Parallel Operation in the Control
Data 6600

Jiun-Hung Chen
Adrienne Wang -
Jan 19, 2005

Overall System

‘0 ADD
FUNCTIONAL
UNITS MULTIPLY
MULTIPLY
DIVIDE
FIXED ADD
INCREMENT
REGIST INCREMENT
12 10 GISTERS
4= PERIPHERAL pa==l PERIPHERAL fe—se{ CENTRAL e
CHANNELS PROCESSORS STORAGE | BOOLEAN
SHIFT
BRAMNCH
INSTRUCTION

CENTRAL PROCESSOR

Instruction Level Parallelism in
i Hardware

s CDC6600: Out-of-order execution -> out-of-
order completion

= Multiple functional units: can have multiple
instructions in execution phase

Conflicts and Solutions

= First Order Conflict (Structural Hazard)

= Instructions require the same functional units/result registers.

= Solution: Determine early and issue the 2" instruction upon
completion of the 1t one. Or provide two units to reduce the
probability of conflict.

= Second Order Conflict (RAW Hazard)

= Instructions require results that are not ready.
= Solution: Scoreboard control over the functional unit.

= Third Order Conflict (WAR Hazard)

= Some instructions may finish earlier than previously issued
instructions and need to overwrite the value in a register
which is still needed.

= Solution: Hold the result in the functional unit.

i Scoreboard

= Also called Unit and Register Reservation
Control

= The Scoreboard manages simultaneous
operation of multiple functional units on a
single instruction stream.

= Units proceed independently.

= The Scoreboard determines when a functional
unit can read the operands and write to the
result register.

Four Stages of Scoreboard

i Control

= 1.Issue — decode instructions & check
for structural hazards

= 2.Read operands — wait until no data
hazards, then read operands

= 3.Execution — The functional unit
begins execution upon receiving
operands. It notifies the scoreboard
when it has completed execution.

= 4. Write result — Write the result to
register after the scoreboard sends
signal to the functional unit.

i Functional Unit Status

= fields for each functional unit
=« Fm: Function to be performed (eg. + or -)
= Fi: Destination register
= Fj, FK: Source registers
= Qj, Qk: Functional units producing Fj, Fk
= Rj, Rk: single-bit flag indicating when Fj, Fk
are ready

= Xi: Identifies which unit has reserved
register Xi for its result (Some units may
have Bi/Ai)

i Scoreboard Operation 1

= Place Reservations

1. Set the unit busy: Prevent the next
instruction which uses the same functional
unit from being issued.

». Set the register designators Fi, Fj, Fk:
Transfers the i, j, k fields of the instruction
to the designators of the functional unit.

3. Set the functional unit identifiers Qj, Qk:
Copy from the X/B/A identifiers.

+. Assign the functional unit number to the
result register identifier, Xi, Bi, or Ali.

i Scoreboard Example Cyclel

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1
LD F2 45+ R3
MULT FO F2 F4
SUBD F8 F6 F2

Functional Unit | Busy |Fm | Fi | Fj | Fk | Qj | Qk | Rj | Rk
Integer Yes LD | F6 R2 Yes
Multl No
Add No

i Scoreboard Example Cycle7

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 3 4
LD F2 45+ R3 5 /

MULT FO F2 F4 6
SUBD F8 F6 F2 7/

Functional Unit | Busy | Fm | Fi | Fj | Fk Qj Qk Rj | Rk
Integer Yes | Load | F2 R3 Yes
Multl Yes | Mult | FO | F2 | F4 | Integer No | Yes

Add Yes | Sub | F8 | F6 | F2 Integer | Yes | No

i Scoreboard Operation II

Set read flags Rj, Rk

If both are set, the unit may start

Determined by the Qj, Qk identifiers and by the
Release signal from the functional units
identified by Qj, Qk. Solve the second order
conflict.

X6 = x1+x2 Add unit

X7 = x5/x6 Divide unit

X6 is the result of the Add unit

Qk=17

Rk is determined by Qk and the release signal
from the Add unit.

‘L Set the read flags

[0 DESIGNATORS 0« DIVIDE | [ei owioE %
ALL CLEAR Q TRANSLATORS
AND TRUNK
PRl%R!TY 15 14 13 12 11 17 16 O7T 0605 0403 02 0! 00 15 14 13 12 11
F T
UNC UNIT pequesT, SATES el ease ————
BT S B
— L R2AD FLAG
PR iTY <
% OPERAND I
— ‘ DIVIDE UNIT BUSY
1 4 30 READ- DIVIDE
X t
} 50
Mo I }——ru 1} S
- READ FLAG
& [LONG ADD T} S — OPERAND II
[t
(A0 J————eef }
g HOPPER
2 [~ x' I <
M x? S £
—d
& |m x> ' -)
T N—
-
g [m—x -
Q.
- M—X3
o
L D D D D A, —
=1
s TO OTHER UNITS
@
[=4
2.
-l

Scoreboard Operation II

i (continued)

Send the Release signal to functional units.
Release the result to the result register.
Solve the third order conflict.

X5 = x4 * x3 Mult unit

x4 = X0 + x6 Add unit

The Add unit can't release the result to x4
unless the Mult unit has read the value in x4.

Limitations of CDC6600
i Scoreboard

= No forwarding hardware

= Whether independent instructions can be
found to execute.

= Limited to the size of the scoreboard.

= Small number of functional units leads to
structural hazards

= Antidependences and output dependences
lead to WAR and WAW stalls

Questions

Why are all functions separated into different units? Wouldn't it work better if
any unit could perform any operation, reducing conflicts of function type?

A harder problem would be organizing the instructions for best performance and
least conflict. Neither paper talks about this possibility.

How Q is notified the operation is done?
Any computational theory is able to model the ILP?
Does the scheduling and communication overhead make this impractical (slow)?

This seems to be the hardware approach to introducing ILP, could a compiler
that was aware of how it was working help the hardware out? How?

What exactly is a major and minor cycle? I get that the first is longer...

Is this along the lines of what current processors do? How do they stay
synched and consistent?

Seems to be substantial bookkeeping. Performance evaluation? Overhead?

Multiple memory units seem good for speed. Don't they have dependency
problems?

Are any modern techniques inspired by scoreboard?

i Peripheral and Central processors

4094 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

4096 WORD
CORE MEMORY

PERIPHERAL
& COMNTRCL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

PERIFHERAL
& CONTROL
PROCESSCOR

4094 WORD
CORE MEMORY

&600 CENTRAL MEMORY

&&00 CEMNTRAL PROCESSOR

A |

40946 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

& 6600 CEMNTRAL MEMORY

PHERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

f]

]

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMOCRY

4096 WORD
CORE MEMORY

PERIPHERAL
& COMNTROL
PROCESSOR

PERIPHERAL
& CONTROL
PROCESSOR

4096 WORD
CORE MEMORY

PERIPHERAL
& CONTROL
PROCESSOR

i Time-Sharing Design

CENTRAL

(60)

MEMORY ——

CENTRAL

—* MEMORY

(60)

_—» REAL TIME

PROCESSOR I m;;zgrg% L PROCESSOR
REGISTERS — MEMORIES
CONTROL T
4 [)
READ PYRAMID WRITE PYRAMID
(60) (60)
(48) (48)
(38) (38)
(24) (24)
(2] (12) a2 |02
(12)
1 2 3|4 |s e 7wl nliz] 3]s

EXTERNAL EQUIPMENT

1/0 CHANNELS

Central Processor

PERIPHERAL AND
CONTROL PROCESSORS

10

il
-

IR IR I A I IR IR A A
N N A A A

A A S A A

12 INPUT
OUTPUT CHANNELS

CENTRAL PROCESSOR

- ADD
MULTIPLY
UPPER MULTIPLY
BOUNDARY 1
e DIVIDE
24
—a4 LONG ADD
OPERATING
REGISTERS SHIFT
CEMNTRAL
MEMORY
la—4 BOOLEAN
! L.
LOWER INCREMENT
BOUNDARY
INCREMENT
— BRAMNCH

-| Instruction

¥ m

ALJ :,

3 [4 ‘ 3 15 BITS

14

&0 BITS

'

DFERATIOM
CODE

l |

RESUILT
REG .
(1 of 8)
lut OPERAMD
RES .
{1 of B)
L)
2md OPERAMD

REG .
{1 of 8)

i Instruction Stack

INSTRUCTION
STACK

B8 &0-BIT
WORDS

FROM CENTRAL MEMORY

INSTRUCTION
REGISTERS

[3

[-

BUFFER REGISTER

[}

Central Processor Operating
Reqisters

OPERAMDS
{60-81T)
X0
X1
X2
OPERANDS r
- X3
| X4
X5 -
e RESULTS — X%
ADDRE$SES (18-BIT) T L X7
AD
I— Al
OPERAND A2)
CENTRAL | -
A3 10 F
MEMORY ADDRESSES - 0 FUNCTIONAL
i if UNITS
A5
RESULT Ab
ADDRESSES A7 INCREMENT INSTRUCTION .
{18-8IT) REGISTERS
BO
Bl
B2 " INSTRUCTION
B3 STACK
2 {UP TO 8 WORDS
85 60-8IT)
B6
87
INSTRUC TIONS ¥

i Features

= Parallel Operations
= Scoreboard
= All-transistor Logic

Dynamic Scheduling with Scoreboard

Cons
Large number of buses
Multiple function units

i Question

= Performance vs. number of function
units

= Scoreboard vs. Tomasulo?

i Scoreboard Example

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2

LD F2 45+ R3

MULT FO F2 F4

SUBD F8 F6 F2

Functional Unit |Busy |Fm |F1 |Fj |Fk|Qj | Qk | Rj
Integer

Multl

Add

i Scoreboard Example Cyclel

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1
LD F2 45+ R3
MULT FO F2 F4
SUBD F8 F6 F2

Functional Unit | Busy |Fm | Fi | Fj | Fk | Qj | Qk | Rj | Rk
Integer Yes LD | F6 R2 Yes
Multl No
Add No

i Scoreboard Example Cycle2

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 2
LD F2 45+ R3
MULT FO F2 F4
SUBD F8 F6 F2

Functional Unit | Busy |Fm | Fi | Fj | Fk | Qj | Qk | Rj | Rk
Integer Yes LD | F6 R2 Yes
Multl No
Add No

i Scoreboard Example Cycle3

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 2 3
LD F2 45+ R3
MULT FO F2 F4
SUBD F8 F6 F2

Functional Unit | Busy |Fm | Fi | Fj | Fk | Qj | Qk | Rj | Rk
Integer Yes LD | F6 R2 Yes
Multl No
Add No

i Scoreboard Example Cycle4

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3

MULT FO F2 F4
SUBD F8 F6 F2

Functional Unit | Busy |Fm | Fi | Fj | Fk | Qj | Qk | Rj | Rk
Integer Yes LD | F6 R2 Yes
Multl No
Add No

i Scoreboard Example Cycle5

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5

MULT FO F2 F4
SUBD F8 F6 F2

Functional Unit | Busy |Fm | Fi | Fj | Fk | Qj | Qk | Rj | Rk
Integer Yes | LD | F2 R3 Yes
Multl No
Add No

i Scoreboard Example Cycle6

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 2 3 4
LD F2 45+ R3 5 6
MULT FO F2 F4 6
SUBD F8 F6 F2
Functional Unit | Busy | Fm | Fi | Fj | Fk Qj Qk Rj | Rk
Integer Yes | Load | F2 R3 Yes
Multl Yes | Mult | FO | F2 | F4 | Integer No | Yes
Add No

i Scoreboard Example Cycle7

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 3 4
LD F2 45+ R3 5 /

MULT FO F2 F4 6
SUBD F8 F6 F2 7/

Functional Unit | Busy | Fm | Fi | Fj | Fk Qj Qk Rj | Rk
Integer Yes | Load | F2 R3 Yes
Multl Yes | Mult | FO | F2 | F4 | Integer No | Yes

Add Yes | Sub | F8 | F6 | F2 Integer | Yes | No

i Scoreboard Example Cycle8

Instruction 1 j k |Issue | Read | Execute | Write
LD F6 34+ R2 1 3 4
LD F2 45+ R3 5 /

MULT FO F2 F4 6
SUBD F8 F6 F2 7/

Functional Unit | Busy | Fm | Fi | Fj | Fk Qj Qk Rj | Rk
Integer Yes | Load | F2 R3 Yes
Multl Yes | Mult | FO | F2 | F4 | Integer No | Yes

Add Yes | Sub | F8 | F6 | F2 Integer | Yes | No

