
Parallel Operation in the Control
Data 6600

Jiun-Hung Chen
Adrienne Wang
Jan 19, 2005

Overall System

Instruction Level Parallelism in
Hardware

 CDC6600: Out-of-order execution -> out-of-
order completion

 Multiple functional units: can have multiple
instructions in execution phase

Conflicts and Solutions

 First Order Conflict (Structural Hazard)
 Instructions require the same functional units/result registers.
 Solution: Determine early and issue the 2nd instruction upon

completion of the 1st one. Or provide two units to reduce the
probability of conflict.

 Second Order Conflict (RAW Hazard)
 Instructions require results that are not ready.
 Solution: Scoreboard control over the functional unit.

 Third Order Conflict (WAR Hazard)
 Some instructions may finish earlier than previously issued

instructions and need to overwrite the value in a register
which is still needed.

 Solution: Hold the result in the functional unit.

Scoreboard

 Also called Unit and Register Reservation
Control

 The Scoreboard manages simultaneous
operation of multiple functional units on a
single instruction stream.

 Units proceed independently.
 The Scoreboard determines when a functional

unit can read the operands and write to the
result register.

Four Stages of Scoreboard
Control
 1.Issue — decode instructions & check

for structural hazards
 2.Read operands — wait until no data

hazards, then read operands
 3.Execution — The functional unit

begins execution upon receiving
operands. It notifies the scoreboard
when it has completed execution.

 4. Write result — Write the result to
register after the scoreboard sends
signal to the functional unit.

 fields for each functional unit
 Fm: Function to be performed (eg. + or -)
 Fi: Destination register
 Fj, Fk: Source registers
 Qj, Qk: Functional units producing Fj, Fk
 Rj, Rk: single-bit flag indicating when Fj, Fk

are ready
 Xi: Identifies which unit has reserved

register Xi for its result (Some units may
have Bi/Ai)

Functional Unit Status

Scoreboard Operation I

 Place Reservations
1. Set the unit busy: Prevent the next

instruction which uses the same functional
unit from being issued.

2. Set the register designators Fi, Fj, Fk:
Transfers the i, j, k fields of the instruction
to the designators of the functional unit.

3. Set the functional unit identifiers Qj, Qk:
Copy from the X/B/A identifiers.

4. Assign the functional unit number to the
result register identifier, Xi, Bi, or Ai.

Scoreboard Example Cycle1

F8 F6 F2SUBD

F0 F2 F4MULT

F2 45+ R3LD

1F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle7

7F8 F6 F2SUBD

6F0 F2 F4MULT

765F2 45+ R3LD

4321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoYesIntegerF2F6F8SubYesAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Operation II

 Set read flags Rj, Rk
 If both are set, the unit may start
 Determined by the Qj, Qk identifiers and by the

Release signal from the functional units
identified by Qj, Qk. Solve the second order
conflict.

 x6 = x1+x2 Add unit
x7 = x5/x6 Divide unit
x6 is the result of the Add unit
Qk=17
 Rk is determined by Qk and the release signal
 from the Add unit.

Set the read flags

Scoreboard Operation II
(continued)

 Send the Release signal to functional units.
 Release the result to the result register.
 Solve the third order conflict.
 x5 = x4 * x3 Mult unit

x4 = x0 + x6 Add unit
The Add unit can’t release the result to x4
unless the Mult unit has read the value in x4.

Limitations of CDC6600
Scoreboard

 No forwarding hardware
 Whether independent instructions can be

found to execute.
 Limited to the size of the scoreboard.
 Small number of functional units leads to

structural hazards
 Antidependences and output dependences

lead to WAR and WAW stalls

Questions
 Why are all functions separated into different units? Wouldn’t it work better if

any unit could perform any operation, reducing conflicts of function type?
 A harder problem would be organizing the instructions for best performance and

least conflict. Neither paper talks about this possibility.
 How Q is notified the operation is done?
 Any computational theory is able to model the ILP?
 Does the scheduling and communication overhead make this impractical (slow)?
 This seems to be the hardware approach to introducing ILP, could a compiler

that was aware of how it was working help the hardware out? How?
 What exactly is a major and minor cycle? I get that the first is longer…
 Is this along the lines of what current processors do? How do they stay

synched and consistent?
 Seems to be substantial bookkeeping. Performance evaluation? Overhead?
 Multiple memory units seem good for speed. Don’t they have dependency

problems?
 Are any modern techniques inspired by scoreboard?

Peripheral and Central processors

Time-Sharing Design

Central Processor

Instruction Format

Instruction Stack

Central Processor Operating
Registers

Features

 Parallel Operations
 Scoreboard
 All-transistor Logic

Critique

 Pros
 Dynamic Scheduling with Scoreboard

 Cons
 Large number of buses
 Multiple function units

Question

 Performance vs. number of function
units

 Scoreboard vs. Tomasulo?

Scoreboard Example

F8 F6 F2SUBD

F0 F2 F4MULT

F2 45+ R3LD

F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

Add

Mult1

Integer

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle1

F8 F6 F2SUBD

F0 F2 F4MULT

F2 45+ R3LD

1F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle2

F8 F6 F2SUBD

F0 F2 F4MULT

F2 45+ R3LD

21F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle3

F8 F6 F2SUBD

F0 F2 F4MULT

F2 45+ R3LD

321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle4

F8 F6 F2SUBD

F0 F2 F4MULT

F2 45+ R3LD

4321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

NoMult1

YesR2F6LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle5

F8 F6 F2SUBD

F0 F2 F4MULT

5F2 45+ R3LD

4321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

NoMult1

YesR3F2LDYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle6

F8 F6 F2SUBD

6F0 F2 F4MULT

65F2 45+ R3LD

4321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle7

7F8 F6 F2SUBD

6F0 F2 F4MULT

765F2 45+ R3LD

4321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoYesIntegerF2F6F8SubYesAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

Scoreboard Example Cycle8

7F8 F6 F2SUBD

6F0 F2 F4MULT

765F2 45+ R3LD

4321F6 34+ R2LD

WriteExecuteReadIssue i j kInstruction

NoYesIntegerF2F6F8SubYesAdd

YesNoIntegerF4F2F0MultYesMult1

YesR3F2LoadYesInteger

RkRjQkQjFkFjFiFmBusyFunctional Unit

