
RETROSPECTIVE: 

Improving Direct-Mapped Cache Performance by the Addition of a Small 
Fully-Associative Cache and Prefetch Buffers 

Norman l? Jouppi 

Western Research Laboratory 
Digital Equipment Corporation, Palo Alto, CA 94301 

jouppi@pa.dec.com 

Motivation 

The work in this paper was initially motivated 
by the BIPS project at Digital Equipment Corpora- 
tion’s Western Research Lab. This project started in 
1988 with the goal of building a processor that 
could execute over one billion instructions per sec- 
ond [l]. As an early part of the design process, the 
performance of various possible system configura- 
tions were simulated. We found that for many con- 
figurations most of the potential performance was 
being lost in the memory system. This led to an 
effort to create a more efficient memory system 
given the expected resources (i.e., transistor 
counts, pin bandwidth, etc.) that would be avail- 
able. 

Just prior to this work, Mark Hill had been 
investigating tradeoffs involving cache set-associa- 
tivity at the University of California at Berkeley. 
Mark classified cache misses into the now famous 
three C’s: conflict, capacity, and compulsory misses 
[2]. Mark also showed that direct-mapped caches 
could give better overall system performance than 
set-associative caches in some situations because 
they had a faster access time. 

Many advances in science are the result of new 
methods of measuring things. In this case, Mark 
Hill’s measuring of the causes of cache misses led 
to my investigations of ways to reduce each type of 
cache miss. The miss caches and victim caches pre- 
sented in the paper were proposed to reduce con- 
flict misses, assuming a direct-mapped cache was 
used for its smaller access time. Stream buffers 
were proposed as a method for reducing primarily 
compulsory and capacity misses. The net result 
was a memory system with higher performance for 
a given transistor count. 

Elaboration 

Immediately after the 1990 ISCA paper I wrote 
a follow-up paper and submitted it to ASPLOS-III. 
This paper showed four things. First, it presented 
an enhancement to stream buffers which could 
supply prefetch data from any position in the 
stream buffer, resulting better utilization of data in 
the stream buffer and higher stream buffer hit 
rates. Second, it demonstrated that stream buffers 
were more effective than any of the hardware 
prefetching techniques that had been discussed in 
Smith’s cache survey [7]. Third, it showed that 
stream buffers were more effective in reducing 
cache misses than victim caches. Fourth, and per- 
haps most interesting, it presented the effective 
cache size increase resulting from adding multiple 
stream buffers to a baseline cache design. In many 
situations, the combination of baseline cache and 
stream buffers could give miss rates equivalent to 
those of caches many times larger than the baseline 
design. Since stream buffers can eliminate compul- 
sory misses, for some larger caches there was no 
cache size that had miss rates as low as the baseline 
cache plus stream buffers. Just as adding stream 
buffers can make a cache appear larger, adding vic- 
tim caches can effectively provide fractional 
amounts of cache associativity (e.g., a miss rate 
equal to a 1.2-way set associative cache). This 
paper was not accepted to the conference and I 
never revised it or sent it anywhere else. As part of 
writing this retrospective I’ve turned it into WRL 
tech note TN-53 and put it on the web (see 
http://www.research.digital.com/wrl/ 
techreports/pubslist.html). 

One point of confusion for the reviewers of the 
ASPLOS submission was something that has come 
up many times since. In the original ISCA paper, it 
was not directly and explicitly stated in the text of 

71 



the paper that data values in the stream buffer or 
victim cache are not available for use by the pro- 
cessor in the same cycle that data accessed from the 
cache would be available. However, all the block 
diagrams in the paper show that the victim caches 
and stream buffers are only connected to the mem- 
ory refill side of the caches, and the text states that 
a cache line can be transferred from the stream 
buffer or victim cache to the primary cache in the 
cycle following the cache miss. Since the appear- 
ance of the ISCA paper, many people have 
assumed that a large multiplexor exists in the 
cache access path of the processor, and that this 
large multiplexor can select between the result of 
the cache probe and the contents of a stream buffer 
or victim cache all within the cache access time. 
This is certainly not the case, as can be seen from 
the diagrams in the paper. If there was such a large 
multiplexor, the access of the primary cache 
(direct-mapped in these examples) would become 
much slower. By placing a multiplexor on the 
cache refill path it is moved out of the critical cache 
access path at the cost of another cycle of delay. 
This cycle of delay is much shorter than a full 
cache miss penalty, so misses served from a stream 
buffer or victim cache still result in a significant 
win. 

Evolution 

Stream buffers and miss or victim caches have 
appeared in a number of systems, although their 
use is by no means widespread. The most compel- 
ling application remains prefetching instructions 
with instruction stream buffers; this is because of 
the highly sequential nature of instruction miss 
streams. Instruction prefetch buffers have 
appeared in a number of microprocessor designs. 

One data-side application was a combined 
2KB miss cache and stream buffer which was 
placed on the HP PA7100 microprocessor [3] while 
the primary caches remained off-chip. In this sys- 
tem they wanted large off-chip caches for good 
performance on large application programs. Off- 
chip caches are difficult to make set-associative 
because of limited microprocessor pin counts, and 
there was not enough space on the die for large 
caches, so they placed a combined prefetch buffer 
and miss cache on-chip instead. Because the com- 
bined miss cache and prefetch buffer was on chip, 
it can be accessed in parallel with the off-chip 
cache. 

The Cray T3D and T3E also used stream buff- 
ers on the data side, as a replacement for a second- 
ary cache. Because many real numeric applications 
use non-unit strides, support for non-unit stride 
prediction and allocation filters to reduce the mem- 
ory bandwidth requirements were studied by Pala- 
charla and Kessler [4]. As a result of this study 
allocation filters were implemented in the Cray 
T3E. 

More recently, stream buffers have been stud- 
ied in the context of more modern processor 
designs. Farkas et. al [5] found that stream buffers 
were useful in statically scheduled processors with 
non-blocking loads and speculative execution. 
Although dynamically scheduled processors are 
better at tolerating unpredictable memory latency 
than statically scheduled processors, they too can 
benefit from stream buffers as Farkas et. al. showed 
in [6]. 

In [6] improved per-load stride prediction and 
a variation of stream buffers called incremental 
stream buffers were also proposed. Incremental 
stream buffers do not attempt to fill the whole 
stream buffer on a miss, but rather extend the 
number of lines they try to prefetch if earlier 
prefetches are used. This reduces the amount of 
bandwidth wasted in cases where prefetching far 
beyond the initial miss is not useful. However, it is 
much better for short streams than methods that 
require several subsequent misses before allocating 
a stream buffer. Moreover, for long streams the 
additional startup overhead is insignificant. 

Futures 

Although miss caches and victim caches are 
typically more popular ideas than stream buffers, 
stream buffers are a more important and lasting 
contribution. Even with the system configurations 
of the initial paper, stream buffers made a larger 
contribution to system performance. As caches get 
larger, the percentage of misses which are due to 
conflicts goes down while the percentage due to 
compulsory misses go up. This further increases 
the importance of stream buffers at the expense of 
miss and victim caches. With technology scaling, 
the latency ratio between off-chip and on-chip 
cache access increases. This makes sacrificing some 
cache hit speed for increased cache hit rates (i.e., 
implementing true cache set-associativity) even 
more worthwhile. Finally, more recent system 
innovations such as dynamic scheduling which 

72 



reduce temporal and spatial locality of reference 
streams require set-associative caches for good per- 
formance. 

As technology integration increases, I believe 
stream buffers will still be important for obtaining 
the best system performance for ever-limited cache 
resources. And I believe there is still room for fur- 
ther advances in hardware prefetching. 

Acknowledgments 

Keith Farkas provided helpful comments on a 
draft of this retrospective as well as insightful 
work on stream buffer enhancements. 

References 

[l] Norman l? Jouppi, et. al., “A 300MHz 115W 32b 
Bipolar ECL Microprocessor,” in the IEEE ]ournal of 
Solid-State Circuits, November 1993. 

[2] Mark D. Hill, Aspects of Cache Memory and 
instruction Buffer Performance, Ph.D. Thesis, 
University of California Berkeley, 1987. 

[3] Ehsan Rashid, et. al., “A CMOS RISC CPU with 
On-Chip Parallel Cache”, in the Proceedings of the 
1994 International Solid-State Circuits Conference, 
pages 210-211. 

[4] Subbarao Palacharla and Richard Kessler, 
“Evaluating Stream Buffers as a Secondary Cache 
Replacement”, in the Proceedings of the 21st 
International Symposium on Computer Architecture, 
pages 24-33, April 1994. 

[5] Keith Farkas, Norman I? Jouppi, and Paul Chow, 
“How Useful are Non-blocking Loads, Stream 
Buffers, and Speculative Execution in Multiple 
Issue Processors?” in the Proceedings of the 1st 
Conference on High-Performance Computer 
Architecture, January, 1995. 

[6] Keith Farkas, Paul Chow, Norman l? Jouppi, and 
Zvonko Vranesic, “Memory-System Design 
Considerations for Dynamically-Scheduled 
Processors” in the Proceedings of the 24th Annual 
International Symposium on Computer Architecture, 
June 1997. 

[7] A. J, Smith, “Cache Memories”, ACM Computing 
Surveys, vol. 14, no. 3, pp. 473-530,1982 

73 


