = 2 isaways executed regardless of the
valueof a. Wesay thatb = 1 iscontrol dependent on the
conditiona < 0 and that ¢ = 2 is control independent.
We refer to the branch on which an instruction is control
dependent as its control dependence branch.

A hardware scheduler generally cannot determine which
instructions are control independent. In this example, sup-
pose the scheduler speculatively executesc = 2 before the
conditionisresolved. If the branchismispredicted, the hard-
ware must discard the assignment to ¢ only so that it can
repeat the identical assignment later. A compiler can com-
pute the control dependence and eliminate this inefficiency.
More generally, control dependence analysis allows instruc-
tions to be moved across many branches. By expanding the
range of code from which parallelism can be extracted, con-
trol dependence analysis increases the available parallelism.

Control dependence is an intuitively simple concept. For
block-structured programs, the immediate control depen-
dence for an instructionis simply the condition in the closest
enclosing control construct. For example, in the following
code,

for (i =0; i < 100; i++)
if (A[i] > 0) foo();
bar () ;

the call of the f oo function is control dependent on the
conditionAl i] > 0, whichinturniscontrol dependent on
the loop exit conditioni < 100. The bar functionis not
control dependent on any part of the loop and can execute in
parallel with the loop, assuming there is no data dependence
between f 0o and bar .

Control dependences in programs with arbitrary control
flow can easily be computed in a compiler using the reverse
dominance frontier algorithm [3]. Hardware techniques for
analyzing control dependences have also been considered
[9], but they can only detect a small subset of the control
independent instructionsand require complex hardware.

2.3 Executing Multiple Flows of Control

Control dependence analysis discovers paralelism from
across different regions of code, each of which may have
its own flow of control. In the example above, control de-
pendence analysis shows that the bar function can run con-
currently with the preceding loop. However, a uniprocessor
can typically only follow one flow of control at any time. A
uniprocessor cannot fetch and execute the instructions from
withintheloopwhilefollowingthearbitrary control flow that
may be present inthe bar function.

Support for following multipleflowsof control isnecessary
to fully exploit the parallelism uncovered by control depen-
dence analysis. Multiprocessor architectures are a genera
means of providing this support. Each processor of aMIMD
multiprocessor can follow an independent flow of control. At
theother extreme, it issometimes possibleto generate unipro-
cessor code that corresponds to pursuing multiple flows of
control in the original computation. A small number of code
segments can be packed together by generating different ver-
sions of the code for every possible combination of control
flow. However, in general, combining independent control
flows can lead to significant code expansion.

3 Abstract Machine Models

To establish the fundamental limits of these three techniques
for relaxing control flow constraints, we define a set of ab-
stract machine models and analyze the parallelism for each
machine under ideal conditions. Each machine model uses a
different combination of the three techniques. Our approach
isto examine a set of instruction traces from real programs

BASE An instruction cannot execute until the imme-
diately preceding branch in the trace is resolved.
Thisimpliesthat branch instructionsmust execute
in order, one per cycle.

CD An instruction cannot execute until its control
dependence branches are resolved. In addition,
branch instructionsmust execute in order, one per
cycle, to reflect the inability to pursue multiple
flows of control simultaneously.

CD-MF An instruction cannot execute until its con-
trol dependence branches are resolved. Multiple
branch instructions can execute in paralel and
need not be ordered.

SP An instruction cannot execute until the immedi-
ately preceding mispredicted branch in the trace
isresolved. Thisimpliesthat a branch instruction
must wait for all preceding mispredicted branches.

SP-CD Aninstruction cannot execute until its mispre-
dicted control dependence branches are resolved.
In addition, a branch instruction must wait for all
preceding mispredicted branches, not just the ones
it is control dependent on.

SP-CD-MF An instruction cannot execute until its
mispredicted control dependence branches are re-
solved. There are no additional constraints on
branches.

ORACLE Thereareno constraintsdueto control flow.

Figure 1: Control Flow Constraints of Abstract Machines

and compute the available parallelism by simply enforcing
true data dependence constraints and the control flow con-
straints associated with each abstract machine model. Other
constraints due to imperfect memory disambiguation, reuse
of variables, and limited resources are ignored.

We define seven abstract machines. The BASE machine
uses none of the three techniques and provides a baseline
for comparison. The ORACLE machine has perfect branch
prediction, and its performance represents an upper bound of
parallelism given the assumptions in our experiments. The
other five machines use combinations of control dependence
analysis (CD), following multipleflows of control (MF), and
speculative execution with branch prediction (SP). There are
only five interesting combinations because we cannot recog-
nizeindependent flows of control without control dependence
analysis.

Each machine is distinguished by its ability to handle con-
trol flow. We model these abilities by imposing the sequenc-
ing constraintsshown in Figure 1 on the execution of instruc-

tionsin dynamic traces. More aggressive machines have less
restrictive constraints. Since the BASE machine uses none
of the three techniques, its control flow constraint isthe most
severe; it prevents instructions from executing before any
preceding branches. The CD machine has perfect control
dependence information, and thus, instructions that are not
dependent upon a branch need not wait for it to be resolved.
To reflect the limitation of following one flow of control, we
also impose an ordering on the branch instructions. To model
the behavior of current compilers[1], this ordering requires
all branches in the program to execute in the original sequen-
tial execution order. The CD-MF machine may follow an
unlimited number of flows of control and does not require a
branch ordering constraint.

All of the machineswith specul ative execution in thisstudy
only speculatively execute instructionson the most likely ex-
ecution path. Simultaneously executing instructionson alter-
nate paths would require that some instructionsbe cancelled
regardless of the branch outcomes. However, in the various
SP machines, al of the speculative instructions are poten-
tially useful, making these machines more realistic than the
ORACLE machine.

The SP machine can speculate on an infinite number of
consecutive branch outcomes. This essentially creates anin-
finitely long path of predictedinstructionsthroughaprogram.
Instructions from anywhere along this path may execute in
parallel. However, when abranch is mispredicted, all of the
instructions on the predicted path following the branch must
be cancelled. Only those instructionsthat are not cancelled
appear in the traces that we analyze. Therefore, the control
flow constraint on an instruction in a trace is that it cannot
execute until al of the preceding mispredicted branches are
resolved. Aslong as the branch predictions are correct, the
flow of control does not change and the branch instructions
can execute inany order. A mispredicted branch requiresthat
the flow of control transfer to the unpredicted branch path,
and thus, only one mispredicted branch can execute in each
cycle.

The SP-CD machine differs from the SP machine in its
treatment of mispredicted branches. Instead of cancelling all
of the instructions along the predicted path, only those in-
structionsthat are actually control dependent on the mispre-
dicted branch are cancelled. Due to following a single flow
of control, the mispredicted branches must still be executed
in order. The SP-CD-MF machine can follow multiple flows
of control simultaneously, and thus mispredicted branches
can execute in parallel.

To illustrate the power of the different abstract machine
models, consider the flow graph in Figure 2. Assume that
there are no data dependences in this program. Each nodein
the graph consists of a single instruction. Next to each node
is the set of branch instructions on which it is immediately
control dependent. The edges represent the possible flow of
control, with the more likely branch outcomes highlighted
by bold arcs. One possible trace through this graph is also

@)%

® ©

| g

® {1

7o

Figure 2: Example Flow Graph and Trace

shown in Figure 2. Each instructionin the trace isidentified
by the instruction node number and aletter to distinguishthe
specific instance. Branch instructionsare written in boldface
and circled if they are mispredicted. The edges in the trace
represent the control dependence relationships.

Since there are no data dependences in the program, the
ORACLE machine simply executes al of the instructionsin
one cycle. The executions of the other machine models are
shownin Figure 3, wherethe edgesrepresent the dependences
dueto control flow and instructionsat the same level execute
at the same time.

The BASE machine executes all of the branches sequen-
tially and each non-branch instruction one cycle after the
preceding branch. The CD machine executes instructions 6
and 7 earlier because they are not control dependent on the
immediately preceding branches. The CD-MF machine need
not execute the branches in order; the edges are simply the
control dependence edges from the trace in Figure 2. The
SP machine executes all of the instructions between mispre-
dicted branches in parallel. The SP-CD machine behaves
similarly but executes instructions 3c, 6, and 7 earlier be-
cause they are not control dependent on the mispredicted
branches. Finally, the SP-CD-MF machine executes all but
one of the instructionsin one cycle. Since instruction 4b is
not on the predicted path, the machine does not specul atively
execute the instruction. The instruction is therefore not ex-
ecuted until the processor discovers that it has mispredicted
the branch 2b. In contrast, to achieve the performance of
the ORACLE machine, both instructions 3 and 4 must be
executed in parallel on every iteration. This illustrates the
fundamental difference between SP-CD-MF and ORACLE:
the SP-CD-MF machine does not pursue aternate paths si-
multaneously.

BASE CD CD-MF
\ T~ [~
1 1 7 1 7
\ T~ T
2a 2a 6 2a 5a 6
3a ba 3a ba 3a 2b 5b
\ \]
2b 2b 4b 2c 5c
4 5b 4 5b 3c
\ |
2c 2c
_—1 —1
3c 5c 3c 5c
/‘
6 7

SP

SP-CD

SP-CD-MF

\
1 2a 3a Sa(Sb 2cm6 7
b

Figure 3: Execution of the Abstract Machines

4 Experimental Framework

This section describes the methodology used to analyze the
parallelism for each machine model. Since we are only in-
terested in evaluating techniques for handling control flow,
we limit the scope of the experiment to include only the
fundamental constraintsrelated to control flow.

4.1 DataDependence

We assume an idedlistic approach to handling data depen-
dences. The only data dependence constraint enforced isthat
a read operation in the trace must only wait for the imme-
diately preceding write operation to the same location. This
relaxes many constraintsin reglity.

First, since we are enforcing only true data depen-
dences (reads after writes), we have eliminated all the anti-
dependences (writes after reads) and output dependences
(writes after writes) for al register as well as memory ac-
cesses. |In practice, various renaming techniques can be used
to remove some of these spurious data dependences.

Second, we also assume that memory references are per-
fectly disambiguated; that is, the machines can determine if
two addresses are identical even before they have been com-
puted. This perfect disambiguation is an upper bound for
what can be achieved by compiler analysis and by specula-
tive hardware disambiguation.

Third, an instruction must wait until it can be determined
that no preceding instructions will ater the instruction’s
operands. Different data dependences may occur along dif-
ferent control flow paths, as shown in the following example:

b = 0;
if (a <0
b = 1;

c = b;

Depending on the outcome of the a < 0 condition, the
b = 1 assignment may or may not be executed. Therefore,
the value assigned to ¢ depends on the outcome of the con-
dition. The potential data dependence between ¢ = b and
b = 1 delaystheassignment toc at least until the condition
a < 0Oisresolved.

Since potential data dependence constraints force instruc-
tionsto wait for branches, speculation with branch prediction
can relax these constraints. For example, if we predict that
b = 1 will not execute, c = b can execute speculatively
with the assumption that b is 0. If the prediction was in-
correct, the assignment must be re-executed with the correct
valueof b.

We are unable to include the potential data dependence
constraints in our experiment because only one execution
path is captured in a trace. These constraints must be an-
alyzed statically. Static analysis, however, cannot be com-
pletely accurateinthe presenceof indirect memory references
because perfect disambiguation is only possible when ana-
lyzingatrace. Toensurethat our resultsare upper bounds, we
must avoid introducing constraints based on imperfect dis-
ambiguation, and so we ignore the potential data dependence
constraints.

4.2 Program Transformations

Procedure calls and loops are two control constructs that are
commonly implemented inwaysthat introduce unnecessarily
serializing constraints. These constraints can be eliminated
by alternate implementation techniques and simple transfor-
mations such as procedure inlining and loop unrolling. Our
study triesto model an upper bound of these techniques.

Procedure calls and returns introduce unnecessary control
flow and cause problemsfor branch prediction. Furthermore,
a new stack frame is typically allocated and deallocated in
every procedure by incrementing and decrementing the stack
pointer. Since thereis atrue data dependence between every
increment and decrement, these stack pointer manipulations
must be executed sequentially. For programs with many
small procedures, thismay limitthe parallelism. To simulate
the optimal case of inlining al procedures, including recur-
sive procedures, we ignore al call and return instructionsin
atrace, aswell asal instructionsthat manipulate the position
of the stack pointer.

Parallelism in many loopsis inhibited by dependences on
theloop index variables. Loop index variables and induction
variables are incremented in every loop iteration!, creating
true data dependences between iterations. However, these
dependences are only a result of the way code is generated
for scalar processors and are not an inherent part of the loop
semantics. Loop unrollingisasimple technique that compil-
ers use to reduce such effects.

In our experiment, we simulate perfect and complete un-
rolling. First, weanalyzethe object codeto discover theloops
in the program. We then use iterative data flow analysis to
identify registers that are incremented by a constant exactly
once per loop iteration. We only check the registers and not
memory locations because we assume that the compiler has
allocated the index variables in registers. If the index vari-
ables could not be register allocated, the loop index updateis
unlikely to be in the critical path of the loop execution. Fi-
nally, the analysis marks all instructions that increment loop
index and induction variables, comparisons of loop indices
with loop invariant values, and branches based on the results
of such comparisons. These instructions are ignored when
they occur in the trace.

Admittedly, many more transformations could be applied.
A sophisticated compiler may be able to tranglate a program
into an equivalent one that is more amenable to paralleliza-
tion. This experiment does not, by any means, establish the
limit of paralelism for the problem solved by a program.
Finding such a limit is an undecidable problem. This ex-
periment only establishes the limits of paralelism for the
particular code generated by the compiler and subject to all
of the assumptionsin our experiment. If the resulting limits
are considered inadequate, other techniques not considered
in this study must be used.

4.3 Benchmark Programs

Our benchmark suite consists of the six SPEC programs and
the four other benchmarks shown in Table 1. We have in-
cluded three of the FORTRAN SPEC programs for compar-
ison with the non-numeric programs. The standard inputs
were used for the SPEC benchmarks. The programs were

1This assumes that the compiler has identified the induction variables
and performed strength-reduction.

Program Language | Description

awk C pattern scanning
ccom C C compiler front-end
eqgntott C truth table generation
espresso C logic minimization
gcc (ccl) C Gnu C compiler

irsim C VLSI layout simulator
latex C document preparation
matrix300 | FORTRAN | matrix multiplication
spice2g6 | FORTRAN | circuit smulation
tomcatv FORTRAN | mesh generation

Table 1: Benchmark Programs

compiled for a MIPS R3000 processor by the MIPS C and
FORTRAN compilerswithfull optimization. Thetraceswere
obtained using the MIPS pixie tool, and each program was
simulated for up to 100 million instructions. Our instruction
traces include library routines but not system calls, so we
ignore dependences that occur within the operating system.

4.4 Simulation Algorithm

The basic simulation algorithm isto determine the execution
timeof each instructioninatrace. Thecompletiontimeof the
last instruction to execute is the total execution time for the
trace. The resulting parallelism is the ratio of the sequential
execution timeto the parallel execution time. Since we want
to measure the actual parallelism and not the speedup for a
realistic machine, we use one clock cycle latenciesfor all in-
structions. With non-unit latencies, some of the parallelism
would be used to fill pipeline bubbles. The instructions re-
moved because of our perfect inlining and perfect unrolling
do not contribute to the sequential time, so the parallelism
does not include any speedup due to removing those instruc-
tions.

Our experiment allows instructions arbitrarily far apart in
the program trace to execute in parallel. This is necessary
to detect paralelism that could be exposed by aggressive
compiler transformations, such as loop interchange. Since
the simulator cannot record the data dependencesinalimited
scheduling window, it records the time of the most recent
write to each register and memory location. A large hash
tableis used to record writesto memory. Each bucket in this
table may contain entries for several different locations, and
additional spaceis allocated if a bucket overflows.

For each instruction, the simulator first determines when
theoperandsareavailable. Thisisstraightforward for register
operands. For memory operands, we read the actual address
from the trace and check the hash table for the time of the last
writetothat address. Next thesimulator determineswhenthe
control flow constraintsare satisfied. For the BASE machine,
the execution time of the most recent branch in the trace is

recorded, and all subsequent instructionsmust wait until that
time. The implementations of the control flow constraints
for the other machine models are described below. Given
the constraints of control flow and operand availability, the
instruction execution time isthe minimum time satisfying all

of these constraints. Finally, the simulator records when the
instruction result iswritten. For store instructions, the actual

address of the destinationisread from the trace, and the time
is entered into the hash table.

44.1 Control Dependence Analysis

For the CD and CD-MF machines, the control flow constraint
isthat an instruction cannot execute until after itsimmediate
control dependence branch has executed. Control depen-
dence analysisis performed in two stages. We first compute
the control dependences within each procedure by anayz-
ing the object code. Interprocedural control dependences are
handled dynamically as the traces are analyzed.

To analyze the control dependences within a procedure,
we must first build a control flow graph. We use the MIPS
pixie tool to identify the basic block boundaries. We then
decode and analyze the instructions from the object file to
determine the successors of each basic block. Using the flow
graph, the analysis computes all of the immediate control
dependences by finding the reverse dominance frontier of
each basic block [3]. All of the instructions within a basic
block are immediately control dependent on the branches in
the reverse dominance frontier of the block.

An instruction may be immediately control dependent on
multiplebranches. However, each dynamicinstance of anin-
struction only dependsimmediately on one of these branches.
For example, instruction 2 in Figure 2 is control dependent
upon both instructions 1 and 5. If control flows from in-
struction 1 to instruction 2, we need to consider only the
dependence on instruction 1. This is accomplished by se-
guentially numbering each basic block inthetrace, and aswe
analyze the trace, the simulator records for each basic block
in the code the sequence number of its most recent instance.
The immediate control dependence of an instance of an in-
struction is simply the branch within its reverse dominance
frontier with the latest sequence number.

Interprocedural control dependences are handled by main-
taining a stack that contains the control dependence infor-
mation for each active procedure. This stack records the
control dependence for each calling instruction and the se-
guence number at the start of each procedure. Each procedure
simply inheritsthe control dependence of theinstruction that
calls that procedure. Without recursion, the control depen-
dence for an instance of an instruction is either the control
dependence on the top of the stack or an instance of a branch
in itsreverse dominance frontier, whichever is most recent.

With recursion, the control dependence for an instruction
is either the dependence on thetop of the stack or an instance
of a branch in its reverse dominance frontier from the same

procedure invocation. For expediency, our simulations do
not keep track of all the necessary information to accurately
compute the control dependence in a recursive procedure.
For each basic block in the code, along with the sequence
number of its most recent instance, the simulator also re-
members the sequence number at the start of its procedure.
Recursionis detected when any branch in an instruction’sre-
verse dominance frontier has a procedure sequence number
greater than the current procedure. At that point, to provide
an upper bound on the control dependence, we simply ignore
the control dependence for that instance of the instruction.

4.4.2 Speculative Execution

Our simulations of speculative execution use static branch
predictions based on profile information. These statistics
were collected from running the benchmarks with the same
inputs used in the simulations. Our prediction rates are
therefore an upper bound for static branch prediction tech-
niques. Dynamic techniques provide similar performance
[8]. Table2 showsthe branch prediction ratesfor conditional
branches in each benchmark. We do not attempt to predict
computed jumps.

A mispredicted branch in a trace is easily identified by
comparing the actual branch outcome with the predicted out-
come. The simulator for the SP machine simply remembers
the execution time of the most recent mispredicted branch,
and no subseguent instructions in the trace can execute be-
fore that time. For the SP-CD and SP-CD-MF machines,
an instruction must wait for itslast mispredicted control de-
pendence branch. By recording for each branch in the code
whether its most recent instance was mispredicted, the simu-
lator can compute this control flow constraint.

Prediction | Dynamic Instructions
Program Rate Between Branches
awk 93.48 6.8
ccom 92.02 75
egntott 91.92 34
espresso 85.64 6.0
gcc (ccl) 89.29 7.9
irsim 87.71 6.7
latex 87.11 9.4
matrix300 99.02 20.0
spice2g6 97.66 131
tomcatv 99.09 58.8

Table 2: Branch Statistics

5 Evaluation and Analysis

The parallelism for each machine model is shown in Ta
ble 3. The following sections examine these results for the

non-numeric benchmarks and discuss the implications. The
results for the numeric benchmarks are presented in Sec-
tion 5.3, and Section 5.4 discusses the effects of perfect loop
unrolling.

The BASE machine provides a standard for comparison
by determining the amount of parallelism when no special
effort is made to reduce the control flow constraints. For
the non-numeric benchmarks, the BASE machine has a har-
monic mean parallelism of 2.14, which islarger than in other
studiesof similar machines because our assumptionsare very
different. First, the BASE machine alows some instruction
scheduling across basic blocks. An instruction can execute
as soon as the previous conditional branch is resolved, even
if other instructions before the branch have not compl eted.
In addition to thisoverlap, basic blocksthat are not separated
by conditional branches may also be executed in paralel.
Second, whereas all operations in our machines execute in
only one clock cycle, some previous studies used redlistic
operation latencies. Since non-unit latency operations con-
sume some parallelism to fill pipeline bubbles, the reported
speedups do not measure all of the parallelism. Finaly, we
do not include any limitations on fetching instructions[14].

At the other extreme is the upper bound of the ORACLE
machine. As expected, the amount of parallelism is quite
large and varies significantly between benchmarks. Thisre-
flects the different types of algorithmsin the programs. For
example, eqnt ot t primarily executes a quicksort function
which contains few data dependences. On the other hand,
ccomand | at ex are composed of agorithms with much
less inherent parallelism. Several factors cause our num-
bers to be considerably larger than in previous experiments
with perfect branch prediction. Our unlimited scheduling
window exposes parallelism across the entire program trace.
Anti-dependences and output data dependences are not con-
sidered. Our simulation of procedure inlining aso removes
the instructionsthat adjust the stack pointer at the entry and
exit of most procedures. Thisis significant in the case of the
ORACL E machine because the stack pointer increments and
decrements often lengthen the critical path of a program.

5.1 Control Dependence Analysis

The CD machine has more parallelism than the BASE ma-
chine because basic blocks with the same control depen-
dences can be executed in parallel. However, the harmonic
mean parallelism of 2.39 for the CD machineis only slightly
better than for the BASE machine. Figure 4 showsthe paral-
lelism for each benchmark compared to the BASE machine.
The parallelism for the CD machine is primarily limited by
the constraint that branches must be executed in order. Since
conditional branches occur frequently in our benchmarks, ex-
ecuting one branch at atime is a serious bottleneck. Table 2
shows the average number of dynamic instructions between
conditional branch instructions in the program traces. For
the non-numeric programs, a branch instruction occurs about

every six instructionsin atrace. When al of these branches
are ordered, it is difficult to find much parallelism.

£ 16 - BASE
5 s CD
= 1.4+ EEE CD-MF

12

10

awk ccom egntott espresso gcc irsm latex

Figure 4: Parallelism with Control Dependence Analysis

When the constraint on branchesisremoved inthe CD-MF
machine, only the true control and data dependences must be
observed. The parallelism for each benchmark is shown in
comparisonto theparallelismfor the CD machineinFigure4.
The parallelism increases for all of the programs, and espe-
cialy for gcc, i rsi mand espr esso. However, thereis
gtill not a massive amount of parallelism. Thisisreally not
too surprising when one considers the types of benchmarks
that we are analyzing. There may be some parallelismwithin
individual components of these programs, but the overall al-
gorithmsare simply not very parallel.

Since the constraintsfor the CD-MF machine only require
that true data and control dependences be observed, the par-
alelism for this machine is a limit for all systems without
speculative execution. Dataflow architectures, for example,
are able to execute programs with only these essential depen-
dences. Since there are not massive amounts of parallelism,
any machine attempting to exploit parallelismin non-numeric
programs without specul ative execution must have low over-
head to be effective.

5.2 Speculative Execution

The parallelism for the SP machine rangesfrom 4.16 t0 9.22,
withaharmonic mean of 6.80. Figure5 showsthe parallelism
for each benchmark compared to the BASE machine. These
resultsare comparable to Wall’ sresultsfor asimilar machine
[17]. The differences can be attributed to procedure inlining,
perfect loop unrolling, and the unlimited scheduling window
inour simulator. The parallelism for the SP machineisfairly
consistent across the different benchmarks. The following
measurements offer an explanation for the consistency and
suggest that this limit of parallelism will probably apply to
many more non-numeric applications.

In the SP machine, a misprediction cancels the execu-
tion of al instructions following the branch, so mispredic-

BASE CD | CD-MF SP | SP-CD | SP-CD-MF | ORACLE
awk 2.85 3.24 532 9.22 12.89 41.88 242.77
ccom 2.13 251 5.61 6.92 9.83 18.05 46.80
egntott 1.98 2.05 521 6.40 18.09 225.90 328291
espresso 151 1.54 7.49 4.16 19.55 402.85 742.30
gcc (ccl) 2.10 2.55 14.63 7.76 13.18 66.29 174.50
irsim 231 2.66 11.89 8.40 15.82 45.86 265.42
|atex 2.71 3.17 6.18 7.60 9.72 18.65 131.69
Harmonic Mean 214 | 2.39 6.96 6.80 13.27 39.62 158.26
matrix300 293 432 68324 | 36192 | 108575 180632 188470
spice2g6 2.14 2.29 16.80 8.11 25.28 196.76 843.60
tomcatv 22.23 | 42.77 3237 124 1881 3918 3918
Table 3: Parallelism for each Machine Model
g 10 =P BASE @ 100 oo
z T [i—CD :'g B T
& BN SP-CD-MF g_ =
" :
60 § — awk
5 b coom
g eqntott
40 B - - - espresso
30 E - g
o irsim
20 latex
10
0 | | | | | | |

irsm latex

awk ccom egntott espresso gcc

Figure 5: Parallelism with Speculative Execution

tions are barriers to instruction scheduling. Parallelism can
only be found among the instructions between mispredicted
branches. Therefore, the overall limit of parallelism for the
SP machine is actually an average over many discrete seg-
ments of code separated by mispredicted branches. Each of
these segments has two vital characteristics: the degree of
parallelism and the misprediction distance, that is, the num-
ber of instructions in the segment. In our experiments, we
recorded the number of occurrences of each misprediction
distance. The cumulative distributions of these mispredic-
tion distances for each program are shownin Figure 6. These
distributions are quite consistent across the different bench-
marks, with over 80% of the mispredictionsoccurring within
adistance of 100 instructions. We expect other non-numeric
programs to have similar distributions.

We also recorded the degree of parallelism for each seg-
ment of code between two mispredicted branches and found
that the relationship between the degree of parallelism and
the misprediction distance is similar for al of the bench-
marks. Figure 7 is a combination of the statistics for all of
the programs. For each misprediction distance, we plot the

0 25 50 75 100 125 150 175 200 225 250
Misprediction Distance

Figure 6: Cumulative Distribution of Misprediction Dis-
tances

harmonic mean of the parallelismfor all ssgmentsof that size.
To reflect differences in the significance of these numbers,
the bars for frequently occurring misprediction distances are
shaded darker. For short misprediction distances, there is
little parallelism. Instructions within these short segments
tend to be closely related and have many data dependences
between them, and thusthe parallelismislimited. For longer
misprediction distances, there is a greater chance of having
unrelated instructions within the segments and more paral-
lelism can befound. However, as shown by the distributions,
long misprediction distances do not occur very frequently.
Therefore, non-numeric programs with predominantly short
misprediction distances have limited parallelism on the SP
machine due to the data dependence in short segments of
instructions.

The SP-CD machine does not need to discard al instruc-
tions following a mispredicted branch, and thus it can ex-
ploit parallelism across mispredicted branches. As aresult,
the harmonic mean parallelism for this machine increases to

32

28

24

20

16

Harmonic Mean Parallelism

12

8+

4

| | | | | | |
100 125 150 175 200 225 250
Misprediction Distance

0

75

Figure 7: Paralelism vs. Misprediction Distance

0 25 50

13.27. Figure5 comparesthe parallelismfor each benchmark
to the parallelism for the SP machine. The branch constraint
for thismachine requires that a branch cannot execute before
a preceding misprediction. Thisis much lessrestrictive than
the branch constraint for the CD machine. Theflow of control
only changes when a branch is mispredicted, and since mis-
predictions are relatively infrequent, the branch constraint is
not a bottleneck.

Finaly, the parallelism for the SP-CD-MF machine is
much larger. Figure 5 illustrates the parallelism for each
benchmark. The eqnt ot t and espr esso programs have
especially large amounts of paralelism, and thereis alarge
increase for al of the benchmarks.

The SP-CD-MF model providesuswith an interesting data
point. Itismoreaggressivethan the SP machinebut alsomore
realistic than the ORACLE machine. To achieve the perfor-
mance of the ORACLE machine, instructionsfrom aternate
paths must be executed simultaneously, and only the instruc-
tionsfrom one of the paths will be useful. On the other hand,
as long as branches are correctly predicted, the SP-CD-MF
machine does not have to cancel any instructions.

5.3 Numeric Applications

Numeric programs, programswhich operate on floating-point
data and which are commonly written in FORTRAN, are
generaly considered to contain more parallelism than non-
numeric programs. This section examines the parallelism
for our three FORTRAN benchmarks and shows that the
type of control flow in a program is a more useful indication
of the available paralelism. The parallelism measured by
our experiments for the FORTRAN benchmarksis shown in
Table 3.

The mat ri x300 and t ontat v programs have much
higher parallelism for all of the machine models. From the
ORACLE machine, we observe that there is less data depen-
dence in these programs. The CD-MF machine achieves a

10

largefraction of the ORACLE machine parallelism. Because
the control flow in these programs is not dependent on the
results of the computation, the control dependence analysis
exposes parallelism across different levels of nested loops
and across outer loops. As aresult, speculationis not asim-
portant. In comparison to the CD-MF machine, the SP-CD
and SP-CD-MF machines only compress the critical path of
each inner loop by asmall constant factor. Thusitisthe data
independent control flow that sets these programs apart from
the non-numeric programs.

Among the FORTRAN benchmarks, the behavior of
spi ce2g6 is clearly different. The control flow in
spi ce2g6 is highly data dependent, thus causing it to be-
havelikethe non-numeric programsinthisstudy. Asnumeric
programs evolve to model more complex phenomena, they
arelikely to have increasingly complex control flow and data
structures. Distinctions based on the source language and
type of arithmetic will become less meaningful. Our study
suggeststhat amore relevant characteristic for predicting the
parallelism in a program is whether the control flow is data
dependent.

5.4 Effectsof Perfect Loop Unrolling

Previous studies on limits of parallelism did not remove all
of the dependences on induction variables [17]. A ques-
tion often raised is whether the induction variable depen-
dences significantly affect the results of these studies. We
performed two experiments, one with and one without re-
moving the induction variable dependences. Table 4 shows
the percent change in parallelism compared to the case when
perfect loop unrolling is not performed. That is, a positive
percent change means that removing the induction variable
dependences improves parallelism. We discovered that re-
moving these data dependences and the associated control
dependences has mixed effects.

Although our simulation of perfect loop unrolling always
decreases the program execution times, this does not neces-
sarily imply that the parallelism increases. In fact, perfect
unrolling has two competing effects on parallelism. By re-
moving index variable dependences and loop branches, more
parallelismisexposed. However, at the same time, removing
theloop overhead instructionsdecreases the opportunitiesfor
overlapping those instructions with the rest of the computa-
tion in the loop, thereby decreasing the parallelism. Either
one of these effects may dominate depending on the bench-
mark and the machine model.

For most of the non-numeric programs, unrolling has lit-
tle effect. For example, ccomand | at ex have aimost no
change at all. These programs primarily contain loops with
a lot of control and data dependences, so the dependences
removed by unrolling are not very significant. The loopsin
these programs also tend to iterate a small number of times.

The CD-MF machine is most sensitive to perfect un-
rolling. Removing induction variable dependences alows

BASE CD | CD-MF SP | SP-CD | SP-CD-MF | ORACLE
awk 30 36 10 48 52 41 -22
ccom 0 1 2 3 2 -2 -2
egntott -1 -1 -54 11 11 -4 3
espresso -6 -6 134 -2 -16 15 -21
gcc (ccl) 0 2 -2 14 18 -3 -4
irsm 2 3 9 17 4 -9 -9
latex 0 0 -1 0 0 0 29
matrix300 | 2911 | 4317 16 | 182136 5488 2 0
spice2g6 12 12 35 21 23 0 -1
tomcatv 47 126 -9 149 13 -12 -12

Table 4: Percent Change in Parallelism due to Perfect Loop Unrolling

multiple iterations with arbitrary control flow to execute in
parallel. This can improve paralelism, as in the case of
espr esso. However, the loop overhead constitutes much
of the parallelism found in some loops. Thus, paralelism
decreases when we remove such instructions, as in the case
of egntott.

Perfect unrolling has the biggest impact on mat ri x300
and, to a lesser extent, t ontat v. These programs primar-
ily execute ssimple loops where index variable dependences
limit the parallelism. For these programs, the SP machine
benefits the most from perfect unrolling. For nested loops,
each iteration of an outer loop is separated by a mispredicted
branch from the end of theinner loop. This preventsthe outer
loop iterations from executing in parallel. Perfect unrolling
removes the loop branches, essentially coalescing the loops,
so that these serializing mispredictions do not occur.

In general, the effects of loop index and induction variable
dependences on parallelism vary depending on the appli-
cation program and the machine model. As expected, the
matrix-oriented numeric programs benefit significantly from
perfect loop unrolling. For programs with complex control
flow, unrolling often makes no significant difference.

6 Conclusion

This paper showsthat control flow in a program can severely
limit the available paralelism. The control flow of many
non-numeric programs and also some numeric programs is
complex and highly datadependent. Toincreasetheavailable
parallelism beyond the current level, the constraintsimposed
by control flow must be relaxed.

This paper discusses three basic techniques for handling
control flow: speculative execution, control dependenceanal-
ysis, and following multiple flows of control. Through a
study of abstract machinesthat utilize different combinations
of these techniques, we have established the importance of
each technique. These basic techniques also form a useful
set of criteriawith which to evaluate real architectures.

11

This study suggeststhat some of the current highly parallel
architectures lack adequate support for control flow. For
example, a VLIW (Very Long Instruction Word) machine
can only follow one flow of control. It cannot find sufficient
parallelism in programs whose control flow is highly data
dependent. In contrast, adataflow machine can execute from
many different parts of a program simultaneously. However,
our study showsthat even if instructionsare executed as soon
as all their data and control dependences are satisfied, the
parallelismis still quite limited. Speculation is necessary to
find sufficient parallelism in these programs.

Thisstudy of abstract machinesalso helpstoidentify useful
architectural features. The concept of boosting [15], which
relies on software for scheduling and a small degree of hard-
ware to support speculative execution, appears particularly
promising. Another interesting concept is guarded instruc-
tions [5]. A guarded instruction is conditionally executed
based on a value stored in a general register. This alows
a compiler to specify some amount of control dependence
information, that only the action is control dependent on
the guard. Furthermore, using guarded instructions, a basic
block can contain code from different conditional statements
by simply capturing their conditionsin the guards. Guarded
instructions are particularly interesting when combined with
support for specul ative execution, since they helpincreasethe
distance between mispredicted branches. Though guarded
instructions give the processor some ability to execute from
different regions of the source code, they are inefficient for
following multiple complex flows of control simultaneously.
If higher performanceisdesired, asmall-scale multi processor
system with guarded instructions and speculative execution
support would be an interesting possibility.

References
[1] D. Bernstein and M. Rodeh. Global Instruction

Scheduling for Superscalar Machines. In Proceedings
of the ACM SIGPLAN' 91 Conference on Programming

(2]

(3]

[4]

(5]

6]

8]

(9]

[10]

[11]

[12]

Language Design and | mplementation, pages 241255,
June 1991.

R. P. Colwdll, R. P. Nix, J. O’ Donnell, D. B. Papworth,
and P. K. Rodman. A VLIW Architecture for a Trace
Scheduling Compiler. |EEE Transactions on Comput-
ers, C-37(8):967-979, Aug. 1988.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and
F. K. Zadeck. An Efficient Method of Computing Static
Single Assignment Form. In Proceedings of the 16th
Annual ACM Symposiumon Principlesof Programming
Languages, pages 25-35, Jan. 1989.

J. A. Fisher. Trace Scheduling: A Technique for Global
Microcode Compaction. |EEE Transactions on Com-
puters, C-30(7):478-490, July 1981.

P Y. T. Hsu and E. S. Davidson. Highly Concurrent
Scalar Processing. In Proceedings of the 13th Annual
International Symposium on Computer Architecture,
pages 386—395, June 1986.

W. W. Hwu, T. M. Conte, and P. P. Chang. Comparing
Software and Hardware Schemes For Reducing the Cost
of Branches. In Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture, pages
224-233, May 1989.

M. Johnson. Superscalar Microprocessor Design. Pren-
tice Hall, Englewood Cliffs, NJ, 1990.

S. McFarling and J. Hennessy. Reducing the Cost of
Branches. In Proceedings of the 13th Annual Inter-
national Symposium on Computer Architecture, pages
396404, June 1986.

K. Murakami, N. Irie, M. Kuga, and S. Tomita. SIMP
(Single Instruction stream/Multipleinstruction Pipelin-
ing): A Novel High-Speed Single-Processor Architec-
ture. In Proceedings of the 16th Annual International
Symposium on Computer Architecture, pages 78-85,
May 1989.

A. Nicolau and J. A. Fisher. Measuring the Parallelism
Available for Very Long Instruction Word Architec-
tures. | EEE Transactionson Computers, C-33(11):968—
976, Nov. 1984.

Y. N. Patt, S. W. Melvin, W. Hwu, and M. Shebanow.
Critical Issues Regarding HPS, A High Performance
Microarchitecture. In Proceedings of the 18th Annual
Workshop on Microprogramming, pages 109-116, Dec.
1985.

E. M. Riseman and C. C. Foster. The Inhibition of Po-
tential Parallelism by Conditional Jumps. |EEE Trans-
actions on Computers, C-21(12):1405-1411, Dec.
1972.

12

[13]

[14]

[15]

[16]

[17]

J. E. Smith and A. R. Pleszkun. Implementation of
Precise Interruptsin Pipelined Processors. In Proceed-
ings of the 12th Annual International Symposium on
Computer Architecture, pages 36—44, June 1985.

M. D. Smith, M. Johnson, and M. A. Horowitz. Limits
on Multiple Instruction Issue. In Proceedings of the
Third International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 290-302, Apr. 1989.

M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting
Beyond Static Scheduling ina Superscalar Processor. In
Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, pages 344-354, May
1990.

G. S. Sohi and S. Vajapeyam. Instruction IssueLogicfor
High-Performance, Interruptible Pipelined Processors.
In Proceedings of the 14th Annual International Sym+
posium on Computer Architecture, pages 27-34, June
1987.

D. W. Wall. Limits of Instruction-Level Parallelism. In
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languagesand
Operating Systems, pages 176-188, Apr. 1991.

