Caching n’ stuff, part 1:
Improving Direct-Mapped Cache
Performance

Types of Cache Misses

Compulsory

— First reference (also called cold-start or first reference misses)
Capacity

— Useful data was discarded because the cache was full

Conflict

— Useful data that was present was discarded because of cache
conflict, it was overwritten by something else that mapped to the
same place

Coherence

— Occur as a result of invalidation used to preserve multiprocessor
cache consistency

What is a direct-mapped cache?

From processor To processor

/I\

E lagse data Direct-mapped

J |

To next lower cache From next lower cache

About Direct-Mapped Caches

 Good:

— Fast

 Bad:
— Lots of Conflict Misses

Adding a Fully-Associative Miss Cache

From processor

To processor

/}'\

tags

-

data

|

.
tag and comparatar ona cache line of data
tag and comparator one cache line ot data
-l_a;'md comparator one cache line of data
tag and mlnlur_":m cache ine of data

To next lower cache

/]\

From next lower cache

Direct-mappeod
cache

MRU entry

Fully-associative
mias cache

LRU entry

About Adding A Fully-Associative
Miss Cache

* Improves mostly data conflicts

2 entry data cache was able to remove 25%
of data cache conflict misses

e 4 entries, 36%

Adding a Victim Cache

T

Dala 1o processor
Address trom
precessor !
s .
Address 1o Data from
next lower ext lower cache
cache
N
ing comparaiof one cache &ne of data
tag COMparator one cacha fine of data
189 comparaiod one cache ine ol data
ag COMPAraior one cacha line of data

Direct-
mapped

LRU enYy

Fully-associative
victim cache

MRU entry

About a Victim Cache

« Same small fully-associated cache as
before but entries are added when they
are booted from main cache

* Always better performance than basic
miss cache

Reducing Compulsory and
Capacity Misses

Use Prefetching
In particular, use a stream buffer

On miss, fetch a sequence of data from lower
cache

ldea: Streams can be interleaved so use
multiple stream buffers

When asked for data we now have 3 places to
look: direct-mapped cache, small-fully
associative victim cache, and stream buffer

Stream Buffers

From ProCessor To processor From processar To processor
N . s
tage duis Direct mapped cache
tage data Direct-mapped
v cache
: —
—, L_‘ S S s .
hqlnd ?‘l d l-?‘a '-T‘. .| ﬂ“. Tals
&g |a] wama | |vag e T |8 @t | (Tag & OEm |
COMparaton g one cache line of data Head entry B |al dafa | [Tag |& Tog |a| dala | |[Gg & dala |
tag a one cache line of data Streamn bufter (B9_[a] data] (%9 Ja] Tog (& dws) {Teg {a] @
tag a one cache line of data (FIFO Queue) ’ ’ ’ - ’
tag a one cache line of data Tall entry

»1
/|\ . , LI
To mextlower cache From next lower cache ,f\
From naxi lower cache

To nexd lower cache

Questions

The conflict misses seem to be due to bad hashing code
(analog), would a better designed hashing
function/indexing scheme reduce conflicts?

How should parameters (i.e., cache size, line size) for
these techniques be determined in practice?

What software techniques might be beneficial for
improving cache performance?

How could we combine software and hardware
techniques for improved cache performance?

What variation of miss caching, victim caching and
stream buffers are used in commercial processors?
What cost considerations must be taken into account?

Part 2:
Trace Cache

motivation

* |Instruction fetch is made complicated by ILP

 When you predict past a branch, instructions are
going to be non-contiguous, more so for more
branches

— Getting noncontiguous stuff out of a cache
simultaneously = more ports = more complexity

» Want to get lots of instructions at once, not just
the next basic block, and have them be
contiguous in cache

methodology

* Define a trace as an address and the
predictions for the next m branches after it

 Fetch a whole trace at once, cache the

sucker

— now you have instructions galore at your
fingertips, easy to access in parallel
« (or, um, you will, the next time you want this trace)

* Note: not replacing normal fetch unit, just
augmenting it

High level view

DYNAMIC INSTRUCTION STEEAM

trace {A taken. taken}

7 later... ¢

r—

trace {A taken taken}
\

| -

..-"‘"|..--"‘""I""I‘|

-'!. [
t t

77N

Fill new trace from instruction cache

1 i

TRACE CACHE

A | |

h fi

1

(15t basic blccg
2nd basic blo CB

(3rd basic block (still filling)

|
A

1T| [

t t

Access existing trace
using A and predictions(t.t)

TRACE CACHE

i I
A | []

¥
to DECODER

Take advantage
of

— Temporal
locality

— Biased
branches
First time you
hit this, put in

trace cache,
next time, hey,
sweet, it's
cached
already

EETURN . .
ADDRESS Olx
STACK r' MULTIPLE
2
r Ty -

BREANCH TARGET BUFFER . 3 BRANCH
fatch ~wav Interleay = PREDICTOR
address o BTB _ target

A LOGIC ~ address
. valid mstructions
“:‘ bit vectors

h o hA f . J 1st: 0000000000111111

Lol ! Lot ! Ind; 1111110000000000

=

T S N

I Smmmmm e i‘ T “““ TToo- |

——————————————— ImTTTT ST T |

L Lo |
R 1IN |
Line Size = 16 Inktiuctions | | | Line Size = 16 Instructions
P i] |
I N
Ay oy VIRA ¥
‘“||||||||||||||¢| lllllhllllllllll
not taken
branch 2-Way Interleaved taken branch
Instructipn CHChE
| /
- INTEE.CHANGE. SHIFT. MASK -

A
LITTTTTTITTTITTTITT] todecoder

Figure 3. The core fetch unit.

* Pretty
normal in
most ways

* Only
fetches up
to first
predicted-
taken
branch

from

= A 11 X | Y

| v ¥

: HIT LOGIC |‘--:

]

Y

b
1 instructions

A'm predictions

from
PREDICTOE

o

/

RAS

PEED

FETCH i} L FETCH
ADDRESS INSTRUCTION LATCH ADDRESS
TRACE CACHE CORE FETCH UNIT
branch target r
mask address - - ! !
branch MERGE LOGIC INSTR CACHE
flags fall-thm 4
address f BTB
tag LINE-FILL BUFFER
\ f

-—c

¥

v

d [nmak'inrerchauge.-‘shiﬁ]

. .
1 MSICions

3

1
1
1
1
s ’\i MUX

1

A1 instmctions

3

INSTRUCTION LATCH

|

TC

¥
to DECODER

Traces contain

— The
instructions

— Tags
identifying the
first address

— Info on taken
branches
 Means that
traces
identified just
by first
address

Their experiments and results

« Compared their stuff to two other fetch
mechanisms, found their stuff to be better

(shocking!)
« Took stats on how much good trace cache does

IBS 4 KB. 1-way 32 KB. 4-way Spec 4 KB, 1-way
tr mnr tmr 1 I tmr 1

veri T70% | 48% 48% 25% eqn 26% 8%
groff 76% | 61% 60% 38% esp 32% | 14%
gs 76% | 58% 60% 39% xlisp 64% | 40%
mpeg 70% | 54% 51% 29% gce 71% | 52%
jpeg 64% | 43% 53% 25% SC 50% | 28%
nroff 62% | 42% 45% 249% comp 18% 6%

Table 3. Trace cache miss rates.

Gripes n’ questions

Comparison with regular ol’ instruction cache hit
rates would be good

Doesn’t deal with partial matches. How much
more complex would it have to be to do so?

In their implementation, miss rate is high.
Doesn’t that rather defeat the purpose?

Adds a lot o' complexity for iffy benefit

Just assumes branches not taken if the predictor
hasn’t gotten around to predicting them yet —
valid?

Preguntas

It looks beneficial to explore design space alternatives to
improve hit rate. How?

What is the optimal size of a trace cache? Is this
invariant with respect to different architectures?

How can partial matches and adaptive trace selection
improve the performance?

Can Trace Cash give some info to the branch predictor?
|s trace cache actually used anywhere?

Seems like they’re intent on having instructions all
crammed into a long line before throwing them at the
pipeline; are they thinking from a VLIW point of view?

