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Abstract

Computing with quantum states has become an increasingly
intriguing technological possibility. Prototype quantum com-
puters using 4, 5 and 7 quantum bits have begun to appear
using molecules in solution and trapped ions[1, 2, 3]. For true
scalability and to exploit our tremendous historical investment
in silicon, however, solid-state silicon quantum implementa-
tions are desirable.

Quantum wires which transport quantum data will be a fun-
damental system component in all anticipated silicon quan-
tum architectures. Here, we propose a novel approach to
low-latency, reliable communication through teleportation of
error-coded quantum bits. By examining an end-to-end collec-
tion of quantum technologies to implement this approach in a
quantum wire architecture, we are able to identify key chal-
lenges in solid-state quantum computing. In particular, we
discover a fundamental tension between the scale of quantum
effects and scale of the classical logic needed to control them.
This “pitch-matching” problem imposes constraints on mini-
mum wire lengths and wire intersections, which in turn imply
a sparsely connected architecture of coarse-grained quantum
computational elements. This is in direct contrast to the “sea
of gates” architectures presently assumed by most quantum
computing studies.

1 Introduction

There are many important problems for which all presently
known solutions require exponential resources on a classical
computer. Quantum computers can solve some of these prob-
lems with polynomial resources. This has motivated a great
number of researchers to explore quantum information pro-
cessing technologies [4, 5, 6, 7, 8, 9, 10, 11]. Once these sys-
tems have been demonstrated in the laboratory a considerable
challenge remains in constructing a useful computational sys-
tem. It is this engineering process that computer architects
can contribute to, in the development of quantum computing
architectures. As architects we work with and develop abstrac-
tions for technology and applications. Targeting this process
at quantum computers is at first foreign, but ultimately fasci-
nating.

Computer architects have a great deal to offer to quantum
computation at this early stage. By investigating the areas,
costs, and challenges of quantum devices we can help illu-
minate potential pitfalls along the way towards a complete
quantum processor. We may also anticipate and specify im-
portant subsystems common to all implementations, thus fos-
tering inter-operability. Identifying these practical challenges
early will help focus research efforts into solutions.

Rather than start with a complete quantum processor design
we introduce our architectural study with an investigation of
a seemingly mundane subject: a wire. A quantum wire is a
very different creature than a classical one. In some ways it
resembles a quantum-cellular automata (QCA) [12] wire, with
deep component-wise pipelining. This resemblance quickly
fades as we consider the challenges of error-correction [13],
entropy-exchange [14], and state-purification [15]. We put
these technologies together with teleportation [16] and single-
electron transistors [17] to construct a reliable, low-latency
quantum wire.

An often-neglected facet of quantum computations is that
they crucially depend upon classical signals for control of the
quantum gates, particularly for fault-tolerant system construc-
tions. We discover a fundamental tension between the scale at
which quantum effects occur and the scale at which classical
signals can be reliably routed. The architectural implications
of this tension, essentially a pitch-matching problem, are a pri-
mary focus of this work.

Overall, the contributions of this research are:

� An end-to-end study of the technologies required to con-
struct a quantum wire.

� Identification of key components for silicon-based quan-
tum computers and research challenges to achieve these
components.

� Identification of design constraints arising from the
quantum-classical interface and the error rate of quantum
operations.

The remainder of this paper continues with a brief introduc-
tion to quantum computing in Section 2 and then an overview
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of our quantum wire architecture in Section 3. We then de-
scribe basic quantum gates and protocols in Section 4, fol-
lowed in Section 5 by the building blocks necessary to im-
plement our wire architecture. We then derive our design con-
straints in Section 6, followed by a discussion of alternative
technologies in Section 7, research challenges in Section 8 and
conclusions in Section 9.

2 Background

Quantum information systems can be a mathematically-
intense subject. However, a great deal can be accomplished
with just a simple model of several abstract building blocks,
which include quantum bits (qubits), how they transform via
quantum gates, the role of quantum algorithms, and the avail-
able implementation technologies and their imperfections.
Here, we shall follow this approach; for in-depth treatments
of the material see for example [18, 9, 19].

Quantum computation seeks to exploit the physics of quan-
tum phenomena to achieve computation that scales exponen-
tially with data size. The basic building block is a quantum bit,
referred to as a qubit, that is represented by nanoscale physi-
cal properties such as nuclear spin. While a bit in a classical
computer represents either zero or one, a qubit can be thought
to simultaneously represent both states. More precisely, the
state of a qubit is described by probability amplitudes, which
only turn into probabilities upon external observation. Unlike
classical probabilistic computation, probabilities for different
computational pathways can cancel each other out through a
kind of interference, because the amplitudes can be negative,
and the probabilities are determined by the square of the am-
plitudes.

The key is that quantum computers directly manipulate
probability amplitudes to perform a computation, and multi-
ple qubits form vectors that can represent 2n amplitudes with
n qubits. In other words, a two-qubit vector simultaneously
represents the states 00, 01, 10, and 11 – each with some prob-
ability when measured. Each additional qubit in a qubit vector
doubles the number of amplitudes represented. The work of
a quantum computer is to manipulate these qubit vectors and
their associated amplitudes in a useful manner. Manipulation
of these qubit vectors leads to what is often called quantum
parallelism, a useful way to begin thinking about what gives
quantum computers such high potential speedups over classi-
cal computers. The difficulty is that we generally cannot look
at the answer until the end of a computation, and then we only
get a random value from the vector! More precisely, measur-
ing a qubit vector collapses it into a probabilistic classical bit
vector, yielding a single state randomly selected from the ex-
ponential set of possible states. For this reason, quantum com-
puters are best at “promise” problems – applications where the
answer can be easily verified.

Designers of quantum algorithms must be very clever about

how to get useful answers out of their computations. One
method is to iteratively skew probability amplitudes in a qubit
vector until the desired value is near 1 and the other values are
close to 0. This is used in Grover’s algorithm for searching an
unordered list of n elements [20]. The algorithm goes throughp
n iterations, at which point a qubit vector representing the

keys can be measured. The desired key is found with high
probability.

Another option in a quantum algorithm is to arrange the
computation such that it does not matter which of many ran-
dom results is measured from a qubit vector. This method is
used in Shor’s algorithm for prime factorization of large num-
bers [21], which is built upon the quantum Fourier transform,
an exponentially fast version of the classical discrete Fourier
transform. Essentially, the factorization is encoded within the
period of a set of highly probable values, from which the
desired result can be obtained no matter what value is mea-
sured. Since prime factorization of large numbers is the basis
of nearly all modern cryptographic security systems, Shor’s
algorithm has received much attention.

3 Overview

While quantum algorithms motivate interest in quantum com-
putation, any architecture to support such computation will
require a mechanism for transporting quantum data. This is
the focus of our study. We introduce a novel architecture for
quantum wires, shown in Figure 1. These wires make use of
the quantum primitive of teleportation. Teleportation allows
us to pre-communicate EPR pairs (a special pair of quantum
states described later), and then use classical communication
and quantum measurement to destroy a quantum state on one
end of a wire and re-create it on the other end using the EPR
pair for transport. The key is that the pre-communication can
be done in a pipelined manner. The queues in the figure il-
lustrate where this pipelining occurs throughout the architec-
ture. Furthermore, teleporation allows our quantum wires to
convert quantum data between components that use different
error correction codes, a conversion that is impractical with-
out teleportation. In the next few sections, we provide a brief
introduction to quantum operations and protocols, and then de-
scribe the building blocks needed to implement our quantum
wire architecture.

4 Basic Quantum Operations and Pro-
tocols

In this section, we introduce a few basic quantum operations
and use these to describe two important quantum protocols:
teleporation and error correction.
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Figure 1: Architecture for a Quantum Wire
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4.1 Quantum Operations

Figure 2 gives a few basic quantum operations that we will use
in our quantum wire architecture. These include one-bit oper-
ations such as the Hadamard, bit-flip, and phase-flip; as well
as the two-bit controlled-not. These are given in both their cir-
cuit representation and their matrix representation. The matrix
representation involves multiplying the operator times the am-
plitude vector of the quantum states. c2i gives the probability
of state i (commonly denoted as jii in quantum information
science) and the sum of all these probabilities must equal one.
Preserving this sum is equivalent to conserving energy and re-
quires that all operations be reversible. ci are probability am-
plitudes, and valid states include not only j0i and j1i but also

1p
2
j0i+ 1p

2
j1i (1)

which denotes an equal superposition of j0i and j1i.
The bit-flip gate X exchanges the probabilities of the two

states j0i and j1i (analogous to the classical NOT), while
the phase flip gate Z changes the sign between them. The
Hadamard takes the two states and mixes them to produce an
equal superposition state. The controlled-not does a bit-flip iff
the control qubit is in the j1i state. These basic gates, along
with the measurement of qubits, form the basic operations we
will use for data transport. For further discussion of quantum
gates and circuits the reader is referred to [5].

4.2 Teleportation

Contrary to its science fiction counterparts, quantum telepor-
tation is not the instantaneous transmission of information.
Rather, it is the re-creation of a quantum state at a destination
using some classical bits that must be communicated along
conventional wires or other mediums. In order for this to work,
we need to pre-communicate an EPR pair (named for Einstein,
Podolsky and Rosen), in which the state of a pair of qubits is
(j00i + j11i)=p2 [22]. This is known as an entangled state
because statistics from measuring this state after performing
various operations to it give results unobtainable by classical
correlated bits. The non-classical properties of entanglement
lies at the heart of teleportation.

ancilla
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H

data
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Za

Figure 4: Syndrome measurement for error correction

Figure 3 gives an overview of the teleporation process. We
start with an EPR pair at the source end of the wire. We sepa-
rate the pair, keeping one qubit (b) at the source and transport-
ing the other (c) to the destination (quantum data transport is
denoted by the solid lines). When we want to send a quantum
bit of data (a), we first interact awith b using a Hadamard gate.
We then measure the phase and the amplitude a (measurement
is denoted by the meter symbols), send the two results (each
one bit) to the destination classically (classical communica-
tion is denoted by the double lines), and use those results to
re-create the correct phase and amplitude in c such that it takes
on the state of a. The re-creation of phase and amplitude is
done with controlled-X and Z gates, which perform the same
function as the gates described in Figure 2 but contingent on a
classical control bit (the measurements of a and b).

Note that the original state of a is destroyed once we take
our two measurements. This is consistent with the “no-
cloning” theorem, which states that a quantum state can not
be copied. Intuitively, since c has a special relationship with
b, interacting a with b makes c resemble a, modulo a phase
and/or amplitude error. The two measurements allow us to
correct these errors and recreate a at the destination.

Why bother with teleporation when we end up transporting
c anyway? Why not transport a directly? There are three rea-
sons. First, we can pre-communicate EPR pairs with extensive
pipelining without stalling computations. Second, it is eas-
ier to transport EPR pairs than real data. Since c has known
properties, we can use the purification unit described in Sec-
tion 5.4.4 to remove pairs that were damaged during transport.
Third, we can use teleportation to convert data to different er-
ror coding schemes.

4.3 Quantum Error Correction

Without error correction to keep quantum states coherent, the
timescales of quantum phenomena would make useful com-
putation and communication impossible. The problem is that
noise causes quantum superposition states to collapse quickly;
this is known as the decoherence problem[23]). In fact, only
recently have usable codes been developed and sustainable
quantum computation been shown to be possible. The key is
to allow the basic operations of quantum computing to be ap-
plied directly to coded data without decoding and re-encoding
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Z1Z2 Z2Z3 Error Type Action

+1 +1 no error no action
+1 -1 bit 3 flipped flip bit 3
-1 +1 bit 1 flipped flip bit 1
-1 -1 bit 2 flipped flip bit 2

Table 1: Phase correction for a 3-qubit code

the data.
Quantum error correction has much in common with its

classical counterpart. A logical qubit is encoded redundantly
in a number of physical qubits. The syndrome of the physi-
cal qubits can be measured to determine whether an error may
need to be corrected. One difficulty in quantum codes, how-
ever, is that the physical qubits can not be measured without
destroying their state! We can get around this by using an an-
cilliary zero qubit (shown in Figure 4) which is interacted with
the original physical qubit (a). We can then measure the an-
cilla to determine the syndrome of a. What is interesting is that
a is not unaffected by this interaction and measurement. The
state of a actually becomes a0, in which a0 is actually the cor-
rect value or the value with the opposite phase. So syndrome
measurement actually accomplishes two tasks: the syndrome
is measured and the continuous errors in a are transformed into
discrete errors which are easy to fix. Table 1 gives a simple ex-
ample of how these fixes are done for a 3-qubit Shor code [24],
where Zn is the syndrome for the phase of the n-th physical
qubit. Since errors can occur in both phase and amplitude, we
perform a similar operation using the X gate to measure and
correct amplitude.

The error code we expect to use is the 7-bit Steane code [13],
which encodes 1 logical qubit in 7 physical qubits. The code
is actually applied recursively to achieve adequate reliability
in a given technology. The Steane code is the smallest code
in which it is easy to directly perform basic quantum opera-
tions. Other codes, however, may be more efficient for tasks
such as storing quantum data in memory. Unfortunately, it
can be quite difficult to convert data between codes. Decod-
ing and re-encoding the data will randomly distribute errors in
the new code and compromise reliability by propagating er-
rors between physical bits. Teleporation, however, can take
data from source bits encoded in one code and re-create that
data in destination bits encoded in another code. This process
avoids undesirable propagation of errors and gives us an ex-
cellent translation process between codes.

5 Basic Building Blocks

We now turn our attention to the basic building blocks nec-
essary to implement the operations and protocols used in our
quantum wire architecture. We base our work on the quantum
bit device technology proposed by Kane et al [10]. Our goal

20nm

20nm

Classical control

Phosphorus Atoms

Classically controlled
electric field is used
to apply a quantum
gate.

20nm

Ground plane

A-gateA-gate J-gate

Figure 5: The basic quantum bit technology proposed by Kane
et. al [10].

in this section is to build up a set of useful building blocks,
cells if you will, that can be put together to form a complete
computing system. We start our discussion with two univer-
sally useful cells: a line of qubits and an intersection of such
lines. We use these basic quantum cells to construct larger
macro blocks of useful functions including: an entropy ex-
change unit, a measurement device, an EPR generator, and a
purification unit.

5.1 Phosphorus Atoms for Quantum Bits —
Kane

In order to focus the discussion of quantum architecture
around a technology we utilize the quantum bit proposal from
Kane et al [10]. This device proposal is one of the most widely
discussed within the quantum physics community as a poten-
tial candidate for silicon-based quantum computing. While
this research generalizes beyond this single device technology,
it helps to focus the discussion if we narrow in on a candidate
device proposal.

Kane proposed that the nuclear spin of a phosphorus atom
embedded in silicon under a high magnetic field and low tem-
perature can be used as a quantum bit, much as nuclear spins in
molecules have been shown to be good quantum bits for quan-
tum computation with nuclear magnetic resonance[7]. This
quantum bit is classically controlled by a local electric field.
The process is illustrated in Figure 5. Shown are two phos-
phorus atoms spaced 20 nm apart. Twenty nanometers above
the phosphorus atoms lie three classical wires that are spaced
10 nm apart. By applying precisely timed pulses to these elec-
trodes Kane describes how arbitrary one- and two-qubit quan-
tum gates can be realized. Four different sets of pulse signals
must be routed to each electrode to implement these universal
quantum operations.

The details of the pulses and quantum mechanics of this
technique are beyond the scope of this paper and clearly de-
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scribed in [10]. Our goal is to describe this technology into
a useful set of abstractions. We start with the most basic of
architectural components: a row of qubits.

5.2 A line of quantum bits

A line of qubits allows us to transport quantum state by pro-
gressively swapping state between pairs of qubits (a swap can
be implemented by 3 controlled-not’s). By classical standards
the idea of a row of bits seems trivial. However, in the quantum
domain it is an enormous technical challenge. The first hurdle
is the actual placement of the phosphorus atoms themselves.
The leading work in this[25] has involved precise ion implan-
tation through masks, and manipulation of single atoms on the
surface of silicon. For applications where substantial mone-
tary investment is not an issue, slowly placing a few hundred
thousand phosphorus atoms with a probe device [26] may be
possible. For bulk manufacturing the advancement of DNA or
other chemical self-assembly techniques [27] may need to be
developed.

The second challenge is the scale of the classical control
lines. Each wire lead above the phosphorus atoms is only 5 nm
in width. While this is difficult, we expect with either electron
beam lithography [28], or phase-shifted masks [29] such scales
will be possible.

The third challenge is the temperature of the device. In or-
der for the quantum bits to remain stable for a reasonable pe-
riod of time the device must be cooled to less than one degree
Kelvin. The cooling itself is straightforward, but the effect of
the cooling on the classical logic is a problem. Two issues
arise: first conventional transistors stop working as the elec-
trons become trapped near their dopant atoms, which fail to
ionize. Second, the 5 nm classical control lines begin to exhibit
quantum-mechanical behavior such as conductance quantiza-
tion and interference from ballistic transport[30].

A solution already exists for the transistors. Reliable, small
classical switching devices can be constructed from single-
electron transistors (SET’s) [17]. The control lines are a more
difficult issue. In order to minimize the quantum effects in the
control lines they will likely have to quickly taper into a large
enough dimension in two axes such that quantum effects will
not dominate. Dimensions exceeding 100 nm, estimated from
the Fermi wavelength electrons in gold (at low temperature),
will likely be sufficient.

Constructing a line of quantum bits that overcomes these
challenges is possible. We illustrate a design in Figure 6. Note
how the access lines quickly taper into the upper layers of
metal into reasonably sized control areas. These control areas
can then be routed to access transistors that can gate on and off
the frequencies required to apply specific quantum gates.

P

Polarized
Light

Polarized Electrons

Electric Field

Ground 

Purify

Figure 8: Entropy exchange with optical pumping

5.3 An intersection of quantum bits

An important capability for data transport is fanout. Fanout is
not possible without intersections. Here, we extend our lin-
ear qubit discussion to a four-way intersection capable of sup-
porting sparsely intersecting topologies of quantum bits. We
illustrate the quantum intersection in Figure 7. This is very
similar to Figure 6 except the intersection creates a slightly
more challenging tapering. In Section 6, we shall see that the
control lines for these intersections creates a pitch-matching
problem that constrains minimum wire length.

5.4 Quantum Macro-blocks

The previously described line and intersection of qubits form
the basis for a universal set of cells that can be put together
to form a quantum processor. There are, however, four addi-
tional structures that are used frequently enough that they can
be considered macro-blocks of a quantum computer. These
macro-blocks are constructed from the linear and intersection
structures previously described. Note that the description of
the macro blocks takes on a classical feel at times with vary-
ing numbers of input and output ports. The reader should note,
however, that all operations (except measurement) are inher-
ently reversible, and the varying relationship of the input / out-
put ports reflects only the logical meanings of the macro block.
We use this as a descriptive technique.

5.4.1 Entropy exchange unit

The physics of quantum computation requires that operations
be reversible and conserve energy. The initial state of the sys-
tem, however, must be created somehow. We need to be able to
create zero states, denoted as “j0i”. Furthermore, errors cause
qubits to become randomized; stated equivalently, entropy en-
ters the system through decoherence caused by coupling with
the external environment. Error correction, described later in
Section 4.3, can be viewed as a process that consumes a con-
stant stream of zero states and outputs both corrected data and
a stream of high entropy waste states.
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Figure 7: Intersection of quantum bits. In this simplified 3D view, we depict a four-way intersection of quantum bits. Half of
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Figure 9: Schematic for a quantum measuring circuit compo-
nent.

Where do these zero states come from? The process can
be viewed as one of thermodynamic cooling. Distributed
throughout a quantum processor are “cool” quantum bits in
a nearly zero state. These are created by pulling spin polar-
ized electrons (created, for example, using a standard tech-
nique known as optical pumping[25, 31] (Figure 8) or directly
using spintronics methods, with ferromagnetic materials and
spin filters[25]) over the phosphorus atoms.

The electrons can transfer their polarized state to the phos-
phorus atoms with high probability. To increase this proba-
bility arbitrarily (and thus make a really cold zero state) we
use a variant of the purification technique described in Sec-
tion 5.4.4. Specifically, we employ an efficient algorithm for
data compression[32, 33] which gathers entropy across a num-
ber of qubits into a small subset of highly random quantum
bits. As a result, the remaining quantum bits are reinitialized
to the desired pure zero state j0i.

5.4.2 Measurement unit

Perfect measurement in quantum systems is a challenge. Mea-
surement probabilistically reduces quantum superpositions
(e.g. states simultaneously in a balance of j0i and j1i) to spe-
cific classical states (e.g. 0 and 1). This works by coupling a
large classical system to the small quantum system, but in re-
ality making ideal coupling is complicated by practical topo-
logical and temporal constraints. Thus, errors occur in mea-
surement. Error correction techniques, which are the basis for
sustainable quantum computation require a reliable measure-
ment process. Fortunately there are methods for increasing
measurement reliability through repetition.

Measurement of a single qubit can be performed by first
entangling it with a second reference qubit in the j0i state
(freshly supplied from our entropy exchange unit). We then di-
rectly measure this new bit and obtain a result. This result has
some error; say this is p. The act of performing the measure-
ment collapses the entanglement between the new quantum bit
and the actual bit we want to know the state of. More signifi-
cantly it also collapses any superposition or entanglement that
quantum bit had. We can then repeat the process starting with

EPR Generator

0.....0
Zero qubits

Classical control
Quantum output
of an EPR state

[ ]110021 +×

Figure 10: Schematic for a quantum EPR generator.

another j0i quantum bit. Each time we repeat this process the
accuracy of the overall measurement is increased. Eventually
after k repetitions the measurement result has an error rate of
only pk. Usually only 2-3 repetitions are required.

This process is used throughout any quantum computer and
we construct a dedicated node to perform it. Besides classical
control, this dedicated node has two quantum inputs and one
classical output. The first quantum input is the quantum bit
that is to be measured, and the second quantum input is a direct
pipe from the entropy exchange unit. The classical output is
the binary f0; 1g measurement result. This measurement cell
is depicted in Figure 9.

The construction of a perfect measurement device along
these lines is an open problem for solid state quantum com-
puters. The most likely scenario involves placing a quantum
bit in a zero state nearby the bit to be measured[25]. Polarized
electrons are then pulled past these two phosphorus atoms and
collected by two specially located metal charge collectors. In
this setup the collector with the largest charge is indicative of
the most likely measurement result.

5.4.3 EPR Generator

Constructing an EPR pair of quantum bits is straightforward.
We start with two j0i state bits from our entropy exchange
unit. A Hadamard gate is applied to the first of these quantum
bits. We then take this transformed quantum bit that is in a
half-way superposition of a zero and a one state and use it as
the control bit for a controlled-NOT gate. The target bit that
is to be inverted is the other fresh j0i quantum bit from the
entropy exchange unit. A controlled-NOT gate is a bit like a
classical inverter except the target bit is inverted if the control
bit is in the j1i state. Using a control bit of (j0i+ j1i)=p2 and
a target bit of j0i we end up with a two bit entangled state of
(j00i+ j11i)=p2. The quantum bits in this state are called an
EPR pair.

This process can be generalized to form arbitrarily large CAT

states. To do this we use another fresh j0i quantum bit as a
target and one of the bits from the EPR pair as the control for
another control-NOT gate. After applying this gate we end up
with the three bit entangled state of 1(j000i+ j111i)=p2. This
process can be extended to create a CAT state of any length.
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Figure 11: Schematic for a quantum purification unit.

The overall process of EPR generation is depicted in Fig-
ure 10. Schematically the EPR generator has a single quantum
input and two quantum outputs. The input is directly piped
from the entropy exchange unit and the output is the entangled
EPR pair.

5.4.4 Purification unit

The final macro block we require is the purification unit. This
unit takes as input n EPR pairs which have been partially cor-
rupted by errors, and outputs nE asymptotically perfect EPR
pairs. E is the entropy of entanglement, a measure of the num-
ber of quantum errors which the pairs suffered. The details of
this entanglement purification procedure are beyond the scope
of this paper but the interested reader can see [15, 34, 35].

Figure 11 depicts a purification macro block. The quantum
inputs to this macro block are the input EPR states, and a fresh
supply of j0i bits. The outputs of the macro block are the pure
EPR states. Note that the block is carefully designed to correct
only up to a certain number of errors; if more errors than this
threshold occur, then the unit fails with increasing probability.

6 Design Constraints

Given our building blocks, quantum wire architecture, and im-
plementation technologies; we can derive two important de-
sign constraints. These constraints are the classical-quantum
interface boundary and the latency/bandwidth charactoristics
of quantum wires.

6.1 Pitch Matching

Our first constraint is derived from the need to have classi-
cal control of our quantum operations. As discussed in Sec-
tion 5.2, we need a minimum wire width to avoid quantum
effects in our classical control lines. Referring back to Fig-
ure 7, we can see that each quadrant of our four-way intersec-
tion will need to be some minimum size to accomodate access
to our control signals.

Each qubit has two control lines associated with it, an A-
gate and a J-gate [10]. Each of these control lines must quickly
expand from a thin 5nm narrow tip into a 100nm access point

in an upper metal layer. Analytically it is possible to derive
the minimum width of a wire of quantum bits, and the size of
a four-way intersection. We begin with a line of qubits:

LetN be the number of qubits along the line segment. Then
we need to fit in 2N classical access points of 100nm in de-
mension. Hence the minimum line segment is atleast 200nm
(10 qubits) to attiqeuetly space the access points in the upper
metal layers. The width of the line segment is determined by
the number of control lines (2N = 20) and the spacing of the
access points. The access points are offset by 10nm between
metal layers to allow for vias. We estimate the minimum width
of a quantum wire to be 20�10nm+100nm= 300nm. Shorter
line segments within larger specialized cells are possible.

Turning our attention to an intersection, letN be the number
of qubits along each “spoke” of the junction. We need to fit 2N
classical access points in a space of (20nm �N)2, where each
access point is atleast 100nm on a side. As with the case of
a linear row of bits, within a single metal layer these access
points are spaced 100nm apart, with a 10nm shift between
layers for via access. For this minimum size calculation we
assume all classical control lines are routed in parallel, albit
spread across the various metal layers. Let L be the number
of metal layers, and Hspacing to be the number of access pad
groups per quadrant in the intersection primitive. Then the
length along one dimension is:

(20 nm �N) = 50 nm + 2� 100 nm�Hspacing (2)

and along the other dimension it is:

(20 nm �N) = 50 nm+ 100 nm + 10 nm� L (3)

while the total area is:

(2 �N) = Hspacing � L : (4)

This implies that Hspacing = 2, L = 23 and N = 22. There-
fore, the minimum size four way intersection is 44 quantum
bits in each direction. The specific sizes will vary according to
technological parameters and assumptions about control logic,
but this calculation illustrates the approximate effect of what
appears to be a fundamental tension between quantum opera-
tions and the classical signals that control them. A minimum
intersection size implies minimum wire lengths, which imply
a minimum size for computation units.

6.2 EPR Bandwidth

Our second constraint involves the quantum and classical
bandwidth requirements to support quantum data transport.
Transporting classical data is easy, so transporting EPR pairs
will be the limiting factor.

Our EPR pairs will be recursively encoded in the 7-bit
Steane code for error correction. Let k be the number of lev-
els of recursion necessary for an error rate per operation of
p = 1� e��. This error rate is determined by the decoherence
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rate of the quantum bits. We start our calculation from the
celebrated threshold theorem for fault-tolerant quantum com-
putation, a key result which uses recursive error correction to
show that reliable quantum computation can be performed us-
ing unreliable components as long as the error rate p is below a
certain threshold [36, 37, 38]. The principal bound at the heart
of this theorem is:

(c � p)2k

c
� �

p(n)
(5)

where c � 4000 is a constant related to the overhead and
complexity of the error correction process, � is the desired
probability of obtaining a correct answer from the algorithm,
p(n) is the space-time complexity of the algorithm, and n de-
scribes the problem size. Assuming reasonable values, say
� = 0:95, p � 10�8, and Shor’s algorithm for factoring on a
1024 bit number we find k = 3. This implies that the Steane
code we use will have to recursively encode its error bits three
times. So the total number of physical qubits used to store one
logical quantum bit is 7k = 343. Note that this bound, and
the threshold theorem, also assume optimal parallelism in the
classical computation assisting the quantum information pro-
cessing!

Let B be the desired bandwidth of the quantum wire and D
be its distance in qubits. The efficiency of transmitting EPR
pairs across a wire of length D is estimated to be:

e���3�D ; (6)

where the time of a quantum swap operation is 3 controlled-
NOT gates[18]. Assuming that 7k valid EPR pairs are needed
for transmission we need to send:

7k = B � e���3�D (7)

which given our error rate assumption p � 10�8 implies that:

B � 73=e�10
�8

�3�D : (8)

Calculating this for some reasonable wire lengths we find that
a length of 500 nm (1000 qubits) requires a bandwidth of 344
qubits and for 1 mm, 364 qubits are needed. Interpreting this
result the bandwidth of the wire is proportional to the error
coding scheme � 7k and the extra overhead for purification is
minimal.

Of course supplying this bandwidth is a challenge and re-
quires either bit-serial transmission (effectivelly adding 343
qubits to the logical end of the wire, and decreasing the ag-
gregate bandwidth by a factor of 343) or parallel transmis-
sion. We estimate 343 parallel wires would require roughly
343 � 300nm = 102um, or put into persecptive it would be
as wide as a 5145 quantum bits.

Placing these bandwidth calculations in a classical light, the
speed at which a two qubit operation occurs is approximetly
100us. By using the wiring technique we propose in this paper

we can largely discount distance to find that a bit-serial wire
of qubits has a sustained transmission rate of 1=(3 � 100 �s �
343) = 9:7 lqbps (logical quantum bits per second). A parallel
wire of 102um width has a sustained rate of transmission of
approximetly 1=(3 � 100 �s) = 3333 lqbps. The latency of
the bit-serial quantum wire we propose is approximetly (343 �
3+4)� 100us= 0:1s while the latency of the parallel wiring
technique is 4 � 100us = 0:0004s.

It is significant to point out that a direct approach to wiring
that does not follow the techniques described in this paper has
dramatically different characteristics. While the bandwidth of
the wire would be about the same, the latency would be large
and distance dependent. For example, a parallel wire of only
1mm in length would require over 150 seconds to work (not
counting error correction which could multiply this by up to a
factor of 5)! Our pre-communication teleportation technique
has clear latency advantages. Latency translates to increased
decoherence of quantum data, which translates to increased
overhead for error corrrection. Furthermore, while EPR pairs
are easy to pipeline and purify, directly pipelining quantum
data requires significantly more error correction to preserve
that data.

7 Other Technologies

A myriad of technologies are under development for quan-
tum computation. We have chosen a basic set of devices with
which to explore a scalable, solid state architecture. More
speculative technologies, however, have some interesting im-
plications that we shall discuss here.

An interesting alternative to nuclear spin is using electron
spin to represent qubits. The proposals are similar to the ba-
sic Kane proposal, but inter-qubit spacing can be much larger
( 100 nm) [39]. This larger spacing makes fitting control de-
vices near qubits easier. Also, it is possible to avoid the J gate
and only use variations on the A gate to interact qubits. Unfor-
tunately, the decoherence time of electron spin is significantly
smaller than nuclear spin, requiring control frequencies in the
10 GHz range, for typical magnetic fields used in electron spin
resonance. These frequencies will be considerably harder to
manage, even at larger pitch spacing.

Several optical devices provide some interesting alternatives
to transporting quantum state using the Kane proposal. In
particular, it is possible to produce a pair of photons which
represent an EPR pair [40]. These pairs might then be dis-
tributed over a chip using optically-routed, polysilicon light
pipes. Once they arrive at their destination, a photo-detector
must be used to convert photon polarization to electron spin
[41]. Note that spin representations are still necessary in order
to perform any computations.

Yet another technology is the direct transport of electron
spin over distance [42]. This technology, which involves bal-
listic transport of electrons, could avoid laborious qubit swaps

10



or conversion from photons to electron spin.

8 Research Challenges

Our study of practical constraints has led us to identify sev-
eral key areas of technology that could dramatically simplify
the challenges building scalable quantum architectures, specif-
ically focused on realizing the quantum macro-blocks identi-
fied in Section 5.

� Efficient, fast, single-electron spin state to single
atomic spin state conversion: This would greatly re-
duce the size and increase the performance of the entropy
exchange unit, by providing a superior method for prepar-
ing j0i states, which are essential to fault-tolerant quan-
tum computation. It could also serve as a component in
the photon-based EPR distribution network.

� Wider pitch quantum technologies: Device technolo-
gies with quantum interactions greater than 100 nm apart
and sufficiently reliable decoherence rates will greatly
ease the classical-quantum interface. The narrow 20 nm
spacing of the Kane proposal balloons the classical sup-
port circuitry.

� Measurement without zeros: The currently proposed
measurement technique requires a “cold” zero qubit to
function correctly. This essentially doubles the output re-
quirements of the entropy exchange unit. Since entropy
exchange will consume a large fraction of a quantum
computer it is vital to make efficient use of zero states.

� Optimized fault-tolerant Schulman-Vazirani scheme:
The current purification and entropy compression pro-
cesses are susceptible to errors. While fault-tolerant con-
structions could be used, they would consume zeros and
come at the cost of significant overhead, as described
above. Such a general construction is not required for
specific, special-purpose macro-blocks such as these two,
which we expect can be optimized dramatically to be
fault-tolerant with little overhead.

� Decoherence estimates: small classical electrodes com-
ing up to the qubits will have imperfect classical behavior
and may cause additional decoherence. How much is not
known, and determining this factor through experimental
measurements and theoretical modeling will improve the
accuracy of the calculation of the error-correction over-
head.

The basic quantum architectural components described in
Section 5 are largely universal among anticipated silicon-
based quantum device technologies. While the precise size,
shape and efficiency of these building blocks will evolve as
new discoveries are made, the underlying functionality will

not. Using these basic constructions architects can begin to
think about classic architectural questions, some of which we
address in this paper such as latency and bandwidth. Our fu-
ture work will be in the construction and evaluation of quan-
tum computing organizations. The basic blocks described in
Section 5 are the roadmap for that process.

9 Conclusion

Our study has focused on a critical aspect of any quantum
computing architecture, quantum wires to transport quantum
data. Building upon key pieces of quantum technology, we
have provided an end-to-end look at a quantum wire archi-
tecture. We have exploited quantum teleportation to enable
pipelining and flexible error correction. Most importantly, we
have discovered fundamental architectural pressures not pre-
viously considered. These pressures arise from the need to co-
locate physical phenomena at both the quantum and classical
scale. Our analysis indicates that these pressures will force ar-
chitectures to be sparsely connected, resulting in coarser-grain
computational components than generally assumed by previ-
ous quantum computing studies. We believe that further archi-
tectural studies of this nature will be valuable in identifying the
research challenges facing quantum technologies of the future.
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