
Caching n’ stuff, part 1:
Improving Direct-Mapped Cache

Performance

Types of Cache Misses

• Compulsory
– First reference (also called cold-start or first reference misses)

• Capacity
– Useful data was discarded because the cache was full

• Conflict
– Useful data that was present was discarded because of cache

conflict, it was overwritten by something else that mapped to the
same place

• Coherence
– Occur as a result of invalidation used to preserve multiprocessor

cache consistency

What is a direct-mapped cache?

About Direct-Mapped Caches

• Good:
– Fast

• Bad:
– Lots of Conflict Misses

Adding a Fully-Associative Miss Cache

About Adding A Fully-Associative
Miss Cache

• Improves mostly data conflicts

• 2 entry data cache was able to remove 25%
of data cache conflict misses

• 4 entries, 36%

Adding a Victim Cache

About a Victim Cache

• Same small fully-associated cache as
before but entries are added when they
are booted from main cache

• Always better performance than basic
miss cache

Reducing Compulsory and
Capacity Misses

• Use Prefetching

• In particular, use a stream buffer

• On miss, fetch a sequence of data from lower
cache

• Idea: Streams can be interleaved so use
multiple stream buffers

• When asked for data we now have 3 places to
look: direct-mapped cache, small-fully
associative victim cache, and stream buffer

Stream Buffers

Questions

• The conflict misses seem to be due to bad hashing code
(analog), would a better designed hashing
function/indexing scheme reduce conflicts?

• How should parameters (i.e., cache size, line size) for
these techniques be determined in practice?

• What software techniques might be beneficial for
improving cache performance?

• How could we combine software and hardware
techniques for improved cache performance?

• What variation of miss caching, victim caching and
stream buffers are used in commercial processors?
What cost considerations must be taken into account?

Part 2:
Trace Cache

motivation

• Instruction fetch is made complicated by ILP

• When you predict past a branch, instructions are
going to be non-contiguous, more so for more
branches
– Getting noncontiguous stuff out of a cache

simultaneously  more ports  more complexity

• Want to get lots of instructions at once, not just
the next basic block, and have them be
contiguous in cache

methodology

• Define a trace as an address and the
predictions for the next m branches after it

• Fetch a whole trace at once, cache the
sucker
– now you have instructions galore at your

fingertips, easy to access in parallel
• (or, um, you will, the next time you want this trace)

• Note: not replacing normal fetch unit, just
augmenting it

High level view

• Take advantage
of
– Temporal

locality
– Biased

branches

• First time you
hit this, put in
trace cache,
next time, hey,
sweet, it’s
cached
already

• Pretty
normal in
most ways

• Only
fetches up
to first
predicted-
taken
branch

Traces contain
– The

instructions
– Tags

identifying the
first address

– Info on taken
branches

• Means that
traces
identified just
by first
address

Their experiments and results

• Compared their stuff to two other fetch
mechanisms, found their stuff to be better
(shocking!)

• Took stats on how much good trace cache does

Gripes n’ questions

• Comparison with regular ol’ instruction cache hit
rates would be good

• Doesn’t deal with partial matches. How much
more complex would it have to be to do so?

• In their implementation, miss rate is high.
Doesn’t that rather defeat the purpose?

• Adds a lot o’ complexity for iffy benefit
• Just assumes branches not taken if the predictor

hasn’t gotten around to predicting them yet –
valid?

Preguntas

• It looks beneficial to explore design space alternatives to
improve hit rate. How?

• What is the optimal size of a trace cache? Is this
invariant with respect to different architectures?

• How can partial matches and adaptive trace selection
improve the performance?

• Can Trace Cash give some info to the branch predictor?
• Is trace cache actually used anywhere?
• Seems like they’re intent on having instructions all

crammed into a long line before throwing them at the
pipeline; are they thinking from a VLIW point of view?

