
RETROSPECTIVE: 

A Study of Branch Prediction Strategies 

James E. Smith 

Department of Electrical and Computer Engineering 
University of Wisconsin-Madison 

jes@ece.wisc.edu 

lr 
-kn 1979, I took a leave of absence from the Uni- 
versity of Wisconsin to work at the Control Data 
Corporation in the Twin Cities. In truth, my inten- 
tion at the time was to abandon an academic 
career; I felt awkward teaching computer design - 
never having worked on the design of a computer. 
And I was doing research in fault-tolerant comput- 
ing as a theoretical enterprise, which seemed con- 
tradictory. 

The project I joined at CDC was developing 
the high end processor of a new product line - the 
Cyber 180 series. The processor was code-named 
“Theta”, and would become the Cyber 180/990 
when it was officially announced. The Cyber 180 
architecture was a 64-bit virtual memory system 
with all the bells and whistles that were fashion- 
able at the time. It was built around register-regis- 
ter instructions, but also had a number of complex 
instructions to support a heavy duty protection 
system, business data processing, and a memory- 
to-memory vector instruction set. With the same 
hardware, it also had to support the older 60-bit 
Cyber 170 instruction set, and switch seamlessly 
between the two modes - potentially at the proce- 
dure call level. 

My manager was Jim Stockard, and I took 
technical direction from Ron Hintz, the chief archi- 
tect. At the time I joined, the project had been 
underway for awhile, and was beginning to fall 
short of performance goals. My main responsibility 
was to carry out performance studies and suggest 
performance features to the designers. 

The technology was based on ECL gate arrays 
- about 200 gates per chip. It had been developed 
for the Cyber 200 supercomputers, which ran at a 
20 ns clock cycle. The Theta clock cycle was 16 ns, 
however, and in retrospect, this was probably a 
touch too aggressive. The complex instructions, 
aggressive clock cycle, and the packaging technol- 

ogy led to very long pipelines. It took about six 
pipe stages to fetch an instruction, decode it, and 
generate what were called “micrands”, ready to be 
issued (this process was very similar to what is 
done today in aggressive x86 implementations). 
Instructions issued in order, at most one per cycle. 

With a pipeline this long, conditional branches 
were a performance problem. The original pipeline 
design used a very simple static prediction strat- 
egy where all branches were predicted taken (or 
maybe not taken - I don’t recall which). Instruc- 
tions following a branch had to wait for the branch 
to be resolved before they could issue. 

During discussions with Tom Lane, the 
designer responsible for part of the instruction 
pipeline, the possibility of branch prediction came 
up. Tom had done a small study, using a cache-like 
table with single-bit entries. Tom also pointed me 
to Shustek’s thesis [l] - a real classic that suggests 
a number of static prediction strategies. 

I considered several prediction methods, most 
of which are given in the paper. It was evident that 
dynamic prediction was better than static. For 
studying performance, most of the benchmarks I 
was using (kernels, actually) were heavily loop- 
dominated. It was evident that using a single his- 
tory bit led to two mispredictions at loop termina- 
tions. Solving this problem with a two-bit 
saturating counter seemed like a good thing to do, 
and simulations showed a performance advantage. 
The parts available for implementing the predictor 
table were 16 x 4 register file chips, so a two-bit 
table entry cost no more than a one-bit table. I 
studied larger counters, but two bits worked better 
than three or four. 

Hardware was at a premium, and early on I 
realized that the table could be indexed like a 
cache, but tags were unnecessary - there was 
already a way of recovering when mispredictions 

22 



were made. I believe the final implementation con- 
sumed four 16x4 register chips (a 64 entry table) 
and a single gate array for updating. The counters 
described in the paper used two’s complement 
arithmetic with the sign bit being used to indicate 
taken/not taken. However, the final implementa- 
tion used the now-common O-to-3 integer counter. 

When I joined the Theta project, I took over the 
performance simulator from Paul Higgins; it had 
been developed by Paul and Dick Olson of CDC in 
Canada. The simulator was written in ASPOL and 
was trace-driven. We had a pile of 9-track trace 
tapes - including both Cyber 170 and 180 codes. 
The benchmarks were FORTRAN kernels and one 
nasty system benchmark called the SWL-profile 
(“swill” for short). 

The benchmarking in the paper was very basic 
by today’s standards - yet the paper made it into 
the “Performance Analysis” session at the confer- 
ence. Many of the kernels were only a few lines of 
code. I included the more difficult-to-predict ker- 
nels, but even those were pretty small. In doing the 
study, the SWL-profile was also simulated, and it 
showed the biggest performance improvement, 
but these results were not included in the paper. 

In conjunction with branch prediction, the 
actual Theta design also included a scheme for 
“conditional issue” (“speculative execution” 
today). As mentioned above, instructions issued in 
order, and branches took 5 cycles to resolve (only 
some simple integer instructions were faster). 
When a branch issued it reserved all result bus 
slots up until the time it finished. Then, following 
instructions could conditionally issue and start 
executing prior to the resolution of the branch. The 
reserved bus slots inhibited any conditionally 
issued instruction from writing its result register 
before the branch was resolved. A branch mispre- 
diction would invalidate all conditionally issued 
instructions and start over. 

Overall, with branch prediction and condi- 
tional issue, the FORTRAN benchmarks improved 
by about 5%, and SWL about 10%. The SWL 
improvement was the real clincher, because the 
Theta project was furthest behind in SWL perfor- 
mance goals. 

This work was done in the context of a devel- 
opment project, so there wasn’t much time for aca- 
demic investigation. The only exception is the 
small study I did using larger counters and assign- 
ing confidence levels depending on the count val- 
ues. The concept was to speculate more 
aggressively when the confidence level was higher. 
I continued to carry this idea around for about 15 
years before working on the study that appeared in 
Micro-29 [2], two years ago. 

This was my first ISCA paper; the conference 
was held in the Twin Cities, which provided addi- 
tional motivation for writing the paper. One of my 
clearer memories of the conference is the invited 
speech Jim Thornton gave. I also recall meeting 
David Kroft, another CDC employee who devel- 
oped a non-blocking cache for a different Cyber 
180 machine being designed in Canada. 

A number of Cyber180/990 machines were 
eventually built and sold; I believe several went to 
Europe, where CDC did a good business at the 
time. 

References 

[l] L. Shustek, Analysis and Petformance of Computer 
Instruction Sets, Ph.D. Thesis, Stanford University, 
1978. 

[2] E. Jacobsen, E. Rotenberg, J. E. Smith, “Assigning 
Confidence to Conditional Branch Predictions”, 
29th Int. Symp. on Microarchitecture, Dec. 1996. 

23 


