Mark Oskin

University of
Washington

Frederic T.
Chong

University of
California, Davis

Isaac L.
Chuang

Massachusetts
Institute of
Technology

A Practical

Architecture for

Reliable Quantum

Gomputers

Quantum computation has advanced to the point where system-level
solutions can help close the gap between emerging quantum technologies
and real-world computing requirements.

uantum computers offer the prospect of

computation that scales exponentially

with data size. Unfortunately, a single bit

error can corrupt an exponential amount

of data. Quantum mechanics can seem
more suited to science fiction than system engi-
neering, yet small quantum devices of 5 to 7 bits
have nevertheless been built in the laboratory,'*
100-bit devices are on the drawing table now, and
emerging quantum technologies promise even
greater scalability.*

More importantly, improvements in quantum
error-correction codes have established a threshold
theorem,’ according to which scalable quantum
computers can be built from faulty components as
long as the error probability for each quantum oper-
ation is less than some constant (estimated to be as
high as 107*). The overhead for quantum error cor-
rection remains daunting: Current well-known
codes require tens of thousands of elementary oper-
ations to provide a single fault-tolerant logical oper-
ation. But proof of the threshold theorem
fundamentally alters the prospects for quantum
computers. No principle of physics prevents their
realization—it is an engineering problem.

Empirical studies of practical quantum architec-
tures are just beginning to appear in the literature.®
Elementary architectural concepts are still lacking:
How do we provide quantum storage, data paths,

0018-9162/02/$17.00 © 2002 IEEE

classical control circuits, parallelism, and system
integration? And, crucially, how can we design
architectures to reduce error-correction overhead?

Quantum information systems can be a mathe-
matically intense subject. We can understand a great
deal, however, by using a simple model of abstract
building blocks: quantum bits, gates, and algo-
rithms, and the available implementation technolo-
gies—in all their imperfections.” The basic building
block is a quantum bit, or qubit, represented by
nanoscale physical properties such as nuclear spin.
In contrast to classical computation, in which a bit
represents either O or 1, a qubit represents both
states simultaneously. More precisely, a qubit’s state
is described by probability amplitudes, which can
destructively interfere with each other and only turn
into probabilities upon external observation.

Quantum computers manipulate these ampli-
tudes directly to perform a computation. Because
n qubits represent 2" states, a two-qubit vector
simultaneously represents the states 00, 01, 10, and
11—each with some probability when measured.
Each additional qubit doubles the number of ampli-
tudes represented—thus, the potential to scale
exponentially with data size.

A fundamental problem, however, is that we gen-
erally cannot look at the results of a quantum com-

January 2002



Quantum Algorithms

Recent interest in quantum computers has focused on Peter Shor’s algo-
rithm for prime factorization of large numbers.' Shor showed that a quan-
tum computer could, in theory, factor an #-bit integer in O(r’) time.

Shor’s discovery drew a lot of attention. The security of many modern
cryptosystems relies on the seeming intractability of factoring the prod-
uct of two large primes, given that the best-known factoring algorithms
for a classical computer run in exponential time. To put this in perspec-
tive, researchers using the number field sieve have successfully factored a
512-bit product of two primes, but it took 8,400 MIPS years.” A 1,024-
bit product would take approximately 1.6 billion times longer. That seems
intractable.

With Shor’s algorithm, you could factor a 512-bit product in about 3.5
hours, assuming the quantum architecture and error-correction schemes
described in this article, and a 1-GHz clock rate. Under the same assump-
tions, the algorithm could factor a 1,024-bit number in less than 31 hours.

Another key algorithm is Lov Grover’s for searching an unordered list
of 1 elements in V7 queries.> Quantum algorithms have also been devised
for cryptographic key distribution* and clock synchronization.

It is expected, however, that a major application area for quantum com-
puters will be the simulation of quantum mechanical systems that are too
complex to be simulated on classical computers.® This prospect opens
possibilities impossible to imagine in the classical world of our intuition
and current computers.

References

1. P. Shor, “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring,” Proc. 35th Ann. Symp. Foundations of Computer Science,
IEEE CS Press, Los Alamitos, Calif., 1994, p. 124.

2. B. Preneel, ed., Factorization of a 512-Bit RSA Modulus, vol. 1807, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 2000.

3. L. Grover, “A Fast Quantum Mechanical Algorithm for Database Search,”
Proc. 28th Ann. ACM Symp. Theory of Computation, ACM Press, New
York, 1996, pp. 212-219.

4. C.H. Bennet, G. Brassard, and A.K. Ekert, “Quantum Cryptography,”
Scientific Am., Oct. 1992, pp. 50-57.

5. M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum
Information, Cambridge University Press, Cambridge, UK, 2000.

putation until it ends, at which point we get only a
random value from the vector. More precisely, mea-
suring a qubit vector collapses it into a probabilistic
classical bit vector, yielding a single state randomly
selected from the exponential set of possible states.

Perhaps for this reason, quantum computers are best

at “promise” problems—applications that use some

hidden structure in a problem to find an answer that

can be easily verified. Such is the case for the appli-
cation domains of the two most famous quantum
algorithms, Shor’s for prime factorization of an -

Computer

bit integer in O(#’) time® and Grover’s for search-
ing an unordered #-element list in V2 queries.” The
“Quantum Algorithms” sidebar provides additional
information about applications for these algorithms.
Obviously, designers of quantum algorithms must
be very clever about how to get useful answers from
their computations.

Another problem is that qubits lose their quan-
tum properties exponentially quickly in the pres-
ence of a constant amount of noise per qubit. This
sensitivity is referred to as decoherence, and it is
widely believed to be the reason why the world
around us is so predominantly classical. Never-
theless, quantum computation can tolerate a finite
amount of decoherence, so the engineering prob-
lem is to contain it to a sufficiently small amount.
The relevant measure is the amount of decoherence
per operation, p, which has been estimated for a
wide range of physical systems. Specifically, it can
range from 107 for electron charge states in GaAs
semiconductors, to 10~ for photons, 107" for
trapped ions, and 10~ for nuclear spins.”

How realistic is quantum computation as a tech-
nology? We cannot achieve these physical limits with
current technologies, but researchers have proposed
concepts for realizing scalable quantum computers,
and initial experiments are promising. Nuclear spins
manipulated by nuclear magnetic resonance (NMR)
techniques have demonstrated Shor’s algorithm with
seven qubits.' In these systems, single-qubit opera-
tions take place at about 1 MHz, and two-qubit
gates at about 1 kHz, with an error probability p =
1073, It is believed that p = 107 will ultimately be
possible for this kind of device.

Lower error rates are expected to apply for
NMR systems that use other techniques, such as
artificial molecules synthesized from solid-state
quantum dots'! or carefully placed phosphorus
impurities in silicon.? Faster clock speeds of around
1 GHz should also be possible. For scalability and
to take advantage of a tremendous historical invest-
ment in silicon fabrication, our architecture
assumes a solid-state technology such as quantum
dots or phosphorus atoms. We want to use these
technologies to provide the building blocks for reli-
able quantum computation, much as von Neumann
did for classical computation.'?

We’re a long way from system-scale maturity in
today’s quantum logic gates, but it was also a long
way from the initial silicon transistors to modern
VLSI. We propose stepping in that direction.

Given that a technology solution is possible, how



would we implement a quantum algorithm?

Although some early work was done on quantum
Turing machines, ' the quantum computation com-
munity has focused almost entirely on a circuit
model'* in which algorithms and architecture are
tightly integrated—similar to a classical application-
specific integrated circuit, or ASIC. In contrast, our
goal is to design a general-purpose piece of hardware
that we can program to perform arbitrary quantum
computations.

We can express quantum algorithms through a
model that performs quantum operations on quan-
tum data under the control of a classical computer.
Accordingly, quantum programs would combine
quantum unitary transforms (quantum gates),
quantum measurements, classical computation,
and classical control-flow decisions into a single
instruction stream. A compiler (such as QCL")
then reads a mixed quantum/classical language and
breaks down complex quantum operations into a
small set of universal operators. The compiler
encodes these operators into a classical bit instruc-
tion stream that also includes conventional proces-
sor instructions.

We anticipate that this compiler will have two
main parts: a static precompiler and a dynamic
compiler. Both parts are cross-compilers, running
on a conventional microprocessor and producing
code for our quantum architecture.

The precompiler would generate code that pro-
duces a computation with a targeted end-to-end
error probability on an ideal quantum computer.
This end-to-end error means that the generated
code must check the answer and restart if it is
wrong. Similar to conventional VLSI synthesis
tools, the compiler employs a technology model,
but only to the extent that it specifies a universal
set of primitive operations. The compiler does not
need any knowledge of error models.

The dynamic compiler accepts the precompiled
binary code and produces an instruction stream to
implement a fault-tolerant computation, using the
minimal quantum error correction necessary to
meet the end-to-end error rate. This compiler is also
given the technology model and, importantly, a
bound on program execution time. Errors occur so
infrequently in classical architectures that program
run length is rarely an issue. In quantum architec-
tures, however, errors are frequent, and correction
incurs a polylogarithmic cost in run length. Our
work on this architecture indicates that exploiting
program run length is key to performance.

The bound on program run length can originate
in either a user hint or dynamic profiling. The hint

expresses the algorithm’s running time given
some input data size. To date, such informa-
tion is available for all known quantum algo-
rithms. If the hint is not available, the
compiler uses an adjustable policy to opti-
mize programs adaptively. An aggressive pol-
icy would start with minimal error correction
and increase reliability until the program pro-
duces the right answer; a conservative policy
would start with extremely reliable correc-
tion and decrease reliability for future runs.

The nonlocalized properties of quantum states
means that localized errors on a few qubits can
have a global impact on the exponentially large
state space of many qubits. This makes quantum
error correction perhaps the single most important
concept in devising a quantum architecture. Unlike
classical systems, which can perform brute-force,
signal-level restoration error correction in every
transistor, quantum state error correction requires
a subtle, complex strategy.

The difficulty of error-correcting quantum states
has two sources.

First, errors in quantum computations are dis-
tinctly different from errors in classical computing.
Despite the digital abstraction of qubits as two-level
quantum systems, qubit state probability ampli-
tudes are parameterized by continuous degrees of
freedom that the abstraction does not automati-
cally protect. Thus, errors can be continuous in
nature, and minor shifts in the superposition of a
qubit cannot be discriminated from the desired
computation. In contrast, classical bits suffer only
digital errors. Likewise, where classical bits suffer
only bit-flip errors, qubits suffer both bit-flip and
phase-flip errors, since their amplitude signs can be
either negative or positive.

The second source of difficulty is that we must
correct quantum states without measuring them
because measurement collapses the very superpo-
sitions we want to preserve.

Quantum error-correction codes successfully
address these problems by using two classical codes
simultaneously to protect against both bit and phase
errors, while allowing measurements to determine
only information about the error that occurred and
nothing about the encoded data. An [n, k] code uses
7 qubits to encode k qubits of data. The encoding

January 2002




Table 1. Recursive error-correction overhead for a single-qubit operation using [7,1] Steane correction code.

Recursion level (k) Storage overhead 7*
0 1
7
49
343
2,401
16,807

a1 BN =

circuit takes the k data qubits as input, together with
n— k ancilla qubits. Ancilla bits are extra “scratch”
qubits that quantum operations often use; a spe-
cialized, entropy exchange unit produces the ancilla
bits and “cools” them to an initial state 10). The
decoder takes in an encoded 7-qubit state and out-
puts k (possibly erroneous) qubits together with
n — k qubits that, with high probability, specify
which error occurred. A recovery circuit then per-
forms one of 2" * operations to correct the error on
the data.

This model assumes that qubit errors are inde-
pendent and identically distributed. Classical error
correction makes the same assumption, and we can
adapt classical strategies for handling deviations to
the quantum model.

Quantum error correction has a powerful and
subtle effect. Without it, the “correctness”—tech-
nically, the fidelity—of a physical qubit decays expo-
nentially and continuously with time. With it, the
exponential error model becomes linear: A logical
qubit encoded in a quantum error-correcting code
and undergoing periodic error measurement suffers
only linear discrete amounts of error, to first order.

Not all available codes are suitable for fault-tol-
erant computation, but the largest class—the sta-
bilizer codes—support computation without
decoding the data and thus propagating more
errors in the process. We chose the [7,1] Steane sta-
bilizer code for our architecture. It uses seven phys-
ical qubits to encode one logical qubit and is nearly
optimal (the smallest perfect quantum code is
[5,1]'). The code can perform an important set of
single-qubit operations as well as the two-qubit
controlled-NOT operator (used in the architecture’s
quantum ALU) on the encoded qubit simply by
applying the operations to each individual physi-
cal qubit.

The cost of error correction is the overhead
needed to compute encoded states and to perform
periodic error-correction steps. Each such step is a

Computer

Operation overhead 153

83,841,135,993

Minimum time overhead 5*
1 1

153 S

23,409 25
3,581,577 125
547,981,281 625

3,125

fault-tolerant operation. The Steane code requires
approximately 153 physical gates to construct a
fault-tolerant single-qubit operation.

Despite this substantial cost, the 7-qubit error-
correcting code dramatically improves the quan-
tum computing situation. The probability of a
logical qubit error occurring during a single oper-
ation changes from p to cp*, where ¢ is a constant
determined by the number of places two or more
failures can occur and propagate to the next logi-
cal qubit, and we want ¢p* < p.

For a single logical gate application, ¢ is about
17,446. For a physical qubit transform failure rate
of p = 10°°, this means the 7-qubit Steane code has
a probable logical qubit transform failure rate of
1.6 x 10”7 when a maximally parallelized opera-
tion uses an optimized error measurement proce-
dure.'® Producing systems with a lower ¢ and more
reasonable overheads requires a failure rate that is
closer to 107°.

The most important application of quantum
codes to computation is a recursive construction,’
which exponentially decreases error probabilities
with only polynomial effort. This is crucial because
even an error probability of cp?is too high for most
quantum applications.

The following example helps to understand the
construction: The Steane code transforms the phys-
ical qubit error rate p to a logical qubit error rate
cp* but requires some number of physical qubit
gates per logical qubit gate operation. Suppose,
however, that a logical gate on a 7-qubit code again
implemented each of those physical gates. Each
gate would have a logical gate accuracy of cp?, and
the overall logical gate error rate would become
c(cp*)?. For a technology with p = 107, the error
rate for each upper level gate would be roughly
4.3 x 107", The key observation is that as long as
cp” < p, error probabilities decrease exponentially
with only a polynomial increase in overhead.

Table 1 summarizes the costs of recursive error



1e 3
2 T3
18—7; 2\
L‘“wH 2
1e8 |- 1 T
1e - 1

Error rate

1710 - LLL"\-._‘_‘
1

1 F

e

10 100 1,000
Problem size (bits)

correction up to five levels for storage, operation,
and minimum time overheads. Clearly, the high cost
of recursive error correction means that a quantum
computer architecture should choose the minimum
recursion level for a given algorithm and data size.

Figure 1 depicts recursion level k with a varied
problem size and underlying qubit error probabil-
ity for both Shor’s and Grover’s algorithms.
Increases in problem size or error probability
require stronger error correction through addi-
tional levels of recursion.

Building upon the theory of fault-tolerant quan-
tum computation, we define the building blocks for
a general architecture that can dynamically mini-
mize error-correction overhead. In contrast to the
circuit model used in much of the quantum com-
puting literature, our architecture can efficiently
support different algorithms and data sizes. The
key mechanisms enabling this generalization are
reliable data paths and efficient quantum memory.

In many respects, quantum computation is sim-
ilar to classical computation. For example, quan-
tum algorithms have a well-defined control flow
that manipulates individual data items throughout
the execution. The physical restrictions on quan-
tum technologies also resemble the classical
domain. Even though two qubits can interact at a
distance, the strongest—and least error-prone—
interaction is between near neighbors. Further-
more, controlled interaction requires classical
support circuitry, which must be routed appropri-
ately throughout the device.

Although our quantum computer architecture is
similar to a classical architecture, certain aspects of

Error rate

1e B 1

10 100
Problem size (2")

the computation are unique to the quantum
domain. As Figure 2 shows, the overall architec-
ture has three major components: the quantum
arithmetic logic unit (ALU), quantum memory, and
a dynamic scheduler. In addition, the architecture
uses a novel quantum wiring technique that
exploits quantum teleportation.'”

At the core of our architecture is the quantum
ALU, which performs quantum operations for both
computation and error correction. To efficiently
perform any specified quantum gates on the quan-
tum data, the ALU applies a sequence of basic
quantum transforms under classical control.” The
transforms include

e the Hadamard (a radix-2, 1-qubit Fourier
transform),

e identity (I, a quantum NOP),

e bit flip (X, a quantum NOT),

e phase flip (Z, which changes the signs of ampli-
tudes),

e bit and phase flip (Y),

e rotation by /4 (S),

e rotation by 1/8 (T), and

e controlled NOT (CNOT).

These gates form one of the smallest possible uni-
versal sets for quantum computation. The under-
lying physical quantum technology can implement
these gates efficiently on encoded data. All except
CNOT operate on only a single qubit; the CNOT
gate operates on two qubits.

To perform the high-level task of error correc-
tion, the ALU applies a sequence of elementary

Figure 1. Recursion
level k with a varied
problem size and
underlying qubit
error probability for
Shor’s quantum fac-
torization algorithm
(left) and Grover’s
quantum search
algorithm (right).

January 2002




Figure 2. Fault-
tolerant quantum
computer architec-
ture. The quantum
arithmetic logic unit
(ALU) performs all
quantum operations,
quantum memory
banks support effi-
cient code conver-
sion, teleportation
transmits quantum
states without send-
ing quantum data,
and the dynamic
scheduler controls
all processes.

Qubit refresh unit

Qubit refresh unit

Qubit refresh unit

Qubit refresh unit

| Code teleporter i
$ $33 3% %3
Quantum ALU

I

Dynamic quantum compiler/scheduler (classical microprocessor)

— Classical communication AV Quantum interaction

operations. Because this task is requisite to fault-
tolerant quantum computing, the ALU performs it
on encoded data after most logical operations. This
procedure consumes ancilla states, which help in
the computation of parity checks. Specialized hard-
ware provides elementary standard states that the
ALU uses to manufacture requisite ancilla.

The architecture’s generality relies on an efficient
quantum memory. The key is building quantum
memory banks that are more reliable than quan-
tum computation devices. We can also use special-
ized “refresh” units that are much less complex
than our general ALU.

The storage of qubits not undergoing computa-
tion is very similar to the storage of conventional
dynamic RAM. Just as individual capacitors used
for DRAM leak into the surrounding substrate over
time, qubits couple to the surrounding environment
and decohere over time. This requires periodically
refreshing individual logical qubits. As Figure 2
shows, each qubit memory bank has a dedicated
refresh unit that periodically performs error detec-
tion and recovery on the logical qubits. From a
technological standpoint, decoherence-free sub-

Computer

systems,'® which naturally provide lower decoher-
ence rates for static qubits, could implement such
quantum memories.

The architecture uses multiple quantum memory
banks. This is not for improving logical qubit access
times. In fact, the underlying error rate of the qubit’s
physical storage mechanism, the algorithm’s com-
plexity and input data size, the quantum ALU’s
operation time and parallelism, and the error-cor-
rection code that stores the logical qubits limit the
bank size. For example, if we run Shor’s algorithm
on a 1,024-bit number using a memory technology
with an error rate of p = 107, we estimate that it
would use 28,000 physical qubits to represent about
1,000 physical bits using two levels of recursion in
a 5-qubit error-correction code. On the other hand,
if the error rate increases to p = 107, error correc-
tion would require four levels of recursion to refresh
a bank size of just 1,000 physical qubits that would
store only two logical qubits.

Moving information around in a quantum com-
puter is a challenge. Quantum operations must be
reversible, and we cannot perfectly clone qubits—
that is, we cannot copy their value. We cannot sim-



ply place a qubit on a wire and expect it to transmit
the qubit’s state accordingly. Instead, our architec-
ture will use a purely quantum concept to imple-
ment quantum wires: teleportation.'” This pro-
cedure, which has been experimentally demon-
strated,"” transmits a quantum state between two
points without actually sending any quantum data.
Instead, with the aid of a certain standard preshared
state, teleportation sends two classical bits of data
for each qubit.

Teleportation is superior to other means of deliv-
ering quantum states. Recall that a solid-state tech-
nology implements qubits with atoms implanted in
silicon.*"! The physical qubits cannot move, but we
can apply a swap operation to progressive pairs of
atoms to move the qubit values along a line of
atoms. While we could use a series of quantum swap
gates to implement quantum wires, each swap gate
is composed of three CNOT gates, which introduces
errors in the physical qubits—errors that generate
additional overhead in the correction procedures.

Teleportation instead uses quantum swap gates
that are not error-corrected to distribute qubits in
a cat state to the source and destination of the wire.
A cat state (named after Schrodinger’s cat) is a qubit
vector with probabilities equally distributed
between all bits set to 1 and all bits set to 0. The
qubits in a cat state are entangled, and measuring
one of the qubits uniquely determines the state of
all qubits in the qubit vector. Teleportation uses a
two-qubit cat state.

This cat state can be checked for errors easily and
independently of the physical qubit being trans-
mitted. If errors have overwhelmed the cat state, it
can be discarded with little harm to the transmis-
sion process. Once a correct cat state exists at both
ends, the cat state’s qubits teleport the physical
qubit across the required distance.

Teleportation can also provide a general mecha-
nism for simultaneously performing quantum oper-
ations while transporting quantum data.
Precomputing the desired operation on the cat
states forms a kind of “quantum software” that
automatically performs its operation on the tele-
ported data.?* We can use this mechanism to per-
form an optimization by converting between
different error-correction codes during teleporta-
tion. Specifically, we chose the Steane error-correc-
tion code for its computational ease, not its
compactness. The quantum memories, however,
perform only error measurement and recovery, not
computation. Hence, they can use a more compact

Logical source qubit
in source error-
correction code

Cat state

Encoder for
source code
Encoder for
destination code

Logical destination qubit
in destination error-
correction code

Teleporting

operation (source)

Classical communication

wwaw  Quantum interaction

code that sacrifices some ease of computation.

Converting between codes is usually an error-
prone process, but teleportation performs code con-
version without a single physical qubit error
compromising a complete logical qubit state.”
Thus, our architecture can store the logical qubits
efficiently in a dense error-correcting code if it uses
teleportation during transmission to the quantum
ALU for conversion to a less compact, but more
easily computable, error-correction code.

From a conceptual standpoint, this process is
only a slight modification of standard quantum
teleportation. As Figure 3 shows, specialized hard-
ware generates a cat state, sends one qubit through
the encoding mechanism for the source error-
correction code, and sends the other qubit through
the encoder for the destination error-correction
code. The sender and receiver then perform the log-
ical qubit equivalents of the teleportation opera-
tion on each end of the entangled pair.

To implement a more robust form of this process,
the underlying architecture could use stabilizer
measurements to generate the appropriately
encoded cat states prior to teleportation.

The architecture uses a complete high-perfor-
mance classical processor for control. This proces-
sor runs a dynamic scheduling algorithm that takes
in logical quantum operations, interleaved with clas-
sical control-flow constructs, and dynamically trans-
lates them into physical individual qubit operations.
The algorithm uses knowledge about the overall
input data size and physical qubit error rates to con-
struct a dynamic schedule to control the quantum
ALU, code teleportation, and qubit RAM refresh
units. This is a lot of work for a single classical
processor. We expect significantly faster processor
clock speeds to be available, but it may be necessary
to run multiple classical processors in parallel.

The classical processor is critical to making a

January 2002

N/
el

Figure 3. Code tele-
portation. In a slight
modification of
standard quantum
teleportation, an
encoder at the des-
tination recreates
quantum data
encoded in another
form at the sender.




Figure 4. Quantum
computing
performance with
recursive error
correction. The
recursive approach
to stronger error
corrections results
in a stairstep curve.

Running time with
recursive error correction

Execution time (log)

U ldeal running time with
i customized error correction

Problem size (log)

quantum architecture efficient. We could execute
all quantum algorithms with the maximum avail-
able error correction, but doing so would be incred-
ibly inefficient. Moreover, using dynamic
compilation and knowledge of an algorithm’s exe-
cution time make several performance optimiza-
tions available to the computation, including
application-specific clustering prior to error mea-
surement.

While theoretically possible, quantum error cor-
rection introduces overheads yet unheard of in the
classical domain. A single level of error correction
incurs an overhead of at least 153 quantum gates
per logical operation in our architecture; a k level
recursive scheme has a factor of 153* overhead.

The scheduling unit ultimately implements mech-
anisms to control this overhead dynamically at exe-
cution time. This unit compiles the quantum
software instructions (that operate on logical
qubits) into the specific quantum operations
required for execution on the physical qubits of the
error-correction codes used throughout the archi-
tecture. Furthermore, the unit dynamically sched-
ules the quantum operations to intermix classical
control-flow constructs with the quantum opera-
tions, while fully utilizing the available quantum
ALU functional units.

Figure 4 abstractly depicts the effects of recur-
sive error correction on execution time. As appli-
cation data size increases, so must the recursive
structure, but the recursion increases occur at inte-
gral steps. Using the classical processor for just-in-
time quantum software compilation, we customize
the error correction to the algorithm and data size.
This customization aggregates the cost of error-cor-
rection processes over several operations, thereby
making the integral cost more continuous.

Computer

ur architecture achieves system-level efficien-

cies through code teleportation, quantum

memory refresh units, dynamic compilation
of quantum programs, and scalable error correc-
tion. Our work indicates that reliability of the
underlying technology is crucial; practical archi-
tectures will require quantum technologies with
error rates between 10 and 10~°.

In addition to the underlying technology, the sig-
nificant overhead of quantum error correction
remains the most pressing quantum computing
architectural issue. The clustering solution we pro-
pose can regain some of the performance lost from
recursive error correction, but the gains are limited
to the cost of only a single recursion layer. Further
reductions will require other new techniques.
Quantum theorists are working on new correction
codes with attractive properties. Some can correct
for more than a single error or condense more than
one logical qubit together to increase density.

The key to exploiting these algorithmic devel-
opments in a quantum architecture is to identify
the basic building blocks from which a design
methodology can grow. We hope to lay the foun-
dation for a science of quantum CAD for the reli-
able quantum computers of the future.

Acknowledgments

We conducted this work as part of the Quantum
Architecture Research Center (http:/feynman.
media.mit.edu/quanta/qarc/), funded by the DARPA
Quantum Information Science and Technology pro-
gram. John Kubiatowicz contributed to the initial
discussions of this work. John Black provided com-
ments on the state of the art in breaking cryptosys-
tems. Thanks also to Matt Farrens and Gary Tyson.

References

1. L.M. Vandersypen et al., “Experimental Realization
of Order-Finding with a Quantum Computer,” Phys-
ical Rev. Letters, vol. 15,15 Dec. 2000, pp. 5452-5455.

2. E.Knill et al., “An Algorithmic Benchmark for Quan-
tum Information Processing,” Nature, vol. 404,
2000, pp. 368-370.

3. B. Kane, “A Silicon-Based Nuclear Spin Quantum
Computer,” Nature, vol. 393, 1998, pp. 133-137.

4. J.E. Mooij et al., “Josephson Persistent-Current
Qubit,” Science, vol. 285, 1999, pp. 1036-1039.

5. D. Aharonov and M. Ben-Or, “Fault-Tolerant Com-
putation with Constant Error,” Proc. 29th Ann.
ACM Symp. Theory of Computing, ACM Press,
New York, 1997, pp. 176-188.



6. K.M. Obenland, “Using Simulation to Assess the Fea-
sibility of Quantum Computing,” doctoral disserta-
tion, Univ. of Southern California, Los Angeles, 1999.

7. M.A. Nielsen and I.L. Chuang, Quantum Computa-
tion and Quantum Information, Cambridge Univer-
sity Press, Cambridge, UK, 2000.

8. P. Shor, “Algorithms for Quantum Computation: Dis-
crete Logarithms and Factoring,” Proc. 35th Ann.
Symp. Foundations of Computer Science, IEEE CS
Press, Los Alamitos, Calif., 1994, p. 124.

9. L. Grover, “A Fast Quantum Mechanical Algorithm
for Database Search,” Proc. 28th Ann. ACM Symp.
Theory of Computation, ACM Press, New York,
1996, pp. 212-219.

10. L.M. Vandersypen et al., “Experimental Realization
of Shor’s Quantum Factoring Algorithm Using
Nuclear Magnetic Resonance,” Nature, vol. 414,
2001, p. 883.

11. D.P. DiVincenzo and D. Loss, “Quantum Informa-
tion Is Physical,” Superlattices and Microstructures,
vol. 23,1998, p. 419.

12. J. von Neumann, “Probabilistic Logics and the Syn-
thesis of Reliable Organisms from Unreliable Com-
ponents,” in Automata Studies, Princeton University
Press, Princeton, N.]., 1956, pp. 329-378.

13. A.C. Yao, “Quantum Circuit Complexity,” Proc.
34th Ann. IEEE Symp. Foundations of Computer
Science, IEEE CS Press, Los Alamitos, Calif., 1993,
pp. 352-361.

14. A. Barenco et al., “Elementary Gates for Quantum
Computation,” Physical Rev. A, vol. 52, 1995, pp.
3457-3467.

15. B. Omer, “Quantum Programming in QCL,” mas-
ter’s thesis, Technical University of Vienna, 2000.

16. A. Steane, “Active Stabilisation, Quantum Compu-
tation and Quantum State Synthesis,” Physical Rev.
Letters, vol. 78,1997, p. 2252.

17. C.H. Bennett et al., “Teleporting an Unknown Quan-
tum State via Dual Classical and EPR Channels,”
Physical Rev. Letters, vol. 70,1993, pp. 1895-1899.

18. D.A. Lidar, I.L. Chuang, and K.B. Whaley, “Deco-
herence-free Subspaces for Quantum Computation,”
Physical Rev. Letters, vol. 81, no. 12,1998, pp. 2594-
2597.

19. D. Bouwmeester et al., “Experimental Quantum Tele-
portation,” Nature, vol. 390, 1997, pp. 575-579.

20. D. Gottesman and I.L. Chuang, “Quantum Telepor-
tation Is a Universal Computational Primitive,”
Nature, vol. 402, 1999, pp. 390-392.

Mark Oskin is an assistant professor in the Depart-
ment of Computer Science and Engineering at the
University of Washington. He received a PhD in
computer science from the University of Califor-

nia, Davis. His research focuses on reconfigurable
systems, computational substrates, and automated
design tools for quantum computing architectures.
Contact him at oskin@cs.washington.edu.

Frederic T. Chong is an associate professor in the
Department of Computer Science at the University
of California, Davis. He received a PhD in electri-
cal engineering and computer science from the
Massachusetts Institute of Technology. His research
focuses on computer architectures for novel tech-
nologies. Contact him at chong@cs.ucdavis.edu.

Isaac L. Chuang is an associate professor at the
Massachusetts Institute of Technology, where he
leads the quanta research group at the MIT Media
Laboratory. He received a PhD in electrical engi-
neering from Stanford University, where he was a
Hertz Foundation Fellow. His research focuses on
quantum information science, the physics of com-
putation, information theory, and implementations
of quantum computers and cryptosystems. Contact
him at ike@media.mit.edu.

UNIVERSITY OF TORONTO
THE EDWARD S. ROGERS SR. DEPARTMENT OF
ELECTRICAL AND COMPUTER ENGINEERING

The ECE Department at the University of Toronto is undergoing a major
expansion and is inviting applications for faculty positions as described
below.

Endowed Chair in Software

This is a senior position for a person expected to have a major impact
in a first-class academic environment for research and teaching in soft-
ware systems. The Chair is open to all areas of research in software, such
as systems software, software engineering, databases, and distributed
systems.

Tenure-Track Faculty Positions

Several tenure-track positions are available in all areas of computer engi-
neering, including architecture, systems software, distributed systems,
embedded systems, VLSI systems, graphics, and multimedia. The posi-
tions are at the Assistant Professor level, but exceptional candidates at
the Associate or Full Professor level will also be considered.

The ECE Department consistently ranks among the top 10 ECE depart-
ments in North America. It attracts outstanding students, has excel-
lent research and teaching facilities, and is ideally located in the middle
of a vibrant cosmopolitan city. Additional information can be found on
our web page: http://www.ece.toronto.edu.

APh.D. degree is required, normally in electrical engineering, computer
engineering, or computer science. Applicants should send a curricu-
lum vitae, a statement of teaching and research interests, and a list of
at least three references to Professor Safwat G. Zaky, Chair, Dept. of
Electrical and Computer Engineering; University of Toronto; 10 King's
College Road; Toronto, Ontario M5S 3G4; Canada. The search will con-
tinue until the positions are filled.

The University of Toronto is strongly committed to diversity within its
community and especially welcomes applications from visible minority
group members, women, Aboriginal persons, persons with disabilities,
members of sexual minority groups, and others who may contribute to
the further diversification of ideas.

January 2002




